第一篇:弦切角学案
弦切角学习学案
教学目标:使学生了解弦切角的概念,掌握弦切角定理及其推理,进一步使学生了解分情况证明数学命题的思想和方法
教学难点、重点:弦切角定理的证明 教学过程:
一、复习引入
1、前面学习过有关于圆的角度有__________、_____________。
2、当圆周角的一边BC绕着点B旋转,使得BC为圆O 的切线,这个时候就形成了一个新的角,我们称之为弦切角。
BB
C
OO CAA
二、新知学习
1、弦切角定义:顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角。
2、观察下图,你能发现弦切角和弦切角所夹的弧所对的圆周角的关系吗?
C
O P ABE
猜想:______________________ 证明:
CPEOCOPABEAB
弦切角定理: 弦切角等于它所夹的弧所对的圆周角
三、典型例题
例题1, 如图,已知AB是圆O的直径,AC是弦,直线CE和圆O切于点C,AD⊥CE,垂直为D,求证:AC平分∠BAD
B
O
A
CED
练习
1、如图,AB是圆O的弦,CD是经过圆O上一点M 的切线,求证:(!)AB∥CD时,AM=MB(2)AM=MB时,AB∥CD
练习
2、在△ABC中,∠A的平分线AD交BC于D,圆O过点A且和BC切于D,和AB、AC分别交于E、F,求证:EF∥BC
A
O
j EF
B C D
CMDAOB相交弦定理和切割线定理学案
教学目标:能结合具体图形,准确地表述相交弦定理、切割线定理及其推论。教学难点、重点:相交弦定理和切割线定理的证明 教学过程:
1、相交弦定理: 圆内的两条相交弦,被交点分成的两条线段长的积相等。
数学表达式:___________________________
A证明:
D
O P B
C
练习:
已知圆中两条弦相交,第一条弦被交点分为12和16两段,第二条弦的长为32,求第二条弦被交点分成的两段的长
2、切割线定理:从圆外一点引圆的切线和割线,切线长是这个点到割线与圆交点的两条线段长的比例中项。数学表达式: PT2=PA•PB
A证明:
B
O P
T3、切割线定理推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。
C数学表达式:PA•PB=PC•PD
D
P BA
练习
1、如图:圆O的割线PAB交圆O于点A和B。PA=6,AB=8,PO=10.9,求圆O的半径
BAPCO
2、如图:两个以O为圆心的同心圆,AB切大圆于BAC切小圆与C,交大圆于D、E,AB=12,AO=15,AD=8。求两圆的半径
B
O
A
D
C
E
思考题:如图,点I是三角形ABC的内心,AI交边BC于点D,交三角形ABC外接圆于点E,求证:IE2=AE*DE
A
IBEDC
第二篇:弦切角的性质学案
弦切角的性质学案
班级姓名等级
学习目标:
1.理解弦切角的概念;
2.掌握弦切角定理及推论,并会运用它们解决有关问题;
3.理解化归和分类讨论的数学思想方法以及完全归纳的证明方法.学习重点和难点
弦切角定理及其应用是重点;弦切角定理的证明是难点.学习过程:
一、创设情境,以旧探新
1.提问:什么样的角是圆周角?
2.圆周角∠CAB,让射线AC绕点A旋转,产生无数个圆周角,当AC绕点A旋转至与圆相切时,停止旋转,得∠BAE.(图7-132)
思考:这时∠BAE还是圆周角吗?为什么?
归纳总结出弦切角的特点:(1);(2);(3).3.弦切角定义:
顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角.4.判断下列各图形中的角是不是弦切角,并说明理由:(图7-133)
由此发现,弦切角可分为三类:
(1)圆心在角的外部;(2)圆心在角的一边上;
(3)圆心在角的内部.二、观察联想、发现规律
1.当弦切角一边通过圆心时,(如图7-135)。
(1)弦切角∠CAB是多少度?为什么?
(2)∠CAB所夹弧所对的圆周角是多少度?为什么?
(3)此时,弦切角与它所夹弧所对的圆周角有什么关系?
观察图形,不难发现,此时弦切角与其所夹弧所对的圆周角都是直角.2.以A为端点.旋转AC边,使弦切角增大或减小,观察它与所夹弧所对圆周角之间的关
系,猜想:弦切角是否等于它所夹的弧对的圆周角.(图7-134)
让学生完成弦切角为直角的证明过程
三、类比联想,尝试论证
1.回忆联想:
(1)圆周角定理的证明采用了什么方法?
(2)既然弦切角可由圆周角演变而来,那么上述猜想是否可用类似的方法来证明呢?
2.前面证明了特殊情况,下面考虑圆心在弦切角的外部和内部两种情况.讨论:
怎样将一般情况的证明转化为特殊情况。如图7-136(1),圆
心O在∠CAB外,作⊙O的直径AQ,连结PQ,则∠BAC=∠BAQ-∠1=∠APQ-∠2=∠APC.证明:
如图7-136(2),圆心O在∠CAB内,作⊙O的直径AQ,连结PQ,则∠BAC=∠QAB+∠1=∠QPA+∠2=∠APC.证明:
弦切角定理:弦切角等于它所夹的弧对的圆周角.3.看书并思考:课本上关于定理的证明与我们现在的证明方
法有何异同?
四、巩固知识、初步应用
例1(课本p33)如图7-139,已知AB是⊙O的直径,AC是弦,直线CE和⊙O切于点C,AD⊥CE,垂足为D.求证:AC平分∠BAD.思路一:要证∠BAC=∠CAD,可证这两角所在的直角三角形相
似,于是连结BC,得Rt△ACB,只需证∠ACD=∠B.(图7-139)
证明:(学生自己完成证明)
思路二:连结OC,由切线性质,可得OC∥AD,于是有∠1=∠3,又由于∠1=∠2,可证
得结论.(图
7-140)
思路三:过C作CF⊥AB,交⊙O于F,连结AF.由垂径定理可知∠1=∠3,又根据弦切角定
理有∠2=∠1,于是∠2=∠3,进而可证明结论成立.(图7-141)
[课堂练习]:
1.如图7-142,AB为⊙O的直径,直线EF切⊙O于C,若∠BAC=56°,则∠ECA=度.(口答)
2.AB切⊙O于A点,圆周被AC所分成的优弧与劣弧之比为3∶1,则夹劣弧的弦切角
∠BAC=.3.已知:经过⊙O上的点T的切线和弦AB的延长线相交于点C.求证:∠ATC=∠TBC.② CT=CBCA
五、归纳小结
① 在证明弦切角定理时,我们是从特殊情况入手,通过猜想、分析、证明和归纳,从
而证明了弦切角定理.通过弦切角概念的引入和定理的证明过程,逐步学会用运动变化的观点观察问题,进而理解从一般到特殊,从特殊到一般的认识规律.②学习了分类讨论的思想和完全归纳的证明方法.在这里一定要注意为什么要对弦
切角进行分类和如何进行分类.③弦切角定理:弦切角等于它所夹的弧对的圆周角.六:课后小结与反思:
预习提示:相交弦定理
割线定理
切割线定理及切线长定理
第三篇:怎样证明弦切角
怎样证明弦切角
设圆心为O,连接OC,OB,OA。过点A作Tp的平行线交BC于D,则∠TCB=∠CDA
∵∠TCB=90-∠OCD
∵∠BOC=180-2∠OCD
∴,∠BOC=2∠TCB(弦切角的度数等于它所夹的弧的圆心角的度数的一半)
∵∠BOC=2∠CAB
∴∠TCB=∠CAB(弦切角的度数等于它所夹的弧的圆周角)
2接OBOC过O做OE⊥BC
所以∠A=1/
2又因为∠OCT=90°
∠OEC=90°
所以∠EOC=∠TCB
所以∠TCB=∠A
3温馨提示
设切点为A切线AB弦AC圆心为O过A作直径AD连OC
角CAB等于90度减角DAC
因为OA等于OC所以角AOC等于180度减去二倍的角DAC
即可证明角AOC等于二倍的角CAB
参考资料:弦切角是这弦所对的圆心角的一半
4线段AD与线段EF互相垂直平分。
证明:设AD交EF于点G.因为Ap为切线,所以弦切角等于所对的圆周角,即∠pAC=∠B,又因为AD平分∠BAC,所以∠DAC=∠BAD,从而∠pAC+∠DAC=∠B+∠BAD,而∠pAC+∠DAC=∠pAD,∠B+∠BAD=∠pDA,所以
∠pAD=∠pDA,则△pAD为等腰三角形,因pM平分∠ApD,所以pM垂直平分AD,则EF垂直平分AD,从而AD垂直EF,则∠AGE=∠AGF=90°,再由∠GAF=∠GAE,得到
△EAG≌△FAG,从而EG=FG,从而AD也垂直平分EF。
5(1)圆心O在∠BAC的一边AC上
∵AC为直径,AB切⊙O于A,∴弧CmA=弧CA
∵为半圆,∴∠CAB=90=弦CA所对的圆周角(2)圆心O在∠BAC的内部.过A作直径AD交⊙O于D,若在优弧m所对的劣弧上有一点E
那么,连接EC、ED、EA
则有:∠CED=∠CAD、∠DEA=∠DAB
∴∠CEA=∠CAB
∴(弦切角定理)
(3)圆心O在∠BAC的外部,过A作直径AD交⊙O于D
那么∠CDA+∠CAD=∠CAB+∠CAD=90
∴∠CDA=∠CAB
∴(弦切角定理)
编辑本段弦切角推论
推论内容
若两弦切角所夹的弧相等,则这两个弦切角也相等
应用举例
例1:如图,在Rt△ABC中,∠C=90,以AB为弦的⊙O与AC相切于点A,∠CBA=60°,AB=a求BC长.解:连结OA,OB.∵在Rt△ABC中,∠C=90
∴∠BAC=30°
∴BC=1/2a(RT△中30°角所对边等于斜边的一半)
例2:如图,AD是ΔABC中∠BAC的平分线,经过点A的⊙O与BC切于点D,与AB,AC分别相交于E,F.求证:EF∥BC.证明:连DF.AD是∠BAC的平分线∠BAD=∠DAC
∠EFD=∠BAD
∠EFD=∠DAC
⊙O切BC于D∠FDC=∠DAC
∠EFD=∠FDC
EF∥BC
第四篇:弦切角的教案设计
1、教材分析
(1)知识结构
(2)重点、难点分析
重点:定理是本节的重点也是本章的重点内容之一,它在证明角相等、线段相等、线段成比例等问题时,有重要的作用;它与圆心角和圆周角以及直线形角的性质构成了完美的角的体系,属于工具知识之一.难点:定理的证明.因为在证明过程中包含了由“一般到特殊”的数学思想方法和完全归纳法的数学思想,虽然在圆周角定理的证明中应用过,但对学生来说是生疏的,因此它是教学中的难点.2、教学建议
(1)教师在教学过程中,主要是设置学习情境,组织或引导学生发现问题、分析问题、研究问题和归纳结论,应用知识培养学生的数学能力;在学生主体参与的学习过程中,让学生学会学习,并获得新知识;
(2)学习时应注意:(Ⅰ)的识别由三要素构成:①顶点为切点,②一边为切线,③一边为过切点的弦;(Ⅱ)在使用定理时,首先要根据图形准确找到和它们所夹弧上的圆周角;(Ⅲ)要注意定理的证明,体现了从特殊到一般的证明思路.教学目标:
1、理解的概念;
2、掌握定理及推论,并会运用它们解决有关问题;
3、进一步理解化归和分类讨论的数学思想方法以及完全归纳的证明方法.教学重点:定理及其应用是重点.教学难点:定理的证明是难点.教学活动设计:
(一)创设情境,以旧探新
1、复习:什么样的角是圆周角?
2、的概念:
电脑显示:圆周角∠CAB,让射线AC绕点A旋转,产生无数个圆周角,当AC绕点A旋转至与圆相切时,得∠BAE.引导学生共同观察、分析∠BAE的特点:
(1)顶点在圆周上;(2)一边与圆相交;(3)一边与圆相切.的定义:
顶点在圆上,一边和圆相交,另一边和圆相切的角叫做。
3、用反例图形剖析定义,揭示概念本质属性:
判断下列各图形中的角是不是,并说明理由:
以下各图中的角都不是.图(1)中,缺少“顶点在圆上”的条件;
图(2)中,缺少“一边和圆相交”的条件;
图(3)中,缺少“一边和圆相切”的条件;
图(4)中,缺少“顶点在圆上”和“一边和圆相切”两个条件.通过以上分析,使全体学生明确:定义中的三个条件缺一不可。
(二)观察、猜想
1、观察:(电脑动画,使C点变动)
观察∠P与∠BAC的关系.2、猜想:∠P=∠BAC
(三)类比联想、论证
1、首先让学生回忆联想:
(1)圆周角定理的证明采用了什么方法?
(2)既然可由圆周角演变而来,那么上述猜想是否可用类似的方法来证明呢?
2、分类:教师引导学生观察图形,当固定切线,让过切点的弦运动,可发现一个圆的有无数个.如图.由此发现,可分为三类:
(1)圆心在角的外部;
(2)圆心在角的一边上;
(3)圆心在角的内部.3、迁移圆周角定理的证明方法
先证明了特殊情况,在考虑圆心在的外部和内部两种情况.组织学生讨论:怎样将一般情况的证明转化为特殊情况.如图(1),圆心O在∠CAB外,作⊙O的直径AQ,连结PQ,则∠BAC=∠BAQ-∠l=∠APQ-∠2=∠APC.如图(2),圆心O在∠CAB内,作⊙O的直径AQ.连结PQ,则∠BAC=∠QAB十∠1=∠QPA十∠2=∠APC,(在此基础上,给出证明,写出完整的证明过程)
回顾证明方法:将情形图都化归至情形图1,利用角的合成、对三种情况进行完全归纳、从而证明了上述猜想是正确的,得:
定理:等于它所夹的弧对的圆周角.4.深化结论.练习1直线AB和圆相切于点P,PC,PD为弦,指出图中所有的以及它们所夹的弧.练习2如图,DE切⊙O于A,AB,AC是⊙O的弦,若=,那么∠DAB和∠EAC是否相等?为什么?
分析:由于和分别是两个∠OAB和∠EAC所夹的弧.而=.连结B,C,易证∠B=∠C.于是得到∠DAB=∠EAC.由此得出:
推论:若两所夹的弧相等,则这两个也相等.(四)应用
例1如图,已知AB是⊙O的直径,AC是弦,直线CE和⊙O切于点C,AD⊥CE,垂足为D
求证:AC平分∠BAD.思路一:要证∠BAC=∠CAD,可证这两角所在的直角三角形相似,于是连结BC,得Rt△ACB,只需证∠ACD=∠B.证明:(学生板书)
组织学生积极思考.可否用前边学过的知识证明此题?由学生回答,教师小结.思路二,连结OC,由切线性质,可得OC∥AD,于是有∠l=∠3,又由于∠1=∠2,可证得结论。
思路三,过C作CF⊥AB,交⊙O于P,连结AF.由垂径定理可知∠1=∠3,又根据定理有∠2=∠1,于是∠2=∠3,进而可证明结论成立.练习题
1、如图,AB为⊙O的直径,直线EF切⊙O于C,若∠BAC=56°,则∠ECA=______度.2、AB切⊙O于A点,圆周被AC所分成的优弧与劣弧之比为3:1,则夹劣弧的∠BAC=________
3、如图,经过⊙O上的点T的切线和弦AB的延长线相交于点C.求证:∠ATC=∠TBC.(此题为课本的练习题,证明方法较多,组织学生讨论,归纳证法.)
(五)归纳小结
教师组织学生归纳:
(1)这节课我们主要学习的知识;
(2)在学习过程中应用哪些重要的数学思想方法?
(六)作业:教材P13l习题7.4A组l(2),5,6,7题.探究活动
一个角的顶点在圆上,它的度数等于它所夹的弧对的圆周角的度数,试探讨该角是否圆周角?若不是,请举出反例;若是圆周角,请给出证明.提示:是圆周角(它是定理的逆命题).分三种情况证明(证明略).
第五篇:弦切角定理_含答案
邯郸市第四中学高二数学组(理)选修4-1 直线与圆的位置关系
学案2 圆的切线判定定理与性质定理
弦切角定理
考纲要求:会证明和应用以下定理:圆的切线判定定理与性质定理和弦切角定理
一:知识梳理
1.切线的性质定理:圆的切线垂直于经过切点的__________.推论1:经过圆心且垂直于切线的直线必经过_______;
推论2:经过切点且垂直于切线的直线必经过______.切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的________.2.弦切角定理:弦切角等于它所夹的弧所对的______________.推论:若两弦切角所夹的弧相等,则这两个弦切角也相等.二:基本技能:
1.已知一个圆的弦切角等于50°,那么这个弦切角所夹的弧所对的圆心角的度数
为_______.2.如图,AB是直径,点D在AB的延长线上,BD=OB,若CD切⊙
O于C点,则∠CAB的度数为 DCB的度数为ECA的度数为
3.如图,AB,AC是⊙O的两条切线,切点分别为 B、C、D是 上的点,已知∠BAC=800,那么∠BDC =______.优弧BC
上任一点,∠4.如图,AB是⊙ O的弦,AD是⊙ O的切线,C为 AB
BAD =______.5.如图,PA,PB切⊙ O于 A,B两点,AC⊥PB,且与⊙ O相交于 D,若∠DBC=220,则∠APB==________.三:典例分析
类型一: 弦切角与圆周角定理的应用
解题准备:弦切角与圆周角是很重要的与圆相关的角.其主要功能在于协调与圆相关的各种角(如圆心角、圆周角等),是架设圆与三角形全等、三角形相似、与圆相关的各种直线(如弦、
割线、切线)位置关系的桥梁,因而弦切角也是确定圆的重要几何定理的关键环节(如证明切割线定理).:例1:(2010年高考课标全国卷)如图,已知
圆上的弧=,过C点的圆的切线与BA的延长线交于E点,证明:
(1)∠ACE=∠BCD;(2)BC2=BE×CD.变式训练1:(2010年高考江苏卷)
如图,AB是圆O的直径,D为圆O上一点,过D作圆O的切线交AB的延长线于点C,若DA=DC,求证:AB=2BC.类型二: 圆的切线的性质与判定
解题准备:若知圆的切线,一种自然的想法就是连结过切点的半径,从而得到垂直关系.证明某条直线是圆的切线的常用方法有:若已知直线与圆有公共点,则需证明圆心与公共点的连线垂直于已知直线即可;若已知直线与圆没有明确的公共点,则需证明圆心到直线的距离等
于圆的半径.例2:如图,AB是⊙O的直径, ⊙O过BC的中点D,DE⊥AC.求证:DE是⊙O是切线.B
例3如图.AB为⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D.求证:AC平分∠DAB.四:能力提升1.(海淀二模3)如图,CD是⊙O的直径,AE切⊙O于点B,连接DB,若D20,则DBE的大小为()A.20B.40C.60D.70
2.(西城二模11)如图,ABC是圆的内接三角形,PA切圆于点
交圆于点D.若ABC60
,PD
1,BD8PAC________,PA________.3.如图,AB是半圆O的直径,C、D是半圆上的两点,半圆O的切线PC
交AB的延长线于点P,∠PCB=25°,则∠ADC为
A.105°B.115°C.120°D.125°
4.如图,AB是⊙O的直径,EF切⊙O于C,AD⊥EF于D,AD=2,AB=6,则AC的长为
A.2B.3C.5.如图,AB是⊙ O的直径,AC,BC是⊙ O的弦,PC是⊙ O的切线,切点为 C,∠BAC=35,那么∠ACP等于
0000
A.35B.55C.65D.12
56.如图,在⊙ O中,AB是弦,AC是⊙ O的切线,A是切点,过 B作BD⊥AC于D,BD交⊙ O于 E点,若 AE平分∠BAD,则∠BAD=
00A.30B.4500
C.50D.60
7.如图,⊙O与⊙O′交于 A,B,⊙O的弦AC与⊙O′相切于点 A,⊙O′的弦AD与⊙O相切于A点,则下列结论中正确的是 A.∠1>∠2B.∠1=∠2C.∠1<∠2D.无法确定
8.如图,E是⊙O内接四边形 ABCD两条对角线的交点,CD延长线与过 A点的⊙ O的切线交
AB,则∠AFC的度于F点,若∠ABD=44,∠AED=100,AD
数为
00
A.78B.9200
C.56D.145
C
00
9.过圆内接△ABC的顶点 A引切线交 BC延长线于D,若∠B=35,∠ACB=80,则∠D=
0000
A.45B.50C.55D.60
10.圆内接四边形ABCD的顶点C引切线 MN,AB为圆直径,F
若∠BCM=38,则∠ABC=
A.38B.52C.68D.4211B.如右图,A、B是⊙O上的两点,AC是⊙O的切线,∠B=70°,则∠BAC等于()
A.70°B.35°C.20°D.10°
基本技能:
1.100°2.60°3.50°4.108°5.44° 典例分析: 例
1.0000
变式训练
例2
证明:连接OD.∵BD=CD,OA=OB
∴OD是△ABC的中位线,∴
OD//AC.又∵ DE⊥AC
∴∠DEC=90º∴∠ODE=90º又∵D在圆周上, ∴DE是⊙O是切线.例3.证明:连接OC, ∵CD是⊙O的切线, ∴OC⊥CD.又∵AD⊥CD,∴OC//AD.由此得∠ACO=∠CAD.∵OC=OA.∴∠CAO=∠ACO.∴∠CAD=∠CAO.故AC平分∠DAB 能力提升:
1.D2.60°,33.B4.C5.B6.D7.B8.C9.A10.B11.C