第一篇:[中考数学]析初中几何题证明中思维受阻原因及教学策略
析初中几何题证明中思维受阻原因及教学策略
对来自题目的众多信息进行加工处理,是完成几何论证的主要工作,也是几何论证中的关键所在。本文主要对学生论证时思维受阻的原因作些浅析,并着重提出相应的教学对策。
一、由于不能完整剖析图形、正确判断各种信息而引起的思维受阻及其对策观察能力、作图能力、直觉能力相对较弱的学生,他们不能完整地剖析图形,不能从中找出全部对证题有用的信息,甚至造成信息错觉,致使思维受阻,表现为: 1.不能作出正确的图形,这容易曲解题中的正确信息。
对策:要求学生(1)作图时须按照题设和题断所提供的信息,注意“平行”、“直”、“等角”、“中点”等位置关系和数量关系。
(2)注意线段之间、图形之间的大小比例关系。2.抓不住图形中显示出来的对证题有用的信息, 如:相等线段和相等两角、平行线、全等三角形、特殊四边形、相似形、对称形等。
对策:在不影响图形清晰度的前提下,可将这些有用信息用一定记号标在图形上,以增强直观性,减轻记忆量,也可将这些信息按主次顺序或在图形中的位置顺序暂存入头脑中的信息库。3.不能及时摈弃图形中显示出来的否定的、多余的信息;如这两角不可能相等,那两个三角形不可能全等。
对策:通过全面剖视,仔细观察图形中的量和关系,正确判断哪些信息是有用的,否定的或多余的。
例
1、如图,已知:AB=AC,A、C、D在一直线上,CD=BE。求证:EF=FD。
对证题有用的信息是:∠B=∠ACB,BE=CD,多余的信息是∠ACB+∠BCD=180°,否定的信息是△BEF不全等于△CDF,能力低的学生容易陷入企图证明△BEF≌△CDF的“死胡同”。几何中,“形”是先导,正确的图形常使对证题有用的信息昭然若揭,反之,不正确的图形非但不能正确反映有用的信息,还会干扰正确信息的摄取,以致证题误入歧途。因此,证题者必须绘制一个足够清晰的正确图形,以便认清图形结构,完整剖析其中的位置关系、数量关系和相互制约关系。
二、由于证题策略不当而引起的思维受阻及其对策整体观念较差的学生,对于来自题目的众多信息感到纷乱无序,不善于梳理信息,因而制订不出正确的证题策略、方案,导致思维受阻。主要表现为:制订证题策略、“筛选”证题方案的能力较弱,往往无一定方案或择错方案。
对策:把来自题目的各种有用信息进行有目的的组合交错,从而萌发出多种证题方案,而这些初步方案中有真有伪、有优有劣,然后再进行“筛选”。
例2 已知:△ABC中,∠A=90°,AD为BC上的高。求证:AD+BC>AB+AC。
这里,把各种有用信息:∠BAC =∠ADB =∠ADC=90°,△ABC∽△ABD∽△ACD,BC·AD=AB·AC,……以及三角形中AB
方案二:如图(1)所示,由“BC>AB,AC>AD”取BE= AB, AF= AD,连结EF、AE,以下只要证得 ∠EFG=90°即可。
方案三:如图(2)所示,由“BC>AB”,取BE=AB,作EF⊥AC,证得AD=AF便不难得到结论。此外,还可用“等积法”、“求差法”、“逆证法”、“三角比”等等来设计此题的各种论证方案。
三、由于处理信息欠妥而引起的思维受阻及其对策对接收到的信息进行处理,是几何论证的主要过程,这是一个反复使用观察、比较、分析、综合、判断、推理等一系列思维活动的过程。在这过程中逐步地简缩题设与结论之间的差距,寻找题设与结论的连接点,形成证题思路。在此过程中引起这种思维受阻的 原因主要有: 1.由于证题经验不足、模式不多,因此,对待新的题目感到不知所措对策:(1)由于新题目往往是旧题目的变形或变异,或是旧题目的延伸与发展,这就用得着“凭经验办事”(但并不单纯依赖于经验),通过检索,把贮存在头脑中的证题经验和模式输出,对照新、旧题目,找出它们的共同点、相似之处和相异之处,看看已有的经验和模式能否移植到新题目上。
(2)把新题目化为一个与旧题目有着基本联系的题目或化为一个与它等价的但较简单的题目。也可先分别化简题目的题设与结论再找它与旧题目的联系。如:有时可转向证原题的逆否命题。
例3 已知:⊙O的两切线l1∥l2。另一切线CD切⊙O于E并交l1、l2于C、D。求证:CE·ED等于定值。
证题经验告诉学生,先移动CD,使CD⊥l1,则求得定值是⊙O的半径r的平方。根据CE·ED=r2这一形式、特征,检索证题模式,证题者类比地联想到直角三角形中的射影定理,但此题涉及的是圆,哪有直角三角形的影踪?看能否从图形中分割出具有射影性质的直角三角形(模式)?应连结OE。则OE⊥CD,与旧模式吻合。再连结OC、OD,需要证明 ∠COD=90°,这由题设“切线l1∥l2”及圆外一点引圆切线的有关性质易得。
2.解题能力低的学生由于直观能力、辨异能力较弱,常被错综复杂的几何图形所迷惑,思维难以逼近题目的内核,造成思路中断对策:因为复杂图形通常是由几个基本图形复合而成的,所以可从复杂图形中辨认、分离出若干个基本图形,或对残缺不全的基本图形补全(这往往是添 辅助线的启示)。
例
4、已知:AD是△ABC的角平分线,BD⊥AO且交AO延长线于D,E是BC中点。求证:ED=12(AB-AC)。
此题初看似乎较难入手,但观察到“AD平分∠且AD⊥BD”,隐现出残缺的基本图形: 等腰△ABF,应把它补全(见图3),再观察到基本图形(见图4)并联想它的特性,就找到了证题途径。
四、由于已有的经验的干扰,产生负迁移时思维受阻的原因及其对策
1.几何题题态各异,每道题都有它区别于其它题目的特殊性,故常有旧的经验和模式与解新题目不相适应的情况。这时的对策是:克服证法定势、探索证题新路。
当学生用某种方法成功地证明了若干问题后,他往往倾向于用同样方法证新题目,这种证法上的心理定势必须打破。针对“新”的题目,证法上要“出新”,不能把“经验绝对化”、“模式固定化”,使知识和技能产生负迁移,而要进行创造性思维,促进正迁移。
2.思维受阻的另一个重要原因是由于片面地强化了某些基本图形、定理和公式的“功能”,从而阻碍了对它们的另一些“新功能”的认识。这时的对策是:充分认识新题目及其图形的特殊性,发掘它们的“新功能”,克服对证题有关的定理、公式的“功能固定性”的不良倾向。
第二篇:初中数学几何证明中考知识点真题
10.(3分)(2015•攀枝花)如图,在菱形ABCD中,AB=BD,点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,连接BF与DE相交于点G,∴S四边形BCDG=S四边形CMGN,S四边形CMGN=2S△CMG,∵∠CGM=60°,连接CG与BD相交于点H.给出如下几个结论: ①△AED≌△DFB;②S四边形BCDG=
CG
2;③若AF=2DF,则BG=6GF;④CG与BD一定不垂直;⑤∠BGE的大小为定值.
其中正确的结论个数为()
A.4 B. 3
考点: 四边形综合题..分析: ①先证明△ABD为等边三角形,根据“SAS”证明△AED≌△DFB;
②证明∠BGE=60°=∠BCD,从而得点B、C、D、G四点共圆,因此∠BGC=∠DGC=60°,过点C作CM⊥GB于M,CN⊥GD于N.证明△CBM≌△CDN,所以S四边形BCDG=S四边形CMGN,易求后者的面积; ③过点F作FP∥AE于P点,根据题意有FP:AE=DF:DA=1:3,则FP:BE=1:6=FG:BG,即BG=6GF; ④因为点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,当点E,F分别是AB,AD中点时,CG⊥BD;
⑤∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°. 解答: 解:①∵ABCD为菱形,∴AB=AD,∵AB=BD,∴△ABD为等边三角形,∴∠A=∠BDF=60°,又∵AE=DF,AD=BD,∴△AED≌△DFB,故本选项正确;
②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴点B、C、D、G四点共圆,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°,∴∠BGC=∠DGC=60°,过点C作CM⊥GB于M,CN⊥GD于N(如图1),则△CBM≌△CDN(AAS),∴GM=CG,CM=
CG,∴S四边形CMGN=2S△CMG=2××CG×CG=
CG2,故本选项错误;
③过点F作FP∥AE于P点(如图2),∵AF=2FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=2AE,C.∴ 2 FP:BE=FP:
=1:D6.,∵FP∥AE,∴PF∥BE,∴FG:BG=FP:BE=1:6,即BG=6GF,故本选项正确;
④当点E,F分别是AB,AD中点时(如图3),由(1)知,△ABD,△BDC为等边三角形,∵点E,F分别是AB,AD中点,∴∠BDE=∠DBG=30°,∴DG=BG,在△GDC与△BGC中,∴△GDC≌△BGC,∴∠DCG=∠BCG,∴CH⊥BD,即CG⊥BD,故本选项错误;
⑤∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°,为定值,故本选项正确;
综上所述,正确的结论有①③⑤,共3个,故选B.
点评: 此题综合考查了菱形的性质,等边三角形的判定与性质,全等三角形的判定和性质,作出辅助线构造出全等三角形,把不规则图形的面转化为两个全等三角形的面积是解题的关键.
第三篇:中考数学几何证明压轴题
AB1、如图,在梯形ABCD中,AB∥CD,∠BCD=90°,且AB=1,BC=2,tan∠ADC=2.(1)求证:DC=BC;
(2)E是梯形内一点,F是梯形外一点,且∠EDC=
∠FBC,DE=BF,试判断△ECF的形状,并证
明你的结论;
(3)在(2)的条件下,当BE:CE=1:2,∠DCBEC=135°时,求sin∠BFE的值.2、已知:如图,在□ABCD 中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G.
(1)求证:△ADE≌△CBF;
(2)若四边形 BEDF是菱形,则四边形AGBD
是什么特殊四边形?并证明你的结论.
F3、如图13-1,一等腰直角三角尺GEF的两条直角边与正方形ABCD的两条边分别重合在一起.现正方形ABCD保持不动,将三角尺GEF绕斜边EF的中点O(点O也是BD中点)按顺时针方向旋转.
(1)如图13-2,当EF与AB相交于点M,GF与BD相交于点N时,通过观察或测
量BM,FN的长度,猜想BM,FN满足的数量关系,并证明你的猜想;
(2)若三角尺GEF旋转到如图13-3所示的位置时,线段FE的延长线与AB的延长
线相交于点M,线段BD的延长线与GF的延长线相交于点N,此时,(1)中的猜
想还成立吗?若成立,请证明;若不成立,请说明理由.
A(B(E)图13-1 图13-
2图13-
31.[解析](1)过A作DC的垂线AM交DC于M,则AM=BC=2.又tan∠ADC=2,所以DM
(2)等腰三角形.证明:因为DEDF,EDCFBC,DCBC.所以,△DEC≌△BFC 21.即DC=BC.2
所以,CECF,ECDBCF.所以,ECFBCFBCEECDBCEBCD90 即△ECF是等腰直角三角形.(3)设BEk,则CECF
2k,所以EF.因为BEC135,又CEF45,所以BEF90.所以BF3k 所以sinBFEk1.3k3
2.[解析](1)∵四边形ABCD是平行四边形,∴∠1=∠C,AD=CB,AB=CD .
∵点E、F分别是AB、CD的中点,∴AE=11AB,CF=CD . 22
∴AE=CF
∴△ADE≌△CBF .
(2)当四边形BEDF是菱形时,四边形 AGBD是矩形.
∵四边形ABCD是平行四边形,∴AD∥BC .
∵AG∥BD,∴四边形 AGBD 是平行四边形.
∵四边形 BEDF 是菱形,∴DE=BE .
∵AE=BE,∴AE=BE=DE .
∴∠1=∠2,∠3=∠4.
∵∠1+∠2+∠3+∠4=180°,∴2∠2+2∠3=180°.
∴∠2+∠3=90°.
即∠ADB=90°.
∴四边形AGBD是矩形 3[解析](1)BM=FN.
证明:∵△GEF是等腰直角三角形,四边形ABCD是正方形,∴ ∠ABD =∠F =45°,OB = OF.
又∵∠BOM=∠FON,∴ △OBM≌△OFN . ∴ BM=FN.
(2)BM=FN仍然成立.
(3)证明:∵△GEF是等腰直角三角形,四边形ABCD是正方形,∴∠DBA=∠GFE=45°,OB=OF.
∴∠MBO=∠NFO=135°.
又∵∠MOB=∠NOF,∴ △OBM≌△OFN .∴ BM=FN.
第四篇:中考数学复习几何证明压轴题
中考数学专题
几何证明压轴题
1、如图,在梯形ABCD中,AB∥CD,∠BCD=90°,且AB=1,BC=2,tan∠ADC=2.(1)
求证:DC=BC;
(2)
E是梯形内一点,F是梯形外一点,且∠EDC=∠FBC,DE=BF,试判断△ECF的形状,并证明你的结论;
(3)
在(2)的条件下,当BE:CE=1:2,∠BEC=135°时,求sin∠BFE的值.[解析]
(1)过A作DC的垂线AM交DC于M,则AM=BC=2.又tan∠ADC=2,所以.即DC=BC.(2)等腰三角形.证明:因为.所以,△DEC≌△BFC
所以,.所以,即△ECF是等腰直角三角形.(3)设,则,所以.因为,又,所以.所以
所以.2、已知:如图,在□ABCD
中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G.
(1)求证:△ADE≌△CBF;
(2)若四边形
BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论.
[解析]
(1)∵四边形ABCD是平行四边形,∴∠1=∠C,AD=CB,AB=CD
.
∵点E、F分别是AB、CD的中点,∴AE=AB,CF=CD
.
∴AE=CF
∴△ADE≌△CBF
.
(2)当四边形BEDF是菱形时,四边形
AGBD是矩形.
∵四边形ABCD是平行四边形,∴AD∥BC
.
∵AG∥BD,∴四边形
AGBD
是平行四边形.
∵四边形
BEDF
是菱形,∴DE=BE
.
∵AE=BE,∴AE=BE=DE
.
∴∠1=∠2,∠3=∠4.
∵∠1+∠2+∠3+∠4=180°,∴2∠2+2∠3=180°.
∴∠2+∠3=90°.
即∠ADB=90°.
∴四边形AGBD是矩形
3、如图13-1,一等腰直角三角尺GEF的两条直角边与正方形ABCD的两条边分别重合在一起.现正方形ABCD保持不动,将三角尺GEF绕斜边EF的中点O(点O也是BD中点)按顺时针方向旋转.
(1)如图13-2,当EF与AB相交于点M,GF与BD相交于点N时,通过观察或测量BM,FN的长度,猜想BM,FN满足的数量关系,并证明你的猜想;
(2)若三角尺GEF旋转到如图13-3所示的位置时,线段FE的延长线与AB的延长线相交于点M,线段BD的延长线与GF的延长线相交于点N,此时,(1)中的猜想还成立吗?若成立,请证明;若不成立,请说明理由.
图13-2
E
A
B
D
G
F
O
M
N
C
图13-3
A
B
D
G
E
F
O
M
N
C
图13-1
A(G)
B(E)
C
O
D(F)
[解析](1)BM=FN.
证明:∵△GEF是等腰直角三角形,四边形ABCD是正方形,∴
∠ABD
=∠F
=45°,OB
=
OF.
又∵∠BOM=∠FON,∴
△OBM≌△OFN
.
∴
BM=FN.
(2)
BM=FN仍然成立.
(3)
证明:∵△GEF是等腰直角三角形,四边形ABCD是正方形,∴∠DBA=∠GFE=45°,OB=OF.
∴∠MBO=∠NFO=135°.
又∵∠MOB=∠NOF,∴
△OBM≌△OFN
.
∴
BM=FN.
4、如图,已知⊙O的直径AB垂直于弦CD于E,连结AD、BD、OC、OD,且OD=5。
(1)若,求CD的长;
(2)若
∠ADO:∠EDO=4:1,求扇形OAC(阴影部分)的面积(结果保留)。
[解析]
(1)因为AB是⊙O的直径,OD=5
所以∠ADB=90°,AB=10
在Rt△ABD中,又,所以,所以
因为∠ADB=90°,AB⊥CD
所以
所以
所以
所以
(2)因为AB是⊙O的直径,AB⊥CD
所以
所以∠BAD=∠CDB,∠AOC=∠AOD
因为AO=DO,所以∠BAD=∠ADO
所以∠CDB=∠ADO
设∠ADO=4x,则∠CDB=4x
由∠ADO:∠EDO=4:1,则∠EDO=x
因为∠ADO+∠EDO+∠EDB=90°
所以
所以x=10°
所以∠AOD=180°-(∠OAD+∠ADO)=100°
所以∠AOC=∠AOD=100°
5、如图,已知:C是以AB为直径的半圆O上一点,CH⊥AB于点H,直线AC与过B点的切线相交于点D,E为CH中点,连接AE并延长交BD于点F,直线CF交直线AB于点G.
(1)求证:点F是BD中点;
(2)求证:CG是⊙O的切线;
(3)若FB=FE=2,求⊙O的半径.
[解析]
(1)证明:∵CH⊥AB,DB⊥AB,∴△AEH∽AFB,△ACE∽△ADF
∴,∵HE=EC,∴BF=FD
(2)方法一:连接CB、OC,∵AB是直径,∴∠ACB=90°∵F是BD中点,∴∠BCF=∠CBF=90°-∠CBA=∠CAB=∠ACO
∴∠OCF=90°,∴CG是⊙O的切线---------6′
方法二:可证明△OCF≌△OBF(参照方法一标准得分)
(3)解:由FC=FB=FE得:∠FCE=∠FEC
可证得:FA=FG,且AB=BG
由切割线定理得:(2+FG)2=BG×AG=2BG2
在Rt△BGF中,由勾股定理得:BG2=FG2-BF2
由、得:FG2-4FG-12=0
解之得:FG1=6,FG2=-2(舍去)
∴AB=BG=
∴⊙O半径为26、如图,已知O为原点,点A的坐标为(4,3),⊙A的半径为2.过A作直线平行于轴,点P在直线上运动.
(1)当点P在⊙O上时,请你直接写出它的坐标;
(2)设点P的横坐标为12,试判断直线OP与⊙A的位置关系,并说明理由.[解析]
解:
1点P的坐标是(2,3)或(6,3)
2作AC⊥OP,C为垂足.∵∠ACP=∠OBP=,∠1=∠1
∴△ACP∽△OBP
∴
在中,又AP=12-4=8,∴
∴AC=≈1.94
∵1.94<2
∴OP与⊙A相交.7、如图,延长⊙O的半径OA到B,使OA=AB,C
A
B
D
O
E
DE是圆的一条切线,E是切点,过点B作DE的垂线,垂足为点C.求证:∠ACB=∠OAC.[解析]
证明:连结OE、AE,并过点A作AF⊥DE于点F,(3分)
∵DE是圆的一条切线,E是切点,∴OE⊥DC,又∵BC⊥DE,∴OE∥AF∥BC.∴∠1=∠ACB,∠2=∠3.∵OA=OE,∴∠4=∠3.∴∠4=∠2.又∵点A是OB的中点,∴点F是EC的中点.∴AE=AC.∴∠1=∠2.∴∠4=∠2=∠1.即∠ACB=∠OAC.8、如图1,一架长4米的梯子AB斜靠在与地面OM垂直的墙壁ON上,梯子与地面的倾斜角α为.
1求AO与BO的长;
2若梯子顶端A沿NO下滑,同时底端B沿OM向右滑行.①如图2,设A点下滑到C点,B点向右滑行到D点,并且AC:BD=2:3,试计算梯子顶端A沿NO下滑多少米;
②如图3,当A点下滑到A’点,B点向右滑行到B’点时,梯子AB的中点P也随之运动到P’点.若∠POP’=,试求AA’的长.
[解析]
1中,∠O=,∠α=
∴,∠OAB=,又AB=4米,∴米.米.--------------
(3分)
2设在中,根据勾股定理:
∴
-------------
(5分)
∴
∵ ∴
∴
-------------
(7分)
AC=2x=
即梯子顶端A沿NO下滑了米.----
(8分)
3∵点P和点分别是的斜边AB与的斜边的中点
∴,-------------
(9分)
∴-------
(10分)
∴
∴
∵
∴
-----------------------
(11分)
∴-----
(12分)
∴米.--------
(13分)
9.(重庆,10分)如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒.
(1)
求直线AB的解析式;(2)
当t为何值时,△APQ与△AOB相似?
(3)
当t为何值时,△APQ的面积为个平方单位?
解:(1)设直线AB的解析式为y=kx+b
由题意,得
解得
所以,直线AB的解析式为y=-x+6.
(2)由AO=6,BO=8
得AB=10
所以AP=t,AQ=10-2t
1°
当∠APQ=∠AOB时,△APQ∽△AOB.
所以 =
解得 t=(秒)
2°
当∠AQP=∠AOB时,△AQP∽△AOB.
所以 =
解得 t=(秒)
(3)过点Q作QE垂直AO于点E.
在Rt△AOB中,Sin∠BAO==
在Rt△AEQ中,QE=AQ·Sin∠BAO=(10-2t)·=8
-t所以,S△APQ=AP·QE=t·(8-t)
=-+4t=
解得t=2(秒)或t=3(秒).
(注:过点P作PE垂直AB于点E也可,并相应给分)
点拨:此题的关键是随着动点P的运动,△APQ的形状也在发生着变化,所以应分情况:①∠APQ=∠AOB=90○②∠APQ=∠ABO.这样,就得到了两个时间限制.同时第(3)问也可以过P作
PE⊥AB.
10.(南充,10分)如图2-5-7,矩形ABCD中,AB=8,BC=6,对角线AC上有一个动点P(不包括点A和点C).设AP=x,四边形PBCD的面积为y.
(1)写出y与x的函数关系,并确定自变量x的范围.
(2)有人提出一个判断:“关于动点P,⊿PBC面积与⊿PAD面积之和为常数”.请你说明此判断是否正确,并说明理由.
解:(1)过动点P作PE⊥BC于点E.
在Rt⊿ABC中,AC=10,PC=AC-AP=10-x.
∵ PE⊥BC,AB⊥BC,∴⊿PEC∽⊿ABC.
故,即
∴⊿PBC面积=
又⊿PCD面积=⊿PBC面积=
即 y,x的取值范围是0<x<10.
(2)这个判断是正确的.
理由:
由(1)可得,⊿PAD面积=
⊿PBC面积与⊿PAD面积之和=24.
点拨:由矩形的两边长6,8.可得它的对角线是10,这样PC=10-x,而面积y是一个不规则的四边形,所以可以把它看成规则的两个三角形:△PBC、△PCD.这样问题就非常容易解决了.
第五篇:初中数学几何定理的教学策略的探讨
初中数学几何定理的教学策略的探讨
【内容摘要】初中阶段的数学课程中,几何部分是一个绝对的教学重点,不少知识也是教学中的一个难点。在几何内容的教学中,如何能够让学生更好的理解相应的几何定理,这是很多教师都在不断探究的问题。针对几何定理的教学方法的选择非常重要,教师要选取一些更为合适的教学方法与教学理念,并且要以灵活的模式促进学生对于定理的理解与认知。这样才能够真正促进学生对于几何定理有更好的理解与吸收,并且让学生对于知识的掌握更加透彻。
【关键词】初中数学 教学 几何定理 策略
对于几何定理的教学中,教学策略的有效选择非常重要。教师要善于将抽象的知识具象化,将一些具体的内容融入到学生熟悉的生活中加以体验。这会让学生对于教学知识点更容易理解与接受,也能够化解很多理解上的障碍。在这样的基础上才能够提升知识教学的成效。
一、让学生在画图中体验几何定理
让学生在画图中来增进对于几何定理的体验,这是一种很好的教学模式,这也会让学生在知识的应用中深化对于很多定理的理解与吸收。初中阶段学生们接触到的大部分几何定理都不算太复杂,很多知识点都可以在生活中得以验证。这给学生的知识体验提供了很好的平台。教师可以创设一些好的教学活动,让学生在动手作图的过程中来对于很多定理有更为直观的感受。同时,这也是对于很多定理展开有效验证的教学过程,这些都会让学生对于知识点的掌握更加牢固。
例如,学到定理“三角形两边的和大于第三边”时,可以让学生用直尺画出任意一个三角形,并测量出三条边的长度,并按照定理进行计算,看结论是否与定理一致。又比如,学到定理“两直线平行,同位角相等”时,让同学们在纸上画出两条平行的直线,再画出一条同时与两条直线相交的直线,找出它们的同位角,用量角器进行测量,看结果是否相同。让学生自己来画图,这首先能够给学生的知识应用与实践提供良好的空间;同时,学生也可以在过程中对于很多内容展开检验。这些都会增进学生对于几何定理的理解与认知,并且能够让学生对于相应的知识点有更好的掌握。
二、注重对于学生想象力的激发
初中阶段的几何教学中学生们会逐渐接触到立体几何的内容,虽说很多知识点并不复杂,但是,对于初次接触的学生而言还是存在理解上的障碍。在立体几何知识的学习中,学生的空间想象能力非常重要,这是让学生能够更好的理解很多图形的特点以及变化规律的基础。正是因为如此,想要深化学生对于几何定理的理解与认知,教师要加强对于学生想象力的培养,这将会极大的提升学生的知识理解能力。教师可以将具体的知识点融入到学生熟悉的生活场景中加以讲授,这会为学生的想象力提供良好的平台,也会让学生对于很多内容有更好的领会。
几何定理的理论性和抽象性较强,在教学中,充分发挥学生的想象力也是加强定理记忆的一种好方法。在学到某些定理时,可以让同学们想一下生活中满足几何定理条件的事物,加深同学们对这条定理的印象。当记不起定理内容时,只要想起相应的事物就很容易想起定理的知识。比如,定理“平行线永远不会相交”的学习,就可以想象生活中存在平行关系的事物,比如平房的屋顶和地面,它们永远不会相交,所以平行线也不可能相交。这些都是很好的教学范例,能够极大的促进学生对于几何定理的理解与领会。教师要善于利用一些灵活的教学方法与教学模式,这对于促进学生的知识吸收将会很有帮助。
三、生活化几何定理的教学
生活化几何定理的教学同样是一个很好的突破口,这对于提升学生的知识掌握程度将会起到很大的推动。对于很多抽象的几何定理,想要让学生深化对其的理解与认知,最有效的办法就是将它融入到学生们熟悉的生活场景中加以体验。教师可以结合具体的教学内容创设一些生活化的教学情境,让学生们结合生活实例来对于相应的几何定理加以认知。这首先会降低知识理解上的难度,也会为学生的知识领会提供积极推动。在这样的教学过程中才能够帮助学生对于几何定理有更好的认知,这也是提升课堂教学效率的一种有效方式。
老师在备课时,要将定理知识与实际生活紧密联系起来,用我们生活中最普通的现象解释难懂的理论知识。比如,在学到“两条直线平行,内错角相等”这条定理时,可以利用多媒体课件,向同学们展示盘山公路两次拐弯平行时的内错角图示,引导学生进行多方位、多角度的思考。这种做法也会激发同学们对生活中类似现象的思考,提高他们在生活中发现、推导几何定理的能力。让几何定理的教学与学生熟悉的生活情境相结合,这是一种很有效的教学策略,这也是提升知识教学效率的一种有效模式。
结语
几何定理的教学是初中数学教学中的一个难点,如何能够有效的突破这个教学难点,这需要教师在教学方法上有灵活选择。教师可以让学生在画图中体验几何定理,也可以透过生活化的教学模式突破学生理解上的障碍,这些都是很好的教学模式。培养学生的想象力也非常重要,这同样能够深化学生对于几何定理的理解与认知,并且有效提升知识教学的效率。
【参考文献】
[1] 王翠巧.探析初中数学几何教学方法[J].学周刊,2013年02期.[2] 吴才鑫.浅析几何知识与初中数学教学[J].教育教学论坛,2013年34期.[3] 丁焱鑫.试谈初中数学几何教学[J].中学生数理化(高中版?学研版),2011年02期.(作者单位:江苏省盐城市北蒋实验学校)