(no.1)2013年高中数学教学论文 在解析几何中求参数范围的9种方法

时间:2019-05-14 11:49:15下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《(no.1)2013年高中数学教学论文 在解析几何中求参数范围的9种方法》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《(no.1)2013年高中数学教学论文 在解析几何中求参数范围的9种方法》。

第一篇:(no.1)2013年高中数学教学论文 在解析几何中求参数范围的9种方法

知识改变命运

百度提升自我

本文为自本人珍藏

版权所有

仅供参考

从高考解几题谈求参数取值范围的九个背景

解析几何中确定参数的取值范围是一类转为常见的探索性问题,历年高考试题中也常出现此类问题。由于不少考生在处理这类问题时无从下手,不知道确定参数范围的函数关系或不等关系从何而来,本文通过一些实例介绍这类问题形成的几个背景及相应的解法,期望对考生的备考有所帮助。

背景之一:题目所给的条件

利用题设条件能沟通所求参数与曲线上点的坐标或曲线的特征参数之间的联系,建立不等式或不等式组求解。这是求范围问题最显然的一个背景。

x2y2例1:椭圆221ab(acb0,c为半焦距)的焦点为F1、F2,点P(x, y)为其上的动点,当∠F1PF2为钝角时,点P的横坐标的取值范围是___。

222|PF1||PF2||F1F2|解:设P(x1, y),∠F1PF2是钝角cos∠F1PF2 =

2|PF1||PF2|0|PF1|2|PF2|2|F1F2|2(xc)2y2(xc)2y24c2x2y2b22a2b22a22222222cx2(ax)cxcbx(cb)22caa22a2a2cb2xcb2。cc说明:利用∠F1PF2为钝角,得到一个不等式是解题的关键。把本题特殊化就可以得到2000年全国高考题理科第14题:

x2y21的焦点为F1、F2,点P为其上的动点,当∠F1PF2为钝角时,点P横坐标椭圆94的取值范围是__________。

(答案为 x(3535)),55梯形双曲线例2:(2000年全国高考题理科第22题)如图,已知ABCD中,AB=2CD,点E分有向线段AC所成的比为,过点C、D、E三点,且以A、B为焦点。当

23时,求双曲线离心率e的取值范围。34-1

知识改变命运

百度提升自我

因此,点P在以M、N 为焦点,实轴长为2m的双曲线上,故

x2y2=1 22m1m②

m2(1m2)将①式代入②,解得x

15m22由xm且1m0,得15m2022255,又m0 m55∴m(55,0)(0,)55说明:P到x轴、y轴距离之比为2,所以P不能在x轴上,由此得到m0,这一隐含条件容易忽视。

x2y21的 例4:(2004年全国卷Ⅲ理科21题 文科22题)设椭圆

m1两个焦点是F1(-c, 0)与F2(c, 0)(c > 0),且椭圆上存在一点P,使得直线PF1与PF2垂直。

(1)求实数m的取值范围;

(2)设l相应于焦点F2的准线,直线PF2与l相交于Q,若的方程。

解:(1)依题设有m+1>1,即m > 0,c =m,设点P的坐标为(x0, y0),由PF1⊥PF2,得

QF2|PF|23,求直线PF2y0y201x0y20m ① x0cx0c2x0m12122,y0 y01联立,解得x0将①与

mmm1由此得

m21m10m101 m1 mm0故m[1, +)

用心 爱心 专心

知识改变命运

百度提升自我

(2)答案为y =(32)(x-2)(解答略)背景之三:二次方程有解的条件

直线和圆锥曲线的关系,是解析几何中最常见的关系,它们联立消元后所得的判别式非负是直线和圆锥曲线有公共点的充要条件;若有限制条件,则还应考虑根的分布情况等,这是确定参数取值范围的一个常见背景。

y2例5:(全国高考题)给定双曲线x-= 1,过点B(1,1)能否作直线

22l,使l与所给双曲线交于P1及P2,且点B是线段P1P2的中点?这样的直线l如果存在,求出它的方程;如果不存在,说明理由。

解:画出图像知,当直线斜率不存在时,满足题设条件的l不存在。

y21,得当直线l斜率存在时,设为k,则l方程为y = k(x-1)+1,联立x22(2k2)x2(2k22k)xk22k30。

x1x22k22k1,即22k2,此时 设P1(x1,y1),P2(x2,y2),则2k2(2k22k)24(2k2)(k22k3)0,不满足2k20且0。

故满足已知条件的直线l不存在。

例6:(2004年湖北省高考题理科20题 文科20题)直线l:ykx1与双曲线C:2x2y21的右支交于不同的两点A、B。

(1)求实数k的取值范围;

(2)是否存在实数k,使得以线段AB为直径的圆经过曲线C的右焦点F?若存在,求出k的值;若不存在,说明理由。

22解:(1)将直线ykx1代入双曲线方程,并整理得(k2)x2kx20

依题意,直线l与双曲线C的右支交于不同两点,故

用心 爱心 专心

知识改变命运

百度提升自我

k22022(2k)8(k2)02k2 22k0k2202k2(2)答案是存在k66满足题设。5说明:问题(1)涉及到直线与双曲线右支相交的问题,转化为方程有不等 的两正根,由方程根的分布的充要条件建立不等式组即可。

背景之四:已知变量的范围

利用题中给出的某个已知变量的范围,或由已知条件求出某个变量的范围,然后找出这个变量与欲求的参变量之间的关系,进而求解。

1、双参数中知道其中一个参数的范围;

例7:(2004年浙江省高考题理科21题 文科22题)已知双曲线的中心在原点,右顶点为A(1, 0),点P、Q在双曲线的右支上,点M(m, 0)到直线AP的距离为1。

(1)若直线AP的斜率为k,且|k|[(2)当m3,3],求实数m的取值范围; 321时,APQ的内心恰好是点M,求此双曲线的方程

解:(1)由条件知直线AP的方程为yk(x1),即kxyk0,因为点 M到直线AP的距离为1,所以

|mkk|k121|m1|k21112。|k|k∵|k|[3,3] 3∴232323|m1|21m3或1m1 3332323][1,3] 33故m[1,1(2)答案是x2(221)y21(解答略)

例8:(2004年全国高考卷Ⅱ理科21题)给定抛物线C:y4x,F是C的焦点,过点

用心 爱心 专心

知识改变命运

百度提升自我

相交于不同的点A、B。

(1)求双曲线C的离心率e的取值范围;(2)设直线l与y轴的交点为P,且PA5PB,求a的值。12x222y1解:(1)由C与l相交于两个不同的点,故知方程a有两个不同的实数解,消

xy1去y并整理得:(1a2)x22a2x2a20

21a00a2且a1 由2222(2a)4(1a)(2a)01a2∴双曲线的离心率ea∵0a11 2a2且a1

∴e6且e2 26,2)(2,)2故e((2)略

说明:先求出a的范围,再建立e与a的函数关系式,即可求出e的范围。

例10:直线ykx1与双曲线x2y21的左支交于A、B两点,直线l经过点(2,0)和AB的中点,求直线l在y轴上的截距b的取值范围。

解:由方程组ykx122xy1,消去y得:(1k2)x22kx20

设A(x1,y1),B(x2,y2),x10,x20,AB中点M(x0,y0),则有:

4k28(1k2)02kxx01k2 1221k2xx01221k用心 爱心 专心

知识改变命运

百度提升自我

∵x0x1x2k1k1,ykx1,即M(,)0021k21k21k21k2设直线l的方程为ym(xb),则b2m,而my001,则有x02k22k211172k2k22(k)2,它在(1,2)上单调递减。m4811 ∵22m∴b2m(,22)(2,)

说明:这类问题可先求出一个变量的范围,另一个变量范围就相应可求出来了。背景之五:点在圆锥曲线内域或外域的充要条件

如果我们规定圆锥曲线包含焦点的区域称为圆锥曲线的内域,同时坐标平面被圆锥曲线所划分的另一部分称为圆锥曲线的外域,则点P(x0,y0),在

22x0y0x2y2椭圆221内(外)域的充要条件是221(1);点P(x0,y0)在双曲线

abab22x0y0x2y21内(外)域的充要条件是221(1);点P(x0,y0)在抛物线

aba2b222y22px(p0)的内(外)域的充要条件是y02px0(y02px0)。以这些充要条件为背景的范围问题利用上述不等式可获解。

x2y21,试确定m的取 例11:(1986年全国高考题)已知椭圆C:43值范围,使得对于直线l:y4xm,椭圆C上有不同的两点P,Q关于该直线对称。

解:设P(x1,y1),Q(x2,y2),PQ中点M(x0,y0),则:

x12y12

14322x2y21

①-②得,3(x1x2)(x1x2)4(y1y2)(y1y2)03(x1x2)=x4(y1y2)1y(y1y2)304()0y03x0

x1x2242用心 爱心 专心

知识改变命运

百度提升自我

由此易知焦点F到准线y = 1的距离p的范围是1p3。

a2a23caea 又pcae2∴132a3a2 23背景之八:平均值不等式

解析几何的本质是用代数方法研究图形的几何性质。利用代数基本不等式是求范围的又一方法。

例14:已知直线l过定点A(3, 0),倾斜角为,试求的范围,使得曲线C:yx2的所有弦都不能被直线l垂直平分。

解:当直线的斜率为0或不存在时,符合题意。

2设直线l的方程为yk(x3),被它垂直平分的弦的两端点为B(t1,t12),C(t2,t2),2t1t2t12t2,)(t1t2),kBCt1t2。则BC中点P(221tt12k当线段BC被l垂直平分时,有2t1t2 2tttt2121k(3)22tt1111(26k1)(12)22k。2k224k∴符合题意的直线斜率k∴[0,11,即tan。222][arctan1,)。2说明:本题的求解利用补集法,即先求弦能被l垂直平分的直线l的斜率,取其补集就是满足题设的斜率,再利用斜率和倾斜角的关系,就可以求出的范围。

背景之九:目标函数的值域

要确定变量k的范围,可先建立以k为函数的目标函数kf(t),从而使这种具有函数背景的范围问题迎刃而解。

x2y2例15:P(x,y)是椭圆221(ab0)上任一点,F1、F2是两个焦点,求

ab用心 爱心 专心

0

用心 爱心 专心

知识改变命运

百度提升自我

(2)设直线l的方程为ykxb,依题意k0,b0,则T(0,b),分别过P、Q作PPx轴,QQy轴,垂足分别为P、Q,则

|ST||ST||OT||OT||b||b| |SP||SQ||PP||QQ||y1||y2|12yx由y22(k2b)yb20 2ykxb∴y1y22(k2b),y1y2b2 方法1:∴

|ST||ST|11|b|()2|b||SP||SQ|y1y2112|b|2 2y1y2b∵y1、y2可取一切不相等的正数 ∴|ST||ST|的取值范围是(2,)|SP||SQ|y1y2|ST||ST|2(k2b)方法2:∴ |b||b|2|SP||SQ|y1y2b|ST||ST|2(k2b)2(k2b)2k2当b0时,b22 2|SP||SQ|bbb|ST||ST|2(k2b)2(k2b)当b0时,b|SP||SQ|bb2又由方程①有两个相异实根,得

4(k2b)24b24k2(k22b)0,于是k22b0,即k22b

所以|ST||ST|2(2bb)2 |SP||SQ|b2k2∵当b0时,可取一切正数

k∴|ST||ST|的取值范围是(2,)|SP||SQ||ST||ST|与P、Q两点纵坐标之间的关系,是快速求解第(2)个|SP||SQ|说明:利用图形找到

用心 爱心 专心

知识改变命运

百度提升自我

用心 爱心 专心问题的关键。

第二篇:(no.1)2013年高中数学教学论文 几何画板在中学数学教学中的应用

知识改变命运

百度提升自我

本文为自本人珍藏

版权所有

仅供参考

几何画板在中学数学教学中的应用

当今世界日益信息化,信息日益网络化。教育信息化正在成为社会信息化的重要组成部分,技术发展的趋势是不言而喻的。以前,我们对数学以及数学教学的认识总是和黑板粉笔或者纸笔联系在一起,人们局限在有限的空间中,能力受到很大的限制。计算机使人脑得以大大的扩展和延伸,同时为数学教学和数学学习提供了广阔的空间。下面仅就几何画板辅助数学教学中的问题谈谈几点思考。

一、问题与思考

1、《几何画板》在辅助数学教学中的特点

问题与解决是数学的心脏。提出问题并解决问题是数学发展的原动力。由于各种原因,今天的中学数学教材中,难以体现出“问题与解决”的韵味,也没有机会让中学生接触丰富的数学遗产。问题提出的唐突化,过度的公式化、形式化及解题的模式化,使数学失去了原有的魅力。至使部分学生错误地认为数学只是符号与公式的组合,难以激发他们学习数学的热情和兴趣。而《几何画板》的精髓是:动态地保持了几何图形中内在的、恒定不变的几何关系及几何规律。它的最大特点是:让学生自己动手按给定的数学规律和关系来制作图形(或图像、表格),从中观察事物的现象,通过类比和分析提出问题,还可进行实验来验证问题的真与假,从而发现恒定不变的几何规律,以及十分丰富的数学图像的内在美、对称美。学生可以驾驶《几何画板》这一叶扁舟,在数学发展的历史长河中漫游,兴之所至,或探踪寻源,或荡舟而过。这是其它的教学媒体所办不到的,也是一般CAI软件功能所不及的。

数学课堂教学的特点是:具有很强的逻辑性和系统性以及高度的抽象性和概括性。现代教学媒体GSP(《几何画板》的简称)能化静态为动态,化抽象为具体,能够寓趣味性、技巧性和知识性于一体。传统的数学教学方法,基本上是信息的单向传输,即“讲、练、评”三位一体的教学模式,反馈处于不自觉状态中,不利于分层次教学、因材施教,不易激发学生的求知欲和兴趣。在教学中通过使用《几何画板》,感受到GSP在数学教学中有着独特魅力,与传统教学手段或一般CAI软件不能相比的。《几何画板》在教学中的辅助作用

计算机辅助教学,是随着计算机技术的发展而形成的现代教育技术。被视为电化教育的最高形式,随着我国中小学CAI 的进展,一批好的CAI软件已进入学校,最近我校将《几何画板》引入数学课堂教学,从中体会到GSP在数学教学中有以下主要作用。

(1)有助于提高课堂效率,增大知识的覆盖面。能给学生以更多的操作机会,培养学生的动手动脑的能力。

(2)有助于提高课堂教学效果,由于情况的快速反馈,老师的讲课时更具有针对性,并能及时调整教学内容和节奏。

用心 爱心 专心

知识改变命运

百度提升自我

(3)有助于培养学生敏捷思维和观察问题、分析问题、解决问题的能力。利用现代化的教育手段进行快速训练,有助于个性特长的培养和发挥。

二、几何画板在解析几何中的应用

(一)椭圆的画法

1、由椭圆的标准方程绘制椭圆

2、bx2y2a2x2,只需确原理:由于椭圆的标准方程为:221,可得表达式yaab定变量x和参数a、b的值即可。步骤如下:

①建立直角坐标系;

②在x轴上取一点C,度量其坐标并分离出它的横坐标改名为a,类似地,在y轴上取一点D,度量出它的坐标并分离出它的纵坐标改名为b;a、b分别是椭圆在x轴、y轴上的截距;

③在x轴上取一点E,度量出点E的坐标并分离出它的横坐标改名为x;

④计算y的值,通过 “度量—计算”,得到ba2x2的值; a⑤绘出x、y的坐标点F; ⑥选择点E、F,执行“作图——轨迹”,得到上半椭圆;⑦最后通过“变换——反射”得到下半椭圆。

2、根据圆锥曲线的第二定义绘制椭圆 原理:由圆锥曲线的第二定义:平面内与一个定点的距离和它到一条直线的距离的比是常数e的点的轨迹是圆锥曲线,定点叫做圆锥曲线的焦点,定直线叫做圆锥曲线的准线。常数e叫做圆锥曲线的离心率,当0e1时为椭圆。

①建立直角坐标系;

②画一条射线CD,在射线上画一点E,使点E在点D的右侧; ③度量CD、CE的长度,计算出

CE的值,该名为e=0.73; CD④在x轴的正半轴画一点F,画直线GH,找出直线GH与y轴的交点I,在直线GH上任取一点J,连接线段IJ;

⑤以F为圆心,IJ为半径画圆,度量出线段IJ的长度;

用心 爱心 专心

知识改变命运

百度提升自我

⑥计算出⑦选择IJIJ的值,如=7.12cm eeIJ=7.12cm,执行“图像——绘制度量值”,使屏幕出现一条与x轴垂直且与y轴eIJ距离等于=7.12cm的直线(虚线m);

e⑧用“选择”工具作出直线m与圆F的交点K、L;

⑨用“选择”工具双击y轴,把y轴标记成反射镜面,再选择直线m,执行“变换—反射”,得到直线m关于y轴对称的直线m’;

⑩同时选择点J和点K,执行“作图—轨迹”,屏幕上(第一象限)出现点K的轨迹,类似地,分别选择点J和点L、点J和点M,点J和点N,作出点L、M、N的轨迹; 移动点E的位置,使离心率0

3、根据椭圆的参数方程绘制椭圆

xacost原理:椭圆的参数方程为:(t为参数),在坐标系中确定参数t和常量a、ybsintb,注意这里的t为弧度,应更改参数为弧度制。

①建立直角坐标系;

②在x轴上任取一点C,度量其坐标和横坐标,改为a=6.30; ③在y轴上任取一点D,度量其坐标和纵坐标,改为b=2.88; ④在屏幕下方画一圆,在圆上任取一点G,构造弧FG,填充扇形EFG; ⑤度量扇形EFG的弧度,该为t=-0.88弧度;

⑥计算:a*cost=-5.06,改为x=-5.06;b*sint=-1.72,改为y=-1.72; ⑦选择x=-5.06,y=-1.72,执行“图表—绘制点(x,y)”,画出点H;

用心 爱心 专心

知识改变命运

百度提升自我

⑧依次选择点G、H,执行“构造—轨迹”,即得到椭圆。

(二)直线与圆锥曲线的交点的几何构造

(三)如图:直线GE是过平面任意一点G和椭圆上任意一点E,求作直线和椭圆的交点F,在几何画板中,不能直接找出直线和椭圆的交点,这里通过几何的思路找出直线和椭圆交点的一般方法。

几何构造(1)思路分析

先请了解一下椭圆弦的几何性质。如图:EF是椭圆的弦,其延长线交准线于P,的延长线交准线于Q,则F1P平分∠QF1E。

想一想:如果已知P、E、F1,你能否作出点如果您注意到点F是两条直线的交点,只要

F? 作EFF1关于直线QF1的对称点E,则直线PE和直线EF1的交点就是F。我们就用这样的想法来构造直线与椭圆的交点。

(2)操作步骤: ①画椭圆 ;

②画直线GE , E为椭圆上一点;

③画椭圆的准线 ;度量点A的横坐标,并把度量结果的标签分别改为a=5.57;度量点B的纵坐标,并把度量结果的标签分别改为b=2.78;计算a2b2

a2并把度量结果的标签分别改为c=4.82;再计算,作出椭圆的左准线;

c④画直线GE与椭圆的另一交点 ;画线段F1P,点P是直线GE和准线的交点→对点E作反射变换(线段F1P)得到E→画直线(E,F1)→画交点F(直线GE,直线EF1)

用心 爱心 专心

知识改变命运

百度提升自我

国中小学教学领域,使教学改革发生根本的变化。

用心 爱心 专心

第三篇:(no.1)2013年高中数学教学论文 教学中问题情境的创设

知识改变命运

百度提升自我

本文为自本人珍藏

版权所有

仅供参考

数学教学中问题情境的创设

数学问题情境是学生掌握知识、形成能力的重要源泉.作为教育工作者,应该在民主和谐的气氛下,联系实际,运用多种方法创设生动活泼的问题情境,提高数学教学的有效性.数学是思维的体操,而思维从惊讶开始.数学学习过程是一个不断发现问题的动态过程,创设问题情境就是在教材内容和学生求知心理之间创造一种“不协调”,把学生引入与问题有关的情境中.问题情境是指教师有目的、有意识地创设的各种情境,以促使学生去质疑问难、探索求解.因此,数学教学要以问题为载体,这样才能抓住课堂教学中思维这个“魂”,从而抓住课堂教学的根本.问题情境对于学生来说,是引发认知冲突的条件,对于教师来说,是引发学生认知冲突的手段.教师可以利用各种各样的问题情境引发创新思维.创设合适的问题情境,能够改进数学教学的呈现方式,使学生的自主探索、动手实践、合作交流活动成为可能,从而改变学生的学习方式.学习方式的改变具有极其重要的意义,这是因为学习方式的转变将会牵引出思维方式、生活方式、生存方式的转变.学生的自主性、独立性、能动性和创造性将因此得到张扬,学生将成为学习的主人.面对问题情境,学生要亲历一个解决问题的“过程”,这是非常重要的.学生的学习过程不仅是一个接受知识的过程,而且也是一个发现问题、分析问题、解决问题的过程.在这个过程中,既能暴露学生产生的各种疑问、困难、障碍和矛盾,又能展示学生的聪明才智和创新成果,还可能会面临挫折和失败,结果造成表面上一无所获的局面,但这却是学生的学习、生存、成长、发展、创造所必须经历的过程,是学生能力智慧发展的内在要求.这些才是创设问题情境的深层次目的.一、创设问题情境的主要方式

1.创设与生活有关的问题情境

数学来源于生活,数学又应用于生活,数学与生活密不可分,所以作为数学教师,我们应积极创设与生活有关的问题情境,引导学生自己发现数学命题(公理、定理、性质、公式).例如,在讲“均值不等式”时,教师可设计测物体质量的实验,引导学生从中发现关于均值不等式的定理及其推论.通过物理中的问题,贴近生活,贴近实际,给学生创设了一个观察、联想、抽象、概括、数学化的过程.在这样的问题情境中,教师注意给学生动手、动脑的空间和时间,学生一定会想学、乐学、主动学.2.创设趣味性问题情境,引发学生自主学习的兴趣

用心

爱心

专心

第四篇:(no.1)2013年高中数学教学论文 数学教学中后进生的转化

知识改变命运

百度提升自我

本文为自本人珍藏

版权所有

仅供参考

数学教学中后进生的转化

摘要:数学课程要面向全体学生,使人人都能获得良好的数学教育,所以对于数学教学中的后进生,我们不抛弃,也不放弃.在教学中,培养后进生学习数学的兴趣,增强他们的自信心是前提,充分考虑后进生的特点,因材施教是根本,课后对他们多一些关爱,多一些辅导是保障,将这一切付诸于实际行动才是关键.关键词:数学教学 后进生 转化

随着新课程改革的不断推进和发展,学生的主体性得到了充分体现,个性得到了发展.在教学中,我们经常可以听到这样的声音:“老师,我还有一个问题.”“老师,我发现了一个规律.”“老师,我有不同的方法.”„„这些声音使课堂充满了活力,令人欣喜万分.然而,我们也会发现,活跃的课堂上仍有几束迟疑的目光,仍有几张迷茫的脸庞,他们就是我们通常认为的后进生.对于这部分学生,我们不能放弃.如何使后进生参与学习活动,让他们学有所获呢?在教学实践中我作了如下尝试.首先,教师要增强学生的自信心和自尊心,培养他们的学习兴趣.每个学生都是有自尊心的,后进生也是如此,他们也有很强的表现欲和上进的积极性.因此,教师要善于用敏锐的眼光捕捉每个学生的闪光点,应该用赏识的目光和态度及时给予肯定、鼓励,以激发学生的学习兴趣和上进心,让他们看到自己并不是一无是处,而是有自己的“强项”,从而积累学习的动力,培养自信心,迎难而上追求进步.其次,教师要提高课堂效率.1.注重旧知复习,温故而知新

数学这门课程有别于语文、英语等其他课程,它的知识前后联系比较紧密,如果学生某一环节出现问题,就会导致下一环节学习比较困难,往往后进生就是这样形成的.所以,在上新课之前,我先布置学生预习,并让学生做好充分的复习工作,教学中再以问题的形式提问,将新旧知识联系起来.例如,在讲“一元二次方程”时,第一节课讲的是用直接开平方法,第二节课讲配方法,配方法对于后进生来说有点困难,所以我在课的开始就让学生用直接开平方法解一题,然后把这题的常数项改一下,学生会发现这样就不能用上节课所学的方法来解,我引导学生能不能想办法往我们上节课所学的方法上去靠,这样后进生就会感觉教学起点比较低,从而提高其学习热情.2.加强直观教学,促进知识理解

用心 爱心 专心

第五篇:(no.1)2013年高中数学教学论文 学科德育实施初探

知识改变命运

百度提升自我

本文为自本人珍藏

版权所有

仅供参考

学校德育不只是班主任和文科教师的任务,必须各科协作。学科德育是素质教学的重要一环。在数学教学过程中,教师要挖掘教学教材中显性和隐性的德育因素,施德育于数学教学之中。

一、宣讲我国数学家的贡献,对学生进行爱国主义教育

1、开学初集中讲。学生刚入中学,对什么都有新鲜感。教师要抓住第一堂数学课的机会,生动、具体、真实地介绍我国古今数学成就,为学生学习数学营造良好的氛围。中国是世界上最早的文明古国,数学成就显著。计算圆周率,自西汉刘备、东汉张衡,三国时刘徽、直到南北朝祖冲之等多位数学家,为之进行艰苦探索,得出了当时世界上最为准确的圆周率。南宋数学家秦九韶1247年就编著《数学九章》,同代数学家杨辉揭示了二项式展开式系数的规律,比法国数学家早四百多年。

祖冲之的儿子祖恒对求几何体积有独特创见,比意大利数学家早一千多年。比刘,近代的徐光启、李善兰及当代的华罗庚、陈景润,在他们所研究的领域中都对数学做出了独特的贡献。通过宣讲,增强学生的民族自豪感和爱国主义热情。

2、组织讲座专门讲。对初一学生还可借助“华罗庚金杯赛”的机会,进行题为《如何自学成才》的专题讲座,介绍我国著名数学家华罗庚的生平事迹。华罗庚学历是“初中毕业”,可他深钻细研,成为当代国内外闻名的伟大数学家。通过讲座,使学生懂得学习好坏关键在于本人的学习态度和努力,明白“外因是变化的条件,内因是变化的根据,外因要通过内因而起作用”的哲学道理。进而发奋学习,将来为国家做贡献。

二、结合传授数学知识,对学生进行辩证唯物主义教育

1、实践的观点。数学是从现实世界中抽象概括出来的科学,教学中要揭示数学本身的物质基矗如讲直角三角形“勾股定理”时,教师要说明早在公元一世纪,我国古代数学家在多次实践的基础上总结出了“勾广三,股修

四、经偶五”的规律(即勾

三、股

四、弦五),并且借助图形对该定理进行了两种巧妙的证明。让学生明确,任何一个定理、公式的形成均来自实践,“实践、认识、再实践、再认识”是人类掌握自然规律的正确途径。从而培养学生善于从客观事物中发现、规律、掌握规律的能力。

2、辩证的观点。恩格期指出“数学是辩证的辅助工具和表现形式,连初等数学也充满着矛盾。”数学概念正数与负数、常量与变量等,都表现对立的形式,又各以它的对立而存在。在数学中要揭示这一关系。直线与圆的位置关系,当直线与圆心的距离小于圆半径时,直线与圆的位置处于两个交点状态(相交);当距离与半径相等时,发生质变,直线与圆只有一个交点(相切);当距离大于半径时,再次发生质变,直线与圆没有交点(距离)。讲这一关系时,要启发学生认识到“事物发展是一个由量变到质变的过程”。数学中充满着辩证法,教师应不失时机地予以启示,加深学生对数学知识的认识,同时为学生树立辩证唯物主义观点打好基矗3、发展的观点。世上任何事物都不是孤立的、静止的,它是在不断地从低级阶段向高级阶段发展。数学也是这样,整数到分数,有理数到无理数,实数到负数,有限到无限等,都遵循着这一规律。在这个数学过程中,要使学生认识到一切事物都不是断发展变化的,培养学生超越旧事物,创造新颖,独特新事物的能力。[

用心 爱心 专心 1

知识改变命运

百度提升自我

网Z.X.X.K]

三、在数学教学中,培养学生严谨求实的作风[ 1、言位身教,从自己做起。数学是一门严谨的学科,数学教师首先要有严谨、负责的态度。进行概念数学时,要运用数学语言完整、精练地叙述;对公式所起的作用,要讲得确切;在板演过程中要有条有理,推理要步步有根据;书写要规范,避免“圆”和“园”、“连接”和“连结”混用。时时事事给学生做出严谨求实的表率。

2、严格要求,从小事抓起。数学中,教师要有意识地培养学生言必有据、一丝不苟、坚持真理、修正错误的科学态度。不合格的作业,一定要令其重作,哪怕只是一个错字、一个小数点也要强调订正。要严格指出,在实际工作中点滴差错误都有可能给国家造成很大损失。从而一点一滴培养学生精益求精,实事求是,谦虚谨慎的优良作风。

用心 爱心 专心 2

下载(no.1)2013年高中数学教学论文 在解析几何中求参数范围的9种方法word格式文档
下载(no.1)2013年高中数学教学论文 在解析几何中求参数范围的9种方法.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐