中考数学几何证明中不可或缺的步骤5篇

时间:2019-05-13 08:38:28下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《中考数学几何证明中不可或缺的步骤》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《中考数学几何证明中不可或缺的步骤》。

第一篇:中考数学几何证明中不可或缺的步骤

中考数学几何证明中不可或缺的步骤

一、方程

(1)∴原方程的解为X =

x(2)∴原方程组的解为 y

(3)∴原不等式(组)的解集为

二、几何

(1)有关梯形:∵AD∥BC AB不平行于CD∴四边形ABCD为梯形

∵AB=CD

∴梯形ABCD为等腰梯形

(2)有关菱形:A.(证明过程省略)

∴四边形ABCD是平行四边形又∵AD⊥BCAB=BC

∴平行四边形ABCD为菱形

B.∵AB=BC=CD=DA

∴四边形ABCD是菱形

(3)有关矩形:A.(证明过程省略)

∴四边形ABCD是平行四边形又∵∠ABC=90°AD=BC∴平行四边形ABCD为矩形

B.∵∠ABC=∠BCD=∠CDA=90°∴四边形ABCD为矩形

(4)有关正方形:A.(证明过程省略)

∴(平行)四边形ABCD是菱形∵∠ABC=90°

∴菱形ABCD是正方形

B.(证明过程省略)

∴(平行)四边形ABCD是矩形∵AB=BC

∴矩形ABCD是正方形

C.(证明过程省略)

∴四边形ABCD是平行四边形又∵AB=BC且∠ABC=90°∴平行四边形ABCD为正方形

(5)有关垂径定理:∵OA是⊙O的半径 且0A⊥BC∴AB=AC

(6)有关反证法:问 “当C在什么位置时,三角形ABC是等腰三角形?并加以证明”先以结论(三角形ABC是等腰三角形)作为条件在草稿上反证,再以“当”字句作为条件证明结论。

(7)有关多个答案:∴综上所述„„

(8)有关锐角三角比,勾股定理:在Rt△ABC中,AB=BC+AC

222在Rt△ABC中,sinα= tanα= cosα= cotα=

第二篇:中考数学几何证明复习题

几何证明练习

1.如图13-1,一等腰直角三角尺GEF的两条直角边与正方形ABCD的两条边分别重合在一起.现正方形ABCD保持不动,将三角尺GEF绕斜边EF的中点O(点O也是BD中点)按顺时针方向旋转.

(1)如图13-2,当EF与AB相交于点M,GF与BD相交于点N时,通过观察或测量BM,FN的长度,猜想BM,FN满足的数量关系,并证明你的猜想;

(2)若三角尺GEF旋转到如图13-3所示的位置时,线段FE的延长线与AB的延长线相交于点M,线

段BD的延长线与GF的延长线相交于点N,此时,(1)中的猜想还成立吗?若成立,请证明;若

不成立,请说明理由.

A(E)图13-1 图13-

2图13-

32.将两块全等的含30°角的三角尺如图(1)摆放在一起,它们的较短直角边长为3.(1)将△ECD沿直线l向左平移到图(2)的位置,使E点落在AB上,则CC′=______;

(2)将△ECD绕点C逆时针旋转到图(3)的位置,使点E落在AB上,则△ECD绕点C旋转的度数=______;

(3)将△ECD沿直线AC翻折到图(4)的位置,ED′与AB相交于点F,求证AF=FD′

A A A A

E E’ E’D’ F’

l B(2)

(3)D’(4)

3.填空或解答:点B、C、E在同一直线上,点A、D在直线CE的同侧,AB=AC,EC=ED,∠BAC=∠CED,直线AE、BD交于点F。

(1)如图①,若∠BAC=60°,则∠AFB=_________;如图②,若∠BAC=90°,则∠AFB=_________;(2)如图③,若∠BAC=α,则∠AFB=_________(用含α的式子表示);

(3)将图③中的△ABC绕点C旋转(点F不与点A、B重合),得图④或图⑤。在图④中,∠AFB与∠α的数量关系是________________;在图⑤中,∠AFB与∠α的数量关系是________________。请你任选其中一个结论证明。

D

4.用两个全等的正方形ABCD和CDFE拼成一个矩形ABEF,把一个足够大的直角三角尺的直角顶点与这个矩形的边AF的中点D重合,且将直角三角尺绕点D按逆时针方向旋转.

(1)当直角三角尺的两直角边分别与矩形ABEF的两边BE,EF相交于点G,H时,如图甲,通过观察或测量BG与EH的长度,你能得到什么结论?并证明你的结论.

(2)当直角三角尺的两直角边分别与BE的延长线,EF的延长线相交于点G,H时(如图乙),你在图甲中得到的结论还成立吗?简要说明理由.

图②(第5题图)

图①

A图③

B图④

(第5题图)

图⑤

H

A B

F A B

F E

G

C 图甲

C 图乙

5.已知∠AOB=90,在∠AOB的平分线OM上有一点C,将一个三角板的直角顶点与C重合,它的两条直角边分别与OA、OB(或它们的反向延长线)相交于点D、E.

当三角板绕点C旋转到CD与OA垂直时(如图1),易证:2OC.

当三角板绕点C旋转到CD与OA不垂直时,在图

2、图3这两种情况下,上述结论是否还成立?若成立,请

给予证明;若不成立,线段OD、OE、OC之间又有怎样的数量关系?请写出你的猜想,不需证明。

6.把一副三角板如图甲放置,其中∠ACB∠DEC90,∠A45,∠D30,斜边AB6cm,DC7cm.把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙).这时AB与CD1相交于点O,与

D1E1相交于点F.

(1)求∠OFE1的度数;(2)求线段AD1的长;

(3)若把三角形D1CE1绕着点C顺时针再旋转30°得△D2CE2,这时点B在△D2CE2的内部、外部、还是边上?说明理由.

A

C

(甲)

E(乙)

1B

D

A

D

17.如图,在△ABC 中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.

MB

E

OC

FN

(第19题图)

8.如图甲,在△ABC中,∠ACB为锐角.点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF. 解答下列问题:

(1)如果AB=AC,∠BAC=90º.

①当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置关系为,数量关系为.

②当点D在线段BC的延长线上时,如图丙,①中的结论是否仍然成立,为什么?

(2)如果AB≠AC,∠BAC≠90º,点D在线段BC上运动.

试探究:当△ABC满足一个什么条件时,CF⊥BC(点C、F重合除外)?画出相应图形,并说明理由.(画图不写作法)

(3)若AC

=BC=3,在(2)的条件下,设正方形ADEF的边DE与线段CF相交于点P,求线段CP

F

长的最大值.

E

A F

CBBECE

图甲 图乙 图丙

第8题图

9.如图,矩形纸片ABCD中,AB8,将纸片折叠,使顶点B落在边AD的E点上,折痕的一端G点在边

BC上,BG10.

(1)当折痕的另一端F在AB边上时,如图(1),求△EFG的面积;(2)当折痕的另一端F在AD边上时,如图(2),证明四边形BGEF为菱形,并求出折痕GF的长.

H(A)

E(B)E(B)D

A D

C B C

G

图(1)图(2)

10.如图,在边长为4的正方形ABCD中,点P在AB上从A向B运动,连接DP交AC于点Q.(1)试证明:无论点P运动到AB上何处时,都有△ADQ≌△ABQ;(2)当点P在AB上运动到什么位置时,△ADQ的面积是正方形ABCD面积的1; 6

(3)若点P从点A运动到点B,再继续在BC上运动到点C,在整个运动过程中,当点P 运动到什么

位置时,△ADQ恰为等腰三角形.

11.如图15,平行四边形ABCD中,ABAC,AB

1,BC.对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转,分别交BC,AD于点E,F.(1)证明:当旋转角为90时,四边形ABEF是平行四边形;

(2)试说明在旋转过程中,线段AF与EC总保持相等;

(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时AC绕点O顺时针旋转的度数.

FD

B C图15

12.已知∠MAN,AC平分∠MAN。

⑴在图1中,若∠MAN=120°,∠ABC=∠ADC=90°,求证:AB+AD=AC;

⑵在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则⑴中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;⑶在图3中:

①若∠MAN=60°,∠ABC+∠ADC=180°,则AB+AD=____AC;②若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,则AB+AD=____AC(用含α的三角函数表示),并给出证明。

M

MM

CCC

DDD

ABNABABN N

13.已知,将两块等腰直角三角板ABC和ADE如图放置,再以CE,CB为边作平行四边形CEHB,连DC,CH。a)如图1,连接DH,请你判断△DHC的形状,猜想CH与CD之间有何数量关系?请说明理由。b)将图1中的△ADE绕A点逆时针旋转45°得图2,请你猜想CH与CD之间的数量关

系。

c)将图1中的△ADE绕A点顺时针旋转a(0°<a<45°)得图3,(2)中的猜想是否还成立,若

成立,请给出证明;不成立,说明理由。

14.如图13—1,以△ABC的边AB,AC为直角边作等腰△ABE和△ACD,M是BC的中点.(1)若∠BAC=90°,如图13—1.请你猜想线段DE,AM的数量关系,并证明你的结论;(2)若∠BAC≠

90°.

①如图13—2.请你猜想线段DE,AM的数量关系,并证明你的结论; ②如图13—3.请你判断线段DE,AM的数量关系.A D

B

D

E图13—3图13—1 图13—2

第三篇:中考数学几何证明经典难题

经典难题

(一)1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO. 求证:CD=GF.(初二)

E

A BD O F2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150.

A D求证:△PBC是正三角形.(初二)

C B3、如图,已知四边形ABCD、A1B1C1D1都是正方形,A2、B2、C2、D2分别是AA1、BB1、CC1、DD1的中点. D

求证:四边形A2B2C2D2是正方形.(初二)DAA

11C B2

2C4、已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F. 求证:∠DEN=∠F.

B第 1 页

1、已知:△ABC中,H为垂心(各边高线的交点),O

(1)求证:AH=2OM;

(2)若∠BAC=600,求证:AH=AO.(初二)

2、设MN是圆O外一直线,过O作OA⊥MN于A,自A及D、E,直线EB

及CD分别交MN于P、Q. 求证:AP=AQ.(初二)

3、如果上题把直线MN由圆外平移至圆内,则由此可得以下命题:

设MN是圆O的弦,过MN的中点A任作两弦BC、DE,设CD、EB分别交MN

于P、Q.

求证:AP=AQ.(初二)

4、如图,分别以△ABC的AC和BC为一边,在△ABC的外侧作正方形ACDE和正方形

CBFG,点P是EF的中点.

求证:点P到边AB的距离等于AB的一半.

第 2 页

F1、如图,四边形ABCD为正方形,DE∥AC,AE=AC,AE与CD相交于F.

求证:CE=CF.(初二)

2、如图,四边形ABCD为正方形,DE∥AC,且CE=CA,直线EC交DA延长线于F.

求证:AE=AF.(初二)

3、设P是正方形ABCD一边BC上的任一点,PF⊥AP,CF平分∠DCE.

求证:PA=PF.(初二)

4、如图,PC切圆O于C,AC为圆的直径,PEF为圆的割线,AE、AF与直线PO相交于

B、D.求证:AB=DC,BC=AD.(初三)

第 3 页

1、已知:△ABC是正三角形,P是三角形内一点,PA=3,PB=4,PC=5.

求:∠APB的度数.(初二)

2、设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA. 求证:∠PAB=∠PCB.(初二)

3、Ptolemy(托勒密)定理:设ABCD为圆内接凸四边形,求证:AB·CD+AD·BC=AC·BD.(初三)

4、平行四边形ABCD中,设E、F分别是BC、AB上的一点,AE与CF相交于P,且 AE=CF.求证:∠DPA=∠DPC.(初二)

第 4 页

经典难题

(五)1、设P是边长为1的正△ABC内任一点,l=PA+PB+PC,求证:

≤l<2.

2、已知:P是边长为1的正方形ABCD内的一点,求PA+PB+PC3、P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长.

4、如图,△ABC中,∠ABC=∠ACB=800,D、E分别是AB、AC上的点,∠DCA=300,∠EBA=200,求∠BED的度数.

第 5 页

第四篇:2011天津数学中考几何证明专题练习

2011天津数学中考几何证明专题练习

1、已知:AB=CD、AD//BC,OA=OD,求证:OB=OC

ADOBC2、已知:AB=CD、AD//BC,OA=OD,求证:OB=OC

3、在菱形ABCD中,GE⊥CD、HF⊥AD,求证:GE=HF

CBHGEAOADBCFD

4、图,平行四边形ABCD中,AE=CF,求证:∠EBF=∠FDE

5、在菱形ABCD中,对角线AC、BD交于点O,OE⊥AB、OF⊥BC、OG⊥CD、OH⊥AD,求证:E、F、G、H共圆

HAAEDBFC

BFEOGDC6、在矩形ABCD中,∠ABC、∠CDA的平分线交AD、BC于F、E,求证:BE=DF、DE=BF

AFDBEC

7、如图,点E 是正方形ABCD内一点,△BEC绕点C顺时针方向旋转90°到△DFC的位置,求证:BE⊥DF

8.如图,E、F是□ABCD的对角线AC上两点,AE=CF.求证:(1)△ABE≌△CDF.(2)BE∥DF.DEAFBCADEFBC

9.如图,在□ABCD中,点E、F在对角线AC上,且AE=CF, 请你以F为一个端点,和图中已标有字母的某一点连成一条新线段, 猜想并证明它和图中已有的某一线段相等.(只需证明一组线段相等即可).(1)连结_________,(2)猜想______=________.(3)证明:

A

附加1.如图,已知正方形ABCD中,E为BC上一点, 将正方形折叠起来,使点A和点E重合,折痕为MN,若tan∠AEN=,DC+CE=10.31DFEBC(1)求△ANE的面积.(2)求sin∠ENB的值.EDMC

AKNB

第五篇:中考数学几何证明压轴题

AB1、如图,在梯形ABCD中,AB∥CD,∠BCD=90°,且AB=1,BC=2,tan∠ADC=2.(1)求证:DC=BC;

(2)E是梯形内一点,F是梯形外一点,且∠EDC=

∠FBC,DE=BF,试判断△ECF的形状,并证

明你的结论;

(3)在(2)的条件下,当BE:CE=1:2,∠DCBEC=135°时,求sin∠BFE的值.2、已知:如图,在□ABCD 中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G.

(1)求证:△ADE≌△CBF;

(2)若四边形 BEDF是菱形,则四边形AGBD

是什么特殊四边形?并证明你的结论.

F3、如图13-1,一等腰直角三角尺GEF的两条直角边与正方形ABCD的两条边分别重合在一起.现正方形ABCD保持不动,将三角尺GEF绕斜边EF的中点O(点O也是BD中点)按顺时针方向旋转.

(1)如图13-2,当EF与AB相交于点M,GF与BD相交于点N时,通过观察或测

量BM,FN的长度,猜想BM,FN满足的数量关系,并证明你的猜想;

(2)若三角尺GEF旋转到如图13-3所示的位置时,线段FE的延长线与AB的延长

线相交于点M,线段BD的延长线与GF的延长线相交于点N,此时,(1)中的猜

想还成立吗?若成立,请证明;若不成立,请说明理由.

A(B(E)图13-1 图13-

2图13-

31.[解析](1)过A作DC的垂线AM交DC于M,则AM=BC=2.又tan∠ADC=2,所以DM

(2)等腰三角形.证明:因为DEDF,EDCFBC,DCBC.所以,△DEC≌△BFC 21.即DC=BC.2

所以,CECF,ECDBCF.所以,ECFBCFBCEECDBCEBCD90 即△ECF是等腰直角三角形.(3)设BEk,则CECF

2k,所以EF.因为BEC135,又CEF45,所以BEF90.所以BF3k 所以sinBFEk1.3k3

2.[解析](1)∵四边形ABCD是平行四边形,∴∠1=∠C,AD=CB,AB=CD .

∵点E、F分别是AB、CD的中点,∴AE=11AB,CF=CD . 22

∴AE=CF

∴△ADE≌△CBF .

(2)当四边形BEDF是菱形时,四边形 AGBD是矩形.

∵四边形ABCD是平行四边形,∴AD∥BC .

∵AG∥BD,∴四边形 AGBD 是平行四边形.

∵四边形 BEDF 是菱形,∴DE=BE .

∵AE=BE,∴AE=BE=DE .

∴∠1=∠2,∠3=∠4.

∵∠1+∠2+∠3+∠4=180°,∴2∠2+2∠3=180°.

∴∠2+∠3=90°.

即∠ADB=90°.

∴四边形AGBD是矩形 3[解析](1)BM=FN.

证明:∵△GEF是等腰直角三角形,四边形ABCD是正方形,∴ ∠ABD =∠F =45°,OB = OF.

又∵∠BOM=∠FON,∴ △OBM≌△OFN . ∴ BM=FN.

(2)BM=FN仍然成立.

(3)证明:∵△GEF是等腰直角三角形,四边形ABCD是正方形,∴∠DBA=∠GFE=45°,OB=OF.

∴∠MBO=∠NFO=135°.

又∵∠MOB=∠NOF,∴ △OBM≌△OFN .∴ BM=FN.

下载中考数学几何证明中不可或缺的步骤5篇word格式文档
下载中考数学几何证明中不可或缺的步骤5篇.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    中考数学几何证明、计算题及解析

    1、如图,在梯形ABCD中,AB∥CD,∠BCD=90°,且AB=1,BC=2,tan∠ADC=2. 求证:DC=BC; E是梯形内一点,F是梯形外一点,且∠EDC=∠FBC,DE=BF,试判断△ECF的形状,并证明你的结论; 在(2)的......

    中考数学复习几何证明压轴题

    中考数学专题几何证明压轴题1、如图,在梯形ABCD中,AB∥CD,∠BCD=90°,且AB=1,BC=2,tan∠ADC=2.求证:DC=BC;E是梯形内一点,F是梯形外一点,且∠EDC=∠FBC,DE=BF,试判断△ECF的形状......

    中考数学题型训练(几何证明)(五篇范文)

    中考数学题型训练(二)几何证明(中等)一、基本型:1、(肇庆2010) (8分)如图,已知∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,CE与AB相交于F.求证:△CEB≌△ADC;若AD=9cm,DE=6cm,求BE及EF的长.BE......

    中考数学几何证明专题训练(小编整理)

    中科教育初三数学春季讲义中考数学几何证明专题1、 已知:AB=CD、AD//BC,OA=OD,求证:OB=OCB2、 已知:AB=CD、AD//BC,OA=OD,求证:OB=OC3、在菱形ABCD中,GE⊥CD、HF⊥AD,求证:GE=HF4、 图,......

    中考数学几何证明题

    中考数学几何证明题在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.在图1中证明CE=CF;若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;第一个问我会,求第二......

    中考数学经典几何证明题

    2011年中考数学经典几何证明题(一)1.(1)如图1所示,在四边形ABCD中,AC=BD,AC与BD相交于点O,E、F分别是AD、BC的中点,联结EF,分别交AC、BD于点M、N,试判断△OMN的形状,并加以证明;(2)如图2,在......

    初二数学几何证明

    1.已知△ABC是等边三角形,D是BC边延长线上一点,以AD为边作等边三角形ADE。连接CE.求证:CE平分∠ACDEABCD2.已知:如图,AD是△ABC的角平分线,E是AB边上的一点,AE=AC,EF∥BC交AC于点F.......

    初中数学几何证明中考知识点真题

    10.(3分)(2015•攀枝花)如图,在菱形ABCD中,AB=BD,点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,连接BF与DE相交于点G,∴S四边形BCDG=S四边形CMGN, S四边形CMGN=2S△CMG, ∵∠CGM=60......