第26讲 逻辑问题(推荐)

时间:2019-05-14 21:17:01下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《第26讲 逻辑问题(推荐)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《第26讲 逻辑问题(推荐)》。

第一篇:第26讲 逻辑问题(推荐)

逻辑问题

(一)本讲介绍利用列表法求解逻辑问题。

例1小王、小张和小李一位是工人,一位是农民,一位是教师,现在只知道:小李比教师年龄大;小王与农民不同岁;农民比小张年龄小。问:谁是工人?谁是农民?谁是教师?

分析与解:由题目条件可以知道:小李不是教师,小王不是农民,小张不是农民。由此得到左下表。表格中打“√”表示肯定,打“×”表示否定。

因为左上表中,任一行、任一列只能有一个“√”,其余是“×”,所以小李是农民,于是得到右上表。

因为农民小李比小张年龄小,又小李比教师年龄大,所以小张比教师年龄大,即小张不是教师。因此得到左下表,从而得到右下表,即小张是工人,小李是农民,小王是教师。

例2刘刚、马辉、李强三个男孩各有一个妹妹,六个人进行乒乓球混合双打比赛。事先规定:兄妹二人不许搭伴。

第一盘:刘刚和小丽对李强和小英;

第二盘:李强和小红对刘刚和马辉的妹妹。问:三个男孩的妹妹分别是谁?

分析与解:因为兄妹二人不许搭伴,所以题目条件表明:刘刚与小丽、李强与小英、李强与小红都不是兄妹。由第二盘看出,小红不是马辉的妹妹。将这些关系画在左下表中,由左下表可得右下表。

刘刚与小红、马辉与小英、李强与小丽分别是兄妹。

例3甲、乙、丙每人有两个外号,人们有时以“数学博士”、“短跑健将”、“跳高冠军”、“小画家”、“大作家”和“歌唱家”称呼他们。此外:

(1)数学博士夸跳高冠军跳得高;

(2)跳高冠军和大作家常与甲一起去看电影;

(3)短跑健将请小画家画贺年卡;

(4)数学博士和小画家很要好;

(5)乙向大作家借过书;

(6)丙下象棋常赢乙和小画家。

你知道甲、乙、丙各有哪两个外号吗?

分析与解:由(2)知,甲不是跳高冠军和大作家;由(5)知,乙不是大作家;由(6)知,丙、乙都不是小画家。由此可得到下表:

因为甲是小画家,所以由(3)(4)知甲不是短跑健将和数学博士,推知甲是歌唱家。因为丙是大作家,所以由(2)知丙不是跳高冠军,推知乙是跳高冠军。因为乙是跳高冠军,所以由(1)知乙不是数学博士。将上面的结论依次填入上表,便得到下表:

所以,甲是小画家和歌唱家,乙是短跑健将和跳高冠军,丙是数学博士和大作家。

例4张明、席辉和李刚在北京、上海和天津工作,他们的职业是工人、农民和教师,已知:(1)张明不在北京工作,席辉不在上海工作;

(2)在北京工作的不是教师;

(3)在上海工作的是工人;

(4)席辉不是农民。

问:这三人各住哪里?各是什么职业?

分析与解:与前面的例题相比,这道题的关系要复杂一些,要求我们通过推理,弄清人物、工作地点、职业三者之间的关系。三者的关系需要两两构造三个表,即人物与地点,人物与职业,地点与职业三个表。

我们先将题目条件中所给出的关系用下面的表来表示,由条件(1)得到表1,由条件(4)得到表2,由条件(2)(3)得到表3。

因为各表中,每行每列只能有一个“√”,所以表(3)可填全为表(4)。

因为席辉不在上海工作,在上海工作的是工人,所以席辉不是工人,他又不是农民,所以席辉是教师。再由表4知,教师住在天津,即席辉住在天津。至此,表1可填全为表5。

对照表5和表4,得到:张明住在上海是工人,席辉住在天津是教师,李刚住在北京是农民。

练习26

1.甲、乙、丙分别是来自中国、日本和英国的小朋友。甲不会英文,乙不懂日语却与英国小朋友热烈交谈。问:甲、乙、丙分别是哪国的小朋友?

2.徐、王、陈、赵四位师傅分别是工厂的木工、车工、电工和钳工,他们都是象棋迷。

(1)电工只和车工下棋;

(2)王、陈两位师傅经常与木工下棋;

(3)徐师傅与电工下棋互有胜负;

(4)陈师傅比钳工下得好。

问:徐、王、陈、赵四位师傅各从事什么工种?

3.李波、顾锋、刘英三位老师共同担负六年级某班的语文、数学、政治、体育、音乐和图画六门课的教学,每人教两门。现知道:

(1)顾锋最年轻;

(2)李波喜欢与体育老师、数学老师交谈;

(3)体育老师和图画老师都比政治老师年龄大;

(4)顾锋、音乐老师、语文老师经常一起去游泳;

(5)刘英与语文老师是邻居。

问:各人分别教哪两门课程?

4.A,B,C,D分别是中国、日本、美国和法国人。已知:

(1)A和中国人是医生;

(2)B和法国人是教师;

(3)C和日本人职业不同;

(4)D不会看病。

问:A,B,C,D各是哪国人,5.小亮、小红、小娟分别在一小、二小、三小读书,各自爱好围棋、体操、足球中的一项,现知道:

(1)小亮不在一小;

(2)小红不在二小;

(3)爱好足球的不在三小;

(4)爱好围棋的在一小,但不是小红。

问:小亮、小红、小娟各在哪个学校读书和各自的爱好是什么?

逻辑问题

(二)本讲介绍用假设法解逻辑问题。

例1四个小朋友宝宝、星星、强强和乐乐在院子里踢足球,一阵响声,惊动了正在读书的陆老师,陆老师跑出来查看,发现一块窗户玻璃被打破了。陆老师问:“是谁打破了玻璃?”

宝宝说:“是星星无意打破的。”

星星说:“是乐乐打破的。”

乐乐说:“星星说谎。”

强强说:“反正不是我打破的。”

如果只有一个孩子说了实话,那么这个孩子是谁?是谁打破了玻璃?

分析与解:因为星星和乐乐说的正好相反,所以必是一对一错,我们可以逐一假设检验。

假设星星说得对,即玻璃窗是乐乐打破的,那么强强也说对了,这与“只有一个孩子说了实话”矛盾,所以星星说错了。

假设乐乐说对了,按题意其他孩子就都说错了。由强强说错了,推知玻璃是强强打破的。宝宝、星星确实都说错了。符合题意。

所以是强强打破了玻璃。

例2甲、乙、丙、丁四人同时参加全国小学数学夏令营。赛前甲、乙、丙分别做了预测。

甲说:“丙第1名,我第3名。”

乙说:“我第1名,丁第4名。”

丙说:“丁第2名,我第3名。”

成绩揭晓后,发现他们每人只说对了一半,你能说出他们的名次吗? 分析与解:我们以“他们每人只说对了一半”作为前提,进行逻辑推理。

假设甲说的第一句话“丙第1名”是对的,第二句话“我第3名”是错的。由此推知乙说的“我第1名”是错的,“丁第4名”是对的;丙说的“丁第2名”是错的,“丙第3名”是对的。这与假设“丙第1名是对的”矛盾,所以假设不成立。

再假设甲的第二句“我第3名”是对的,那么丙说的第二句“我第3名”是错的,从而丙说的第一句话“丁第2名”是对的;由此推出乙说的“丁第4名”是错的,“我第1名”是对的。至此可以排出名次顺序:乙第1名、丁第2名、甲第3名、丙第4名。

例3甲、乙、丙、丁在谈论他们及他们的同学何伟的居住地。

甲说:“我和乙都住在北京,丙住在天津。”

乙说:“我和丁都住在上海,丙住在天津。”

丙说:“我和甲都不住在北京,何伟住在南京。”

丁说:“甲和乙都住在北京,我住在广州。”

假定他们每个人都说了两句真话,一句假话。问:不在场的何伟住在哪儿?

分析与解:因为甲、乙都说“丙住在天津,”我们可以假设这句话是假话,那么甲、乙的前两句应当都是真话,推出乙既住在北京又住在上海,矛盾。所以假设不成立,即“丙住在天津”是真话。

因为甲的前两句话中有一句假话,而甲、丁两人的前两句话相同,所以丁的第三句话“我住在广州”是真的。由此知乙的第二句话“丁住在上海”是假话,第一句“我住在上海”是真话;进而推知甲的第二句是假话,第一句“我住在北京”是真话;最后推知丙的第二句话是假话,第三句“何伟住在南京”是真话。

所以,何伟住在南京。

在解答逻辑问题时,有时需要将列表法与假设法结合起来。一般是在使用列表法中,出现不可确定的几种选择时,结合假设法,分别假设检验,以确定正确的结果。

例4一天,老师让小马虎把甲、乙、丙、丁、戊的作业本带回去,小马虎见到这五人后就一人给了一本,结果全发错了。现在知道:

(1)甲拿的不是乙的,也不是丁的;

(2)乙拿的不是丙的,也不是丁的;

(3)丙拿的不是乙的,也不是戊的;

(4)丁拿的不是丙的,也不是戊的;

(5)戊拿的不是丁的,也不是甲的。另外,没有两人相互拿错(例如甲拿乙的,乙拿甲的)。

问:丙拿的是谁的本?丙的本被谁拿走了?

分析与解:根据“全发错了”及条件(1)~(5),可以得到表1:

由表1看出,丁的本被丙拿了。此时,再继续推理分析不大好下手,我们可用假设法。由表1知,甲拿的本不是丙的就是戊的。

先假设甲拿了丙的本。于是得到表2,表2中乙拿戊的本,戊拿乙的本。两人相互拿错,不合题意。

再假设甲拿戊的本。于是可得表3,经检验,表3符合题意。

所以丙拿了丁的本,丙的本被戊拿去了。

例5甲、乙、丙、丁每人只会中、英、法、日四种语言中的两种,其中有一种语言只有一人会说。他们在一起交谈可有趣啦:

(1)乙不会说英语,当甲与丙交谈时,却请他当翻译;

(2)甲会日语,丁不会日语,但他们却能相互交谈;

(3)乙、丙、丁找不到三人都会的语言;

(4)没有人同时会日、法两种语言。

请问:甲、乙、丙、丁各会哪两种语言?

分析与解:由(1)(2)(4)可得下表,其中丙不会日语是因为甲会日语,且甲与丙交谈需要翻译。由下表看出,甲会的另一种语言不是中文就是英语。

先假设甲会说中文。由(2)知,丁也会中文;由(1)知丙不会中文,再由每人会两种语言,知丙会英、法语(见左下表;由(1)(4)推知乙会中文和法语;再由(3)及每人会两种语言,推知丁会英语(见右下表)。结果符合题意。

再假设甲会说英语。由(2)知,丁也会英语;由(1)知丙不会英语,再由每人会两种语言,知丙会中文和法语(见左下表);由(1)(4)推知,乙会中文和日语;再由(3)及每人会两种语言,推知丁会法语(见右下表)。右下表与“有一种语言只有一人会说”矛盾。假设不成立。

所以甲会中、日语,乙会中、法语,丙会英、法语,丁会中、英语。

练习27

1.在一次数学竞赛中,A,B,C,D,E五位同学分别得了前五名(没有并列同一名次的),关于各人的名次大家作出了下面的猜测:

A说:“第二名是D,第三名是B。”

B说:“第二名是C,第四名是E。”

C说:“第一名是E,第五名是A。”

D说:“第三名是C,第四名是A。”

E说:“第二名是B,第五名是D。”结果每人都只猜对了一半,他们的名次如何?

2.学校新来了一位老师,五个学生分别听到如下的情况:

(1)是一位姓王的中年女老师,教语文课;

(2)是一位姓丁的中年男老师,教数学课;

(3)是一位姓刘的青年男老师,教外语课;

(4)是一位姓李的青年男老师,教数学课;

(5)是一位姓王的老年男老师,教外语课。

他们每人听到的四项情况中各有一项正确。问:真实情况如何?

3.甲、乙、丙三人,一个总说谎,一个从不说谎,一个有时说谎。有一次谈到他们的职业,甲说:“我是油漆匠,乙是钢琴师,丙是建筑师。”

乙说:“我是医生,丙是警察,你若问甲,则甲会说他是油漆匠。”

丙说:“乙是钢琴师,甲是建筑师,我是警察。”

你知道谁总说谎吗?

4.甲、乙、丙、丁在比较他们的身高,甲说:“我最高。”

乙说:“我不最矮。”

丙说:“我没甲高,但还有人比我矮。”

丁说:“我最矮。”

实际测量的结果表明,只有一人说错了。请将他们按身高次序从高到矮排列出来。

5.红、黄、蓝、白、紫五种颜色的珠子各一颗,用布包着在桌上排成一行。A,B,C,D,E五个人猜各包里的珠子的颜色。

A猜:第2包紫色,第3包黄色;

B猜:第2包蓝色,第4包红色;

C猜:第1包红色,第5包白色;

D猜:第3包蓝色,第4包白色;

E猜:第2包黄色,第5包紫色。结果每人都猜对了一种,并且每包只有一人猜对,他们各自猜对了哪种颜色的珠子?

6.四张卡片上分别写着奥、林、匹、克四个字(一张上写一个字),取出三张字朝下放在桌上,A,B,C三人分别猜每张卡片上是什么字,猜的情况见下表:

结果,有一人一张也没猜中,一人猜中两张,另一人猜中三张。问:这三张卡片上各写着什么字,

第二篇:第15讲 逻辑问题(

第十五讲 逻辑问题

在日常生活中,有些问题常常要求我们主要通过分析和推理,而不是计算得出正确的结论。这类判断、推理问题,就叫做逻辑推理问题,简称逻辑问题。这类题目与我们学过的数学题目有很大不同,题中往往没有数字和图形,也不用我们学过的数学计算方法,而是根据已知条件,分析推理,得到答案。

例1甲、乙、丙、丁四人同时参加全国小学数学夏令营。赛前甲、乙、丙分别做了预测。

甲说:“丙第1名,我第3名。”

乙说:“我第1名,丁第4名。”

丙说:“丁第2名,我第3名。”

成绩揭晓后,发现他们每人只说对了一半,你能说出他们的名次吗? 分析与解:我们以“他们每人只说对了一半”作为前提,进行逻辑推理。

假设甲说的第一句话“丙第1名”是对的,第二句话“我第3名”是错的。由此推知乙说的“我第1名”是错的,“丁第4名”是对的;丙说的“丁第2名”是错的,“丙第3名”是对的。这与假设“丙第1名是对的”矛盾,所以假设不成立。

再假设甲的第二句“我第3名”是对的,那么丙说的第二句“我第3名”是错的,从而丙说的第一句话“丁第2名”是对的;由此推出乙说的“丁第4名”是错的,“我第1名”是对的。至此可以排出名次顺序:乙第1名、丁第2名、甲第3名、丙第4名。

例2甲、乙、丙、丁在谈论他们及他们的同学何伟的居住地。

甲说:“我和乙都住在北京,丙住在天津。”

乙说:“我和丁都住在上海,丙住在天津。”

丙说:“我和甲都不住在北京,何伟住在南京。”

丁说:“甲和乙都住在北京,我住在广州。”

假定他们每个人都说了两句真话,一句假话。问:不在场的何伟住在哪儿? 分析与解:因为甲、乙都说“丙住在天津,”我们可以假设这句话是假话,那么甲、乙的前两句应当都是真话,推出乙既住在北京又住在上海,矛盾。所以假设不成立,即“丙住在天津”是真话。

因为甲的前两句话中有一句假话,而甲、丁两人的前两句话相同,所以丁的第三句话“我住在广州”是真的。由此知乙的第二句话“丁住在上海”是假话,第一句“我住在上海”是真话;进而推知甲的第二句是假话,第一句“我住在北京”是真话;最后推知丙的第二句话是假话,第三句“何伟住在南京”是真话。

所以,何伟住在南京。

在解答逻辑问题时,有时需要将列表法与假设法结合起来。一般是在使用列表法中,出现不可确定的几种选择时,结合假设法,分别假设检验,以确定正确的结果。

例3一天,老师让小马虎把甲、乙、丙、丁、戊的作业本带回去,小马虎见到这五人后就一人给了一本,结果全发错了。现在知道:

(1)甲拿的不是乙的,也不是丁的;

(2)乙拿的不是丙的,也不是丁的;

(3)丙拿的不是乙的,也不是戊的;

(4)丁拿的不是丙的,也不是戊的;

(5)戊拿的不是丁的,也不是甲的。另外,没有两人相互拿错(例如甲拿乙的,乙拿甲的)。

问:丙拿的是谁的本?丙的本被谁拿走了?

分析与解:根据“全发错了”及条件(1)~(5),可以得到表1:

由表1看出,丁的本被丙拿了。此时,再继续推理分析不大好下手,我们可用假设法。由表1知,甲拿的本不是丙的就是戊的。

先假设甲拿了丙的本。于是得到表2,表2中乙拿戊的本,戊拿乙的本。两人相互拿错,不合题意。

再假设甲拿戊的本。于是可得表3,经检验,表3符合题意。所以丙拿了丁的本,丙的本被戊拿去了。

例4甲、乙、丙、丁每人只会中、英、法、日四种语言中的两种,其中有一种语言只有一人会说。他们在一起交谈可有趣啦:

(1)乙不会说英语,当甲与丙交谈时,却请他当翻译;

(2)甲会日语,丁不会日语,但他们却能相互交谈;

(3)乙、丙、丁找不到三人都会的语言;

(4)没有人同时会日、法两种语言。

请问:甲、乙、丙、丁各会哪两种语言?

分析与解:由(1)(2)(4)可得下表,其中丙不会日语是因为甲会日语,且甲与丙交谈需要翻译。由下表看出,甲会的另一种语言不是中文就是英语。

先假设甲会说中文。由(2)知,丁也会中文;由(1)知丙不会中文,再由每人会两种语言,知丙会英、法语(见左下表;由(1)(4)推知乙会中文和法语;再由(3)及每人会两种语言,推知丁会英语(见右下表)。结果符合题意。

再假设甲会说英语。由(2)知,丁也会英语;由(1)知丙不会英语,再由每人会两种语言,知丙会中文和法语(见左下表);由(1)(4)推知,乙会中文和日语;再由(3)及每人会两种语言,推知丁会法语(见右下表)。右下表与“有一种语言只有一人会说”矛盾。假设不成立。

所以甲会中、日语,乙会中、法语,丙会英、法语,丁会中、英语。

例5小王、小张和小李一位是工人,一位是农民,一位是教师,现在只知道:小李比教师年龄大;小王与农民不同岁;农民比小张年龄小。问:谁是工人?谁是农民?谁是教师?

分析与解:由题目条件可以知道:小李不是教师,小王不是农民,小张不是农民。由此得到左下表。表格中打“√”表示肯定,打“×”表示否定。

因为左上表中,任一行、任一列只能有一个“√”,其余是“×”,所以小李是农民,于是得到右上表。

因为农民小李比小张年龄小,又小李比教师年龄大,所以小张比教师年龄大,即小张不是教师。因此得到左下表,从而得到右下表,即小张是工人,小李是农民,小王是教师。

采用列表法,使得各种关系更明确。为了讲解清楚,例题中画了几个表,实际解题时,不用画这么多表,只在一个表中先后画出各种关系即可。需要注意的是:①第一步应将题目条件给出的关系画在表上,然后再依次将分析推理出的关系画在表上;②每行每列只能有一个“√”,如果出现了一个“√”,它所在的行和列的其余格中都应画“×”。

在下面的例题中,“√”和“×”的含义是很明显的,不再单独解释。例6刘刚、马辉、李强三个男孩各有一个妹妹,六个人进行乒乓球混合双打比赛。事先规定:兄妹二人不许搭伴。

第一盘:刘刚和小丽对李强和小英;

第二盘:李强和小红对刘刚和马辉的妹妹。问:三个男孩的妹妹分别是谁?

分析与解:因为兄妹二人不许搭伴,所以题目条件表明:刘刚与小丽、李强与小英、李强与小红都不是兄妹。由第二盘看出,小红不是马辉的妹妹。将这些关系画在左下表中,由左下表可得右下表。

刘刚与小红、马辉与小英、李强与小丽分别是兄妹。

例7张明、席辉和李刚在北京、上海和天津工作,他们的职业是工人、农民和教师,已知:(1)张明不在北京工作,席辉不在上海工作;

(2)在北京工作的不是教师;

(3)在上海工作的是工人;

(4)席辉不是农民。

问:这三人各住哪里?各是什么职业?

分析与解:与前面的例题相比,这道题的关系要复杂一些,要求我们通过推理,弄清人物、工作地点、职业三者之间的关系。三者的关系需要两两构造三个表,即人物与地点,人物与职业,地点与职业三个表。

我们先将题目条件中所给出的关系用下面的表来表示,由条件(1)得到表1,由条件(4)得到表2,由条件(2)(3)得到表3。

因为各表中,每行每列只能有一个“√”,所以表(3)可填全为表(4)。

因为席辉不在上海工作,在上海工作的是工人,所以席辉不是工人,他又不是农民,所以席辉是教师。再由表4知,教师住在天津,即席辉住在天津。至此,表1可填全为表5。

对照表5和表4,得到:张明住在上海是工人,席辉住在天津是教师,李刚住在北京是农民。

例8甲、乙、丙每人有两个外号,人们有时以“数学博士”、“短跑健将”、“跳高冠军”、“小画家”、“大作家”和“歌唱家”称呼他们。此外:

(1)数学博士夸跳高冠军跳得高;

(2)跳高冠军和大作家常与甲一起去看电影;

(3)短跑健将请小画家画贺年卡;

(4)数学博士和小画家很要好;

(5)乙向大作家借过书;

(6)丙下象棋常赢乙和小画家。

你知道甲、乙、丙各有哪两个外号吗?

分析与解:由(2)知,甲不是跳高冠军和大作家;由(5)知,乙不是大作家;由(6)知,丙、乙都不是小画家。由此可得到下表:

因为甲是小画家,所以由(3)(4)知甲不是短跑健将和数学博士,推知甲是歌唱家。因为丙是大作家,所以由(2)知丙不是跳高冠军,推知乙是跳高冠军。因为乙是跳高冠军,所以由(1)知乙不是数学博士。将上面的结论依次填入上表,便得到下表:

所以,甲是小画家和歌唱家,乙是短跑健将和跳高冠军,丙是数学博士和大作家。

练习一

1.甲、乙、丙分别是来自中国、日本和英国的小朋友。甲不会英文,乙不懂日语却与英国小朋友热烈交谈。问:甲、乙、丙分别是哪国的小朋友?

2.徐、王、陈、赵四位师傅分别是工厂的木工、车工、电工和钳工,他们都是象棋迷。

(1)电工只和车工下棋;

(2)王、陈两位师傅经常与木工下棋;

(3)徐师傅与电工下棋互有胜负;

(4)陈师傅比钳工下得好。

问:徐、王、陈、赵四位师傅各从事什么工种?

3.李波、顾锋、刘英三位老师共同担负六年级某班的语文、数学、政治、体育、音乐和图画六门课的教学,每人教两门。现知道:

(1)顾锋最年轻;

(2)李波喜欢与体育老师、数学老师交谈;

(3)体育老师和图画老师都比政治老师年龄大;

(4)顾锋、音乐老师、语文老师经常一起去游泳;

(5)刘英与语文老师是邻居。

问:各人分别教哪两门课程?

4.A,B,C,D分别是中国、日本、美国和法国人。已知:

(1)A和中国人是医生;

(2)B和法国人是教师;

(3)C和日本人职业不同;

(4)D不会看病。

问:A,B,C,D各是哪国人 5.学校新来了一位老师,五个学生分别听到如下的情况:

(1)是一位姓王的中年女老师,教语文课;

(2)是一位姓丁的中年男老师,教数学课;

(3)是一位姓刘的青年男老师,教外语课;

(4)是一位姓李的青年男老师,教数学课;

(5)是一位姓王的老年男老师,教外语课。

他们每人听到的四项情况中各有一项正确。问:真实情况如何? 6.甲、乙、丙三人,一个总说谎,一个从不说谎,一个有时说谎。有一次谈到他们的职业,甲说:“我是油漆匠,乙是钢琴师,丙是建筑师。”

乙说:“我是医生,丙是警察,你若问甲,则甲会说他是油漆匠。”

丙说:“乙是钢琴师,甲是建筑师,我是警察。”

你知道谁总说谎吗?

7.甲、乙、丙、丁在比较他们的身高,甲说:“我最高。”

乙说:“我不最矮。”

丙说:“我没甲高,但还有人比我矮。”

丁说:“我最矮。”

实际测量的结果表明,只有一人说错了。请将他们按身高次序从高到矮排列出来。8.红、黄、蓝、白、紫五种颜色的珠子各一颗,用布包着在桌上排成一行。A,B,C,D,E五个人猜各包里的珠子的颜色。

A猜:第2包紫色,第3包黄色;

B猜:第2包蓝色,第4包红色;

C猜:第1包红色,第5包白色;

D猜:第3包蓝色,第4包白色;

E猜:第2包黄色,第5包紫色。结果每人都猜对了一种,并且每包只有一人猜对,他们各自猜对了哪种颜色的珠子?

练习一

1.甲是日本人,乙是中国人,丙是英国人。

2.徐是车工,王是钳工,陈是电工,赵是木工。

提示:由(2)(3)(1)可画出下表:

3.李波教语文、图画,顾锋教数学、政治,刘英教音乐、体育。

提示:由(1)(3)(4)推知顾锋教数学和政治;由(2)推知刘英教体育;由(3)(5)推知李波教图画、语文。

4.A是美国人,B是日本人,C是中国人,D是法国人。

提示:由(1)(2)知,A,B都不是中国人和法国人;再由(1)(4)知,D也不是中国人,所以C是中国人,进而推知D是法国人,可得下表。最后由C是中国人及(1)(3),推知日本人是教师,再由(2)知B是日本人。

5.姓刘的老年女老师,教数学。

提示:假设是男老师,由(2)(3)(5)知,他既不是青年、中年,也不是老年,矛盾,所以是女老师。再由(1)知,她不教语文,不是中年人。假设她教外语,由(3)(5)知她必是中年人,矛盾,所以她教数学。由(2)(4)知她是老年人,由(3)知她姓刘。6.甲。

提示:若甲从不说谎,则乙的最后一句、丙的第一句都对,没有总说谎的人,矛盾;同理,若丙从不说谎,则也将推出矛盾。7.乙、甲、丙、丁。

提示:丁不可能说错,否则就没有人最矮了。由此知乙没有说错。若甲也没说错,则无人说错,所以只有甲一人说错。

8.A猜对第3包黄色,B猜对第2包蓝色,C猜对第1包红色,D猜对第4包白色,E猜对第5包紫色。

第三篇:第九讲 逻辑问题

第9讲 逻辑问题

名侦探

原名工藤新一,帝丹高中二年极学生,被誉为“日本警察的救世主、平成年代的福尔摩斯”。

名句:真相永远只有一个!(There is always just one truth!)

除去不可能的事,剩下的即使再不能接受,但那也是真相!

无论你遇到多么不幸的事,吸毒和杀人是绝

不能干的犯罪行为,否则只能让你得到可耻的红牌。

犯罪手法终究是人类想出来的谜题而已„„只要人类绞尽脑汁,还是可以得出一个逻辑性的答案。但杀人的理由,无论如何我都不会理解;即使理解了,也永远无法接受。

在日常生活中,有些问题常常要求我们主要通过分析和推理,而不是计算得出正确的结论。这类判断、推理问题,就叫做逻辑推理问题,简称逻辑问题。这类题目与我们学过的数学题目有很大不同,题中往往没有数字和图形,也不用我们学过的数学计算方法,而是根据已知条件,分析推理,得到答案。

本讲介绍利用列表法求解逻辑问题。

例1小王、小张和小李一位是工人,一位是农民,一位是教师,现在只知道:小李比教师年龄大;小王与农民不同岁;农民比小张年龄小。问:谁是工人?谁是农民?谁是教师?

采用列表法,使得各种关系更明确。为了讲解清楚,例题中画了几个表,实际解题时,不用画这么多表,只在一个表中先后画出各种关系即可。需要注意的是:①第一步应将题目条件给出的关系画在表上,然后再依次将分析推理出的关系画在表上;②每行每列只能有一个“√”,如果出现了一个“√”,它所在的行和列的其余格中都应画“×”。练习: 1.甲、乙、丙分别是来自中国、日本和英国的小朋友。甲不会英文,乙不懂日语却与英国小朋友热烈交谈。问:甲、乙、丙分别是哪国的小朋友?

例2刘刚、马辉、李强三个男孩各有一个妹妹,六个人进行乒乓球混合双打比赛。事先规定:兄妹二人不许搭伴。

第一盘:刘刚和小丽对李强和小英;

第二盘:李强和小红对刘刚和马辉的妹妹。问:三个男孩的妹妹分别是谁?

练习:2.徐、王、陈、赵四位师傅分别是工厂的木工、车工、电工和钳工,他们都是象棋迷。

(1)电工只和车工下棋;

(2)王、陈两位师傅经常与木工下棋;

(3)徐师傅与电工下棋互有胜负;

(4)陈师傅比钳工下得好。

问:徐、王、陈、赵四位师傅各从事什么工种?

例3甲、乙、丙每人有两个外号,人们有时以“数学博士”、“短跑健将”、“跳高冠军”、“小画家”、“大作家”和“歌唱家”称呼他们。此外:

(1)数学博士夸跳高冠军跳得高;

(2)跳高冠军和大作家常与甲一起去看电影;

(3)短跑健将请小画家画贺年卡;

(4)数学博士和小画家很要好;

(5)乙向大作家借过书;

(6)丙下象棋常赢乙和小画家。

你知道甲、乙、丙各有哪两个外号吗?

练习: 3.李波、顾锋、刘英三位老师共同担负六年级某班的语文、数学、政治、体育、音乐和图画六门课的教学,每人教两门。现知道:

(1)顾锋最年轻;

(2)李波喜欢与体育老师、数学老师交谈;

(3)体育老师和图画老师都比政治老师年龄大;

(4)顾锋、音乐老师、语文老师经常一起去游泳;

(5)刘英与语文老师是邻居。

问:各人分别教哪两门课程?

4.张明、席辉和李刚在北京、上海和天津工作,他们的职业是工人、农民和教师,已知:(1)张明不在北京工作,席辉不在上海工作;

(2)在北京工作的不是教师;

(3)在上海工作的是工人;

(4)席辉不是农民。

问:这三人各住哪里?各是什么职业?

例4四个小朋友宝宝、星星、强强和乐乐在院子里踢足球,一阵响声,惊动了正在读书的陆老师,陆老师跑出来查看,发现一块窗户玻璃被打破了。陆老师问:“是谁打破了玻璃?”

宝宝说:“是星星无意打破的。”

星星说:“是乐乐打破的。”

乐乐说:“星星说谎。”

强强说:“反正不是我打破的。”

如果只有一个孩子说了实话,那么这个孩子是谁?是谁打破了玻璃?

练习:

1、一天,老师让小马虎把甲、乙、丙、丁、戊的作业本带回去,小马虎见到这五人后就一人给了一本,结果全发错了。现在知道:

(1)甲拿的不是乙的,也不是丁的;

(2)乙拿的不是丙的,也不是丁的;

(3)丙拿的不是乙的,也不是戊的;

(4)丁拿的不是丙的,也不是戊的;

(5)戊拿的不是丁的,也不是甲的。另外,没有两人相互拿错(例如甲拿乙的,乙拿甲的)。

问:丙拿的是谁的本?丙的本被谁拿走了?

2.甲、乙、丙、丁在比较他们的身高,甲说:“我最高。”

乙说:“我不最矮。”

丙说:“我没甲高,但还有人比我矮。”

丁说:“我最矮。”

实际测量的结果表明,只有一人说错了。请将他们按身高次序从高到矮排列出来。

例5甲、乙、丙、丁四人同时参加全国小学数学夏令营。赛前甲、乙、丙分别做了预测。

甲说:“丙第1名,我第3名。”

乙说:“我第1名,丁第4名。”

丙说:“丁第2名,我第3名。”

成绩揭晓后,发现他们每人只说对了一半,你能说出他们的名次吗?

练习

1.在一次数学竞赛中,A,B,C,D,E五位同学分别得了前五名(没有并列同一名次的),关于各人的名次大家作出了下面的猜测:

A说:“第二名是D,第三名是B。”

B说:“第二名是C,第四名是E。”

C说:“第一名是E,第五名是A。”

D说:“第三名是C,第四名是A。”

E说:“第二名是B,第五名是D。”结果每人都只猜对了一半,他们的名次如何?

2.红、黄、蓝、白、紫五种颜色的珠子各一颗,用布包着在桌上排成一行。A,B,C,D,E五个人猜各包里的珠子的颜色。

A猜:第2包紫色,第3包黄色;

B猜:第2包蓝色,第4包红色;

C猜:第1包红色,第5包白色;

D猜:第3包蓝色,第4包白色;

E猜:第2包黄色,第5包紫色。结果每人都猜对了一种,并且每包只有一人猜对,他们各自猜对了哪种颜色的珠子?

作业:

1.A,B,C,D分别是中国、日本、美国和法国人。已知:

(1)A和中国人是医生;

(2)B和法国人是教师;

(3)C和日本人职业不同;

(4)D不会看病。

问:A,B,C,D各是哪国人,2.小亮、小红、小娟分别在一小、二小、三小读书,各自爱好围棋、体操、足球中的一项,现知道:

(1)小亮不在一小;

(2)小红不在二小;

(3)爱好足球的不在三小;

(4)爱好围棋的在一小,但不是小红。

问:小亮、小红、小娟各在哪个学校读书和各自的爱好是什么?

3.甲、乙、丙三人,一个总说谎,一个从不说谎,一个有时说谎。有一次谈到他们的职业,甲说:“我是油漆匠,乙是钢琴师,丙是建筑师。”

乙说:“我是医生,丙是警察,你若问甲,则甲会说他是油漆匠。”

丙说:“乙是钢琴师,甲是建筑师,我是警察。”

你知道谁总说谎吗?

4.学校新来了一位老师,五个学生分别听到如下的情况:

(1)是一位姓王的中年女老师,教语文课;

(2)是一位姓丁的中年男老师,教数学课;

(3)是一位姓刘的青年男老师,教外语课;

(4)是一位姓李的青年男老师,教数学课;

(5)是一位姓王的老年男老师,教外语课。

他们每人听到的四项情况中各有一项正确。问:真实情况如何?

第四篇:第6讲 盈亏问题

盈亏问题

盈亏问题,顾名思义有剩余就叫盈,不够分就叫亏,不同的方法分配物品时,经常会产生这种盈亏现象.盈亏问题的关键是抓住两次分配时盈亏总量的变化.

盈亏问题分为5类:⑴有盈有亏; ⑵都是盈;⑶都是亏;(4)一个盈,一个刚好分完;(5)一个亏,一个刚好分完。

盈亏问题常用公式:(1)(盈+亏)÷两次分配的差=参与分配的数量(2)(盈-盈)÷两次分配的差=参与分配的数量(3)(亏-亏)÷两次分配的差=参与分配的数量(4)盈÷两次分配的差=参与分配的数量

(5)亏÷两次分配的差=参与分配的数量

例1 某校参加数学竞赛,原定考场若干个。如果每个考场坐22人;则多出18人,如果每个考场坐25人正好坐满。参加这次竞赛的学生共有多少人?

分析:本题为盈亏问题中只盈不亏的类型。根据题目条件“如果每个考场坐22人;则多出18人,如果每个考场坐25人正好坐满。”可知:考场共有18÷(25-22)=6(个),考生人数为25×6=150(人)解:18÷(25-22)=18÷3 =6(人)

25×6=150(人)

答:参加这次竞赛的学生人数为150人。

说明:本题运用公式 盈÷两次分配的差=参与分配的数量

随堂练习学校组织体操比赛。四(2)班同学站成若干排,如果每排5人,则多出6人,如果每排站6人,则刚好站完。问四(2)班一共有多少人?

解:6÷(6-5)

=6(排)

6×6=36(人)

答:四年级2班一共有36人。

例2 五年级在植树节组织学生植树,如果每人栽5棵。则缺20棵,如果每人栽3棵,则刚好栽完。问五年级一共植树多少棵?

分析:根据题目“如果每人栽5棵。则缺20棵,如果每人栽3棵,则刚好栽完。”可知,本题属于只亏不赢的情况。根据条件有20÷(5-3)=10(人)10×3=30(棵)解:20÷(5-3)

=10(人)

10×3=30(棵)答:一共植树30棵。

说明:本题运用公式 亏÷两次分配的差=参与分配的数量

随堂练习解放军某部队举行阅兵仪式。如果每车坐40人。则缺100人,如果每车坐30人,则刚好坐完。问这支部队一共有多少人?

解100÷(40-30)100÷10 =10(辆)30×10=300(人)

答:这支部队一共有300人。

例3 学校为某班新生分宿舍,每间住5人则多12人,每只住6人则多2人。问:有多少间宿舍?多少名新生?

分析:本题属于都是盈的情况,由题意可知,新生的人数和房间的间数是不变的。比较两种分配方案,结果相差12-2=10人,即第一种方案的结果比第二种多10人。这是因为每间房间比原来多住了6-5=1人,所以房间的数量为:(12-2)÷(6-5)=10(间),人数为5×10+12=62(人)解:房间:(12-2)÷(6-5)

=10(间)

人数:5×10+12 50+12 =62(人)

答:房间有10间,新生人数为62人。

说明:本题运用公式:(盈-盈)÷两次分配的差=参与分配的数量

随堂练习张老师带了一些钱去文具店买练习本,如果买40本还剩15元,如果买50本还剩5元,问:张老师一共带了多少钱? 解:(15-5)÷(50-40)=10÷10 =1(元)40×1+15=55(元)答:张老师共带了55元。

例4 露露从家到学校如果每分钟60米的速度走,那么要迟到5分钟;如果每分钟走70米,那么仍迟到3分钟。她应以每分钟多少米的速度走才能准时到达?

分析:根据题目条件,我们可以判断出本题属于都是亏的情况。“每分钟60米的速度走,要迟到5分钟;每分钟走70米,仍迟到3分钟。”根据公式直接求解问题不大,但是本题要注意的是亏到底是什么,如果直接以亏5分钟和3分钟计算,则会出现错误。所以,分析题目的“亏”是很关键的一步,以每分钟60米的速度走要迟到5分钟,说明距离学校还有60×5=300(米),以每分钟70米的速度走要迟到3分钟,说明距离学校还有70×3=210(米)所以 亏-亏=300-210=90(米)即90÷(70-60)=9(分钟)距离为:60×(9+3)=720(米)720÷9=80(米/分)解:(60×5-70×3)÷(70-60)=90÷10 =9(分钟)60×(9+5)60×14 =840(米)

840÷9=?(米/分)

答:她应该以每分钟80米的速度走才能准时到达。

说明:本题运用公式:(亏-亏)÷两次分配的差=参与分配的数量 随堂练习妈妈用袋子装报纸,如果每个袋子放20张则有一个袋子只有2张。如果每个袋子放16张,则有一个袋子里有14张。问一共有多少张报纸? 解:第一种方案亏为:20-2=18(张)

第二种方案亏为:16-14=2(张)(18-2)÷(20-16)=16÷4 =4(个)20×4-18 =80-18 =62(张)

答:报纸一共有62张。

例5 四年级一班数学组买了一些水果糖分给学生,如果每人分4粒就多9粒;如果每人分5粒就少6粒。四年级一班数学组有多少名学生?老师买了多少粒水果糖?

分析:由题目条件可知:两次参与分配的人数和糖果数量不变,两次分得的糖果数量一多一少,相差9+6=15(粒),两次分配分别为4粒和5粒,两次分配的差5-4=1(粒)。所以参与分配的人数为15÷1=15(人),糖果的数量为15×4+9=69粒。

解:人数:(9+6)÷(5-4)

=15(人)

水果糖数量:15×4+9

=60+9

=69(粒)

答:四年级一班数学组有15名学生;老师买了69粒水果糖.说明:本题运用了公式1(盈+亏)÷两次分配的差=参与分配的数量

随堂练习小红的妈妈买回一筐桔子,如果每人吃2个则多3个,每人吃3个则差4个,小红家里有几人?桔子一共有多少个? 解:人数:(3+4)÷(3-2)

=7(人)

桔子:2×7+3 =14+3

=17(个)

答:小红家里有7人;桔子一共有17个

例6 幼儿园给小朋友分梨,如果大班小朋友每人分5个则多10个,如果小班小朋友每人分8个则少4个,已知大班小朋友比小班小朋友多5人,问这框苹果有多少个?

分析:题目中出现的参与分配的人数在变化,不方便计算。在解答盈亏问题过程中,我们要确保参与分配的人数是定值。仔细观察题目,大班小朋友比小班小朋友多5人,如果大班小朋友每人分5个,则会多出来10+5×5=35个,由公式(1)可知小班小朋友有:(35+4)÷(8-5)=13(人)13×8-4=100(个)解:(10+5×5+4)÷(8-5)

=39÷3 =13(人)13×8-4 =104-4 =100(个)

答:这框苹果有100个.随堂练习老猴子给大小猴子分桃,如果大猴子每只分6个则少3个,如果小猴子每只分3个则多3个,已知小猴子比大猴子多5只,问有多少个桃? 解:(3+3×5+3)÷(6-3)

=21÷3 =7(只)7×6-3 =42-3 =39(个)

答:共有桃39个。

例7 上体育课时,老师把全体学生分成若干组,然后分发篮球,若每组分3个,则剩下23个篮球,若每组分5个,则有一组学生没有篮球,。问一共有多少个小组?有多少个篮球?

分析:判断本题是哪一种类型,需要认真分析。“若每组分3个,则剩下23个篮球”是盈余,“若每组分5个,则有一组学生没有篮球,”是亏,亏多少呢?每组分5个,一组分不到,则亏5个。解:(23+5)÷(5-3)=28÷2 =14(组)3×14+23 =42+23 =65 答:一共有14组,65个篮球。

说明:本题运用了公式1(盈+亏)÷两次分配的差=参与分配的数量

随堂练习劳动小组为新修食堂搬砖。如果每人搬16块,还剩4块;如果每人搬20块,就有一位同学没砖可搬。问共有多少块砖?

解:(4+20)÷(20-16)

=24÷4 =6(人)6×16+4 =96+4 =100(块)

答:共有100块砖.例8 解放战争胜利后,解放军给老百姓分粮食。如果其中2户每户分300千克,其余每户分200千克,还多出1500千克,如果一户分400千克,其余每户分300千克,又缺2000千克,这批粮食一共多少千克?

分析:本题为中等难度题目。首先我们要明白一点,就是在分的时候应该以相同的标准分,然后判断题目中的盈亏。根据题目条件:“如果其中2户每户分300千克,其余每户分200千克,还多出1500千克,如果一户分400千克,其余每户分300千克,又缺2000千克”。我们把两种方案中分别不同的分发转化成方案中相同的分发,即不能让人搞特殊。所以在第一个方案中我们让特殊的2户也和别人一样分200千克,则盈余为1500+(300-200)×2=1700(千克),第二个方案中我们也让特殊的一户和别人一样,则亏为2000-(400-300)=1900(千克)

根据盈亏公式(1)可得(1700+1900)÷(300-200)=36(户)粮食有36×200+1700=8900(千克)解:盈:1500+(300-200)×2 =1500+200 =1700(千克)亏;2000-(400-300)=2000-100 =1900(千克)

(1700+1900)÷(300-200)=3600÷100 =36(户)

粮食:36×200+1700 =7200+1700 =8900(千克)

答:这批粮食一共有8900千克。说明:本题运用公式(1)(盈+亏)÷两次分配的差=参与分配的数量

随堂练习王叔叔去工厂上班,如果先用每分钟60米的速度走2分钟,再改用每分钟50米的速度前进,结果早到1分钟,如果先用70米的速度走1分钟,再以每分钟40米的速度前进,就会迟到3分钟,王叔叔家到工厂的距离是多少? 解:盈:50×1-(60-50)×2 =50-20 =30(米)

亏:40×3+(70-40)×1 =120+30 =150(米)

(30+150)÷(50-40)=18(分钟)50×18-30 =900-30 =870(米)

答:王叔叔家到工厂的距离是870米。

习题

1.某校学生参加劳动,分成若干组,如果12人一组,正好分完,如果10人一组,多10人.参加劳动的有多少人? 解:10÷(12-10)

=10÷2 =5(组)

12×5=60(人)答:参加劳动的有60人。

2.农场组织学生卖桔子,如果每人卖出5千克,就刚好卖完;如果每人卖出6千克,则还差300千克,那么有多少学生参与活动,农场有桔子多少千克?

解:300÷(6-5)=300÷1 =300(人)

300×5=1500(千克)

答:有300参加活动,农场有桔子1500千克。

3.村民修公路,如果每人修24米,则超过总长120米,如果每人修30米,则超过总长300米.修路的共有多少人,公路长多少米? 解:(300-120)÷(30-24)=180÷6 =30(人)

30×24-120 =720-120 =600(米)

答:修路的共有30人,公路长600米。

4.课外活动跳绳比赛,其中2组各借绳4根,其余的组借5根,这样分配最后余下12根;如果每组借6根,这样恰好借完.问有绳多少根? 解:[12-(5-4)×2] ÷(6-5)

=10÷1 =10(组)6×10=60(根)答:有60根绳。

5. 小丽读一本书,她每天读10页,在规定天数内还剩25页没读完,如果她每天读12页,则在规定天数内还剩13页看不完,这本书一共多少页? 解:(25-13)÷(12-10)=12÷2 =6(天)6×10+25 =60+25 =85(页)

答:这本书一共有85页。

6.妈妈去商店买布,如果买3米布还缺18元,如果买2米还缺5元,妈妈带了多少钱?

解:(18-5)÷(3-2)=13÷1 =13(元)13×3-18 =39-18 =21(元)

答:妈妈带了21元。7.学校组织春游,如果每车坐55人则多35人没座位,如果每车坐60人则还能坐10人。一共有多少名学生?

解:(35+10)÷(60-55)=45÷5 =9(辆)60×9-10 =540-10 =530(人)

答:一共有530名学生。

8.小朋友去买东西,如果每人出8块钱则多6块钱,如果每人出6块钱则少4元。有多少个小朋友?东西卖多少元? 解:(6+4)÷(8-6)=10÷2 =5(人)

8×5-6 =40-6 =34(元)

答:有5个小朋友,东西卖34元。

9.用一根绳子测量池塘的水深。对折后露出水面60厘米,三折后还差40厘米。问池塘水深多少米?绳子长多少米? 解:(60×2+40×3)÷(3-2)=240÷1 =240(厘米)

240厘米=2.4米

(240+60)×2=600(厘米)600厘米=6米

答:池塘水深2.4米,绳子长6米。

10.老师买小提琴,若买6把,则缺120元,若买4把,则多60元。老师一共带了多少钱?

解:(120+60)÷(6-4)=180÷2 =90(元)90×4+60 =360+60 =420(元)

答:老师一共带了420元。

11.小陶给家人分桃子,如果爸爸妈妈各分5个,其余的每人分3个,则剩下9个桃子;如

果 有4人各分3个,其余的各分6个,则剩余10个桃子。问,家里有几人?桃子有几个?

解:盈:9+(5-3)×2=13(个)

亏:(6-3)×4-10=2(个)(13+2)÷(6-3)=5(人)(5-2)×3+5×2=19(个)

答:家例有5人,有19个桃子。12.老师给美术小组的同学分铅笔。如果每人分6支则缺2支;如果每人分8支还缺12支。问一共有多少支铅笔?

解:(12-2)÷(8-6)=10÷2 =5(人)5×6-2 =30-2 =28(支)

答:一共有28支铅笔。

13.学校大扫除,老师让一些同学擦玻璃。如果其中3人各擦4块,其余每人擦5块,则余23块;如果每人擦7块,正好擦完。求擦玻璃的人数和玻璃的块数?

解:[23-(5-4)×3] ÷(7-5)=(23-3)÷2 =20÷2 =10(人)

10×7=70(块)

答:擦玻璃的人数为10人,玻璃一共70块。

14. 小华从家地到图书馆如果每分钟走90米,那么要迟到5分钟;如果每分钟走100米,那么仍迟到3分钟。他应以每分钟多少米的速度走才能准时到达? 解:(90×5-100×3)÷(100-90)=150÷10 =15(分钟)100×(15+3)=100×18 =1800(米)

1800÷15=120(米)

答:他应以每分钟120米的速度走才能准时到达。

15.有一批故事书分给几个小朋友,如果其中3人每人5本,其余每人4本,那么会剩2本;如果其中1人分3本,其余每人5本,就会刚好分完。这批故事书共有多少本?[北京市第四届“迎春杯”刊赛] 解:盈:(5-4)×3+2=5(本)

亏:(5-3)×1=2(本)

(5+2)÷(5-4)=7÷1 =7(人)

3+(7-1)×5 =3+30 =33(本)

答:这批故事书一共有33本。

第五篇:第4讲_平均数问题

平均数问题

姓名

知识与方法

如果要灵活的运用平均数的数量关系解答一些稍复杂的问题呢?下面的数量关系必须牢记:

平均数=

总数量=()

总份数=

1、小明期末考试,语文90分,数学94分,外语98分,求小明三门考试的平均分.【举一反三】

1、某班有40名学生,期中数学考试,有两名同学因故缺考,这时班级平均分为89分,缺考的同学补考都得了99分,这个班级中考平均分是_______.2、已知9个数的平均数是72,去掉一个数后,余下的数平均数为78,去掉的数是______.3、某5个数的平均值为60,若把其中一个数改为80,平均值为70,这个数是

2、有4箱水果,已知苹果、梨、桔子平均每箱42个,梨、桔子、桃平均每箱36个。苹果和桃平均每箱37个。求一箱苹果多少个?一箱桃多少个?

【举一反三】

1、一次考试,甲、乙、丙三人平均分91分,乙、丙、丁三人平均分89分,甲、丁二人平均分95分,问甲、丁各得多少分?、甲、乙、丙三个小组的同学去植树,甲、乙两个组平均每组植18棵,甲、丙两组平均每组植17棵,乙、丙两组平均每组植19棵。三个小组各植树多少棵?

3、有A、B、C三个人,他们中每两个人的年龄加在一起的平均年龄分别为21岁、24岁、18岁,这三个人的年龄分别是多少?

3、五个数的平均数是18,把其中一个数改为6后,这五个数的平均数是16,这个改动的数原来是多少?。

【举一反三】

1、甲、乙、丙、丁四位同学,在一次考试中四人的平均分是90分。可是,甲在抄分数时,把自己的分数错抄成87分,因此算得的四人平均分为88分。求甲在这次考试中得了多少分?

2、一位同学在期中测试中,除数学外,其它几门功课的平均成绩是94分,如果数学算在内,平均每门95分。已知他数学得了100分,问这位同学一共考了多少门功课?

3、把五个数从小到大排列,其平均数是38,前三个数的平均数是27,后三个数的平均数是48,中间一个数是多少?

下载第26讲 逻辑问题(推荐)word格式文档
下载第26讲 逻辑问题(推荐).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    第28讲 城市化及城市化问题(精选多篇)

    第28讲 城市化及城市化问题[考纲要求] 城市化:城市化及其进程。城市化过程中产生的问题以及解决途径。 [知识讲解] 1、城市化 (1)城市化的含义 含义:一般是指人口向城市地区集聚......

    第4讲:构造特殊图形问题

    构造特殊图形问题 问题引入——在四面体ABCD中,AB=1,CD= 600,则四面体ABCD的体积等于 A. 32 3,直线AB与CD的距离为2,夹角为 B.C.D.3 3 3错因回放——许多做错的学生的主要原因......

    第14讲:差倍问题(教案)

    第14讲:差倍问题(教案) 课前知识复习1,在一个减法算式里,被减数、减数与差的和等于240,而减数是差的5倍。差是多少? 2,被除数、除数、商的和为79,商是4,被除数、除数各是多少? 引入 解......

    2011GCT逻辑精讲:3-1答案

    2011年GCT逻辑精讲讲义3-1 罗保华24学时 参考答案: 题型一:前提假设 2008GCT31.答案C。 2009GCT02.答案A。 题型二:削弱质疑 2009GCT03.答案C。 2009GCT06.答案:D。题型三:支持加......

    浅谈写作中的逻辑问题

    浅谈写作中的逻辑问题 写作是离不开逻辑的。毛泽东在《关心群众生活,注意工作方法》一文中说道:“文章和文件都应当具有这样三种性质:准确性、鲜明性和生动性。准确性属于概念......

    集合与逻辑专题问题展示

    集合与简易逻辑专题问题展示: 1.元素互异性、无序性与数列有什么区别? 集合中的元素有确定性、互异性、无序性;数列中的数呢? 2.子集与真子集的区别是什么?元素与集合的关系和集......

    三年级数学第 十 讲 《平均数问题(一)》

    三年级数学思维训练: 第 十 讲 《平均数问题(一)》 姓名 【点燃思维】 【例l】用4个同样的杯了装水,水面的高度分别是8厘米、5厘米、4厘米、3厘米。这4个杯子里水面的平均高度......

    讲五个问题

    讲五个问题 我们八年级老师,师资力量强,师德素质高,奉献精神足 各班力量均衡,没有大的落差。所以,我们有信心,能创造一个比着干的好局面。加强学科交流,资源共享。平时检测后,各班之......