教学立体几何心得5篇

时间:2019-05-14 13:39:14下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《教学立体几何心得》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《教学立体几何心得》。

第一篇:教学立体几何心得

教学立体几何心得

1.讲立体几何,由三视图还原直观图,从而求直观图表面积,体积,学生不会画直观图,不会还原,要弄清楚先还原底面,再确定侧棱,再想象出几何体。

2.证明线面,面面平行,学生不会找平面内的一条直线,和平面外的直线平行,要把平面外那条直线往平面内平移,先看平面内有没有现成的线和它平行,如果没有就要想把平面外的那条直线往平面内平移,平移到平内的哪个位置,从而确定应该怎样添加辅助线。还有一种证明线面平行的方法,那就是先证明面面平行,从而再得出一个平面内的直线和另一个平面平行,即由面面平行也可以得出线面平行。

3.讲线面垂直,学生要去找直线垂直于平面内的两条相交直线。而面面垂直性质书写时格式混乱,故要强调条件是:α⊥β,α∩β=m,m[α,m⊥β共四个条件才推得α⊥β,并要强调书定格式。要区分好性质和判定,由线面垂直推得面面垂直是性质,由面面垂直推得线面垂直,由线面垂直推得线线垂直是性质。

4.棱柱,棱锥,正棱柱,直棱柱,正棱锥认识,正四面体要讲清楚几何体特征。5.等体积法要讲清楚几种转化的方法。立体几何的证明题中,底面四边形是含直角,或120度的角的四边形,要多想想是否可以补形成一个三角形。注意割补思想的应用。衡水的几何题,有些几何题很精典。

6.讲折叠问题时,要开清楚折线同侧元素位置关系和数量关系不变,折线异侧元素位置关系和数量关系要改变。

7.要给学生说,三棱锥的顶点和顶点在底面的正投影点的线段垂直于底面。如果是三棱锥中的三视图问题,还可以将它还原到正方体,或长方体中去考虑。还有一类问题,给出个几何体,又给出部分三视图,让算体积,和线面,或面面的垂直或平行关系。8.班上的女生多,女生立体几何都有点差,只要每次考试,三视图的题,和立体几何的题都要评讲。

9.立体几何题,要让学生充分去观察,思考,讲时语速要放慢点,不然说自己做还晓得,听我讲反倒不晓得,就是思维跟不上。书写上,可以多用分析法,并板书,用分析法找到充分条件,从而证倒题的过程。

2015.3.12

第二篇:立体几何教学反思

高中立体几何教学反思

李秀友 新课程标准理念要求教师从片面注重知识的传授转变到注重学生学习能力的培养,教师不仅要关注学生学习的结果,更重要的是要关注学生的学习过程,促进学生学会自主学习、合作学习,引导学生探究学习,让学生亲历、感受和理解知识产生和发展的过程,培养学生的数学素养和创新思维能力,重视学生的可持续发展,培养学生终身学习的能力,因此我们应该更新教育观念,真正做到变注入式教学为启发式,变学生被动听课为主动参与,变单纯知识传授为知能并重。在教学中让学生自己观察,让学生自己思考,让学生自己表述,让学生自己动手,让学生自己得出结论。

立体几何是高中数学相对比较容易的一部分,从目前复习情况来看,学生学不好的原因大致有三个:一是没有建立立体感和空间概念;二是基础知识不牢固;三是表述不规范。以下是我在教学中对如何帮助学生学好立体几何的一些反思:

1、建立空间概念,强化空间思维能力

从认识平面图形到认识立体图形是一次飞跃,要有一个过程。建立空间观念要做到:

(1)重视看图能力的培养:对于一个几何体,可从不同的角度去观察,可以是俯视、仰视、侧视、斜视,体会不同的感觉,以开拓空间视野,培养空间感。

(2)加强画图能力的培养:掌握基本图形的画法;如异面直线的几种画法、二面角的几种画法等等;对线面的位置关系,所成的角,所有的定理、公理都要画出其图形,而且要画出具有较强的立体感,除此之外,还要体会到用语言叙述的图形,画哪一个面在水平面上,产生的视觉完全不同,往往从一个方向上看不清的图形,从另方向上可能一目了然。

(3)加强认图能力的培养:对立体几何题,既要由复杂的几何图形体看出基本图形,如点、线、面的位置关系;又要从点、线、面的位置关系想到复杂的几何图形,既要看到所画出的图形,又要想到未画出的部分。能实现这一些,可使有些问题一眼看穿。

此外,多用图表示概念和定理,多在头脑中“证明”定理和构造定理的“图”,对于建立空间观念也是很有帮助的。

案例一:起始课中注意空间立体感的培养

立体几何第一节课导入部分中,我要求学生共同完成一个任务。首先,用一张纸经过剪裁、折叠做成一个正方体;然后,画出所做的正方体。通过这个任务的完成大大提高了学生的学习兴趣,使学生感悟数学世界的简洁美、和谐美,培养学生审美意识。课后,我留的作业是画可两个课本中你感兴趣的立体图形。进一步帮助学生建立空间立体感。

案例二:游戏中感受数学美

在讲解《

9、2空间直线》这节课中我让学生做一个游戏:用一张纸对折,把它看成两个相交平面,我们在这两个平面内各画一条直线,使它们成为:①平行直线;②相交直线;③异面直线。然后画出你做的图形并观察所画直线和两平面交线的关系。游戏中同学们都积极动手、动脑,充分调动学生主观能动性,通过自己的努力认识到3种直线的位置关系,建立空间立体观念,并进而研究三种直线位置关系的画法。

其实在每节课中都能设立这样的实际操作的问题,并且让同学在自制一些空间几何模型后反复观察,这样有益于建立空间观念。让同学对这些立体图形进行观察、揣摩,并且判断其中的线线、线面、面面位置关系,探索各种角、各种垂线作法,同样也是建立空间观念的好方法。

2、平面几何基础使立体几何学习事半功倍

因为无论什么样的立体几何问题,都是在平面上处理的,因而平面几何知识的掌握与否也影响立体几何的学习。因而在教学过程中要注意对平面几何知识的复习。要让学生在做题时找到所需平面和相应的点、线的位置关系,要把立体问题,转化为平面问题,其实也需要很多经验和技巧,通过多给学生作题,使他们自己慢慢体会。

3、教学中注重 “转化”思想的培养

我个人觉得,解立体几何的问题,主要是充分运用“转化”这种数学思想,要明确在转化过程中什么变了,什么没变,有什么联系,这是非常关键的。例如:

(1)两条异面直线所成的角转化为两条相交直线的夹角即过空间任意一点引两条异面直线的平行线。斜线与平面所成的角转化为直线与直线所成的角即斜线与斜线在该平面内的射影所成的角。

(2)异面直线的距离可以转化为直线和与它平行的平面间的距离,也可以转化为两平行平面的距离,即异面直线的距离与线面距离、面面距离三者可以相互转化。而面面距离可以转化为线面距离,再转化为点面距离,点面距离又可转化为点线距离。

(3)面和面平行可以转化为线面平行,线面平行又可转化为线线平行。而线线平行又可以由线面平行或面面平行得到,它们之间可以相互转化。同样面面垂直可以转化为线面垂直,进而转化为线线垂直。

(4)三垂线定理可以把平面内的两条直线垂直转化为空间的两条直线垂直,而三垂线逆定理可以把空间的两条直线垂直转化为平面内的两条直线垂直。

以上这些都是数学思想中转化思想的应用,通过转化可以使问题得以大大简化。

4、教学中注重规范的训练

不少学生对作、证、求三个环节交待不清,表达不够规范、严谨,因果关系不充分,图形中各元素关系理解错误,符号语言不会运用等。这就要求学生在平时养成良好的答题习惯,具体来讲就是按课本上例题的答题格式、步骤、推理过程等一步步把题目演算出来。答题的规范性在数学的每一部分内容的学习中都很重要,在立体几何中尤为重要,因为它更注重逻辑推理。所以要让学生明确几何语言是最讲究言之有据,言之有理。也就是说没有根据的话不要说,不符合定理的话不要说。

至于怎样培养学生证明立体几何问题可从下面两个角度去研究:

(1)把几何中所有的定理分类。按定理的已知条件分类是性质定理,按定理的结论分类是判定定理。

如:平行于同一条直线的两条直线平行,既可以把它看成是两条直线平行的性质定理,也可以把它看 成是两条直线平行的判定定理。又如:如果两个平面平行且同时和第三个平面相交,那么它们的交线平行。它既是两个平面平行的性质定理 又是两条直线平行的判定定理。

这样分类之后,就可以做到需要什么就可以找到什么,比如:我们要证明直线和平面垂直,可以用下面的定理:

①直线和平面垂直的判定定理

②两条平行垂直于同一个平面

③一条直线和两个平行平面同时垂直

(2)让学生明确自己要做什么。在牢牢地掌握立体几何的概念、定理、法则、公式的基础上,面对一道题一定要让学生知道自己要做什么!不要拿到一道题就盲目地去做。在证明之前就要设计好证明的路线,明确自己的每一步的目的,让学生学会大胆假设,仔细推理。并能再作题过程中强化立体几何的概念、定理、法则、公式的记忆,从而能融会贯通。

第三篇:立体几何教学反思

立体几何教学反思

立体几何教学反思1

《立体几何》是高中数学较难理解的内容之一,就其原因,主要是学生受平面思维的束缚,尚未建立起相应的空间观念,缺乏空间想象能力和逻辑思维能力所致。怎样让学生更好的学好空间几何呢?

一、抓好入门教学,准确、牢固的理解和掌握概念、定理。

1、直观形象的引入观念。

在概念教学中应在对足够的感性材料加以比对、分析和抽象的基础上从感性认识出发引进新概念。如:平面这一概念可借助平静的水面、平板玻璃的表面等这些给我们以平面形象的具体实物来引入。需注意的是,几何中的平面是在空间无限延展的,平静的水面、平板玻璃等只能看做平面的一部分。

2、借助已知概念理解新概念。

如借助直线理解平面,一条直线有两个点在一个平面内,那么这条直线上的所有点都在这个平面内。直线很直,平面必很平,直线无限延长,平面必无限延展。利用学生对直线的认识加深对平面的理解。

3、抓住要点掌握概念。

如二面角的平面角概念教学中应抓住三个要点:(1)顶点必须在棱上;(2)两边分别在两个半平面内;(3)两边必须垂直于棱,再配以相关的图形,学生对这个概念的理解就比较准确了。

4、对比联系记忆概念。

如“不同在任一平面内的两条直线”与“在不同平面内的两条直线”有着本质的差异,前者是异面直线,而后者中的两条直线则有在同一平面内的可能。这样,对比不同的`表述。找出其相异点,才能更好的理解记忆所学概念。

5、抓住定理中的关键“字词”。

如在线面垂直的判定定理中,如果一条直线垂直于一个平面内的两条“相交直线”那么线面垂直。“两条”与“垂直”缺一不可,而垂直是否过交点则不必考虑。又如在射影定理中,“从平面外一点向一个平面引垂线段和斜线段”,必须强调“从平面外一点”和“一个平面”,否则会片面得出“射影长相等时斜线也相等”的错误结论。

6、把握实质,概括精髓,加强对定理的记忆。

记得牢才能用的好,如对于三垂线定理和逆定理的记忆,可概括为“影垂则斜垂,斜垂则影垂,又如记忆线面平行的判定定理和性质定理,可概括为”线线平行则线面平行,及线面平行则线线平行。

二、避免常犯错误培养学生的空间想象力。

1、把立体问题当做平面问题来处理。

2、书写不规范,不严谨、不完善。

3、忽视图形的多种可能性。

立体几何教学反思2

立体几何作为主干知识之一,知识点包括:与空间结构有关的 2 个图形:直观图和三视图;与计算有关的表面积、体积、空间角和距离;与平面有关的 4 个公理和 1 个定理;与平行与垂直有关的定理。

此篇博客再就立体几何大题的考查为主,做出反思如下:

立体几何大题的考查主要集中在空间位置关系判断,体积计算,空间角和空间几何体高的计算。

文科立体几何的考查在近几年高考试题中通常设置两问,第一问,主要是空间位置判断:线线平行、线面平行、面面平行以及线线垂直、线面垂直、面面垂直的判定,这一问主要考查学生对于平行、垂直相关判定定理与性质定理的掌握,此题比较容易得分,但需要强调学生证明过程的规范性,证明过程中说理的理由要严谨,要做到有据可依且不罗嗦。 20xx 年至 20xx 年文科数学对于立体几何的考查第二问的`设置在前三年都是计算几何体的体积, 20xx 年计算的是线段的长度,这和 20xx 年考试说明的变动有很大的关系, 20xx 年考试说明中最重要的改变是“简单几何体表面积和体积的计算公式要求记忆(之前一直不要求记忆表面积与体积的计算公式)”,也就是说试卷上不再印简单几何体的表面积与体积的计算公式,而当年的考试却避开了对表面积和体积公式的考查,这应该就是对考试说明变动的一种体现。而对线段长度的计算实际上是计算表面积与体积的基础,计算线段长度的重要性也可想而知。所以,对线段长度的计算应该在后期的复习中引起足够重视,要做到让学生心中有数,脑中有方法。另外, 20xx 年的考试说明把中心投影删除,那对平行投影的理解应该会更加重要,所以对平行投影的理解应该在教学过程中加以强调。

理科立体几何的考查也多设置两问,有时也会设置三问。前两问多以证明为主,且通常会设置一个证明垂直的问题,然后利用垂直的关系建立空间直角坐标系,利用空间直角坐标系计算第三问设置的空间角。在利用空间向量计算角时,需要注意三点:一、空间点的坐标,尤其是不在坐标轴上的点的坐标。所以要要求学生多观察,有必要的话可以让学生记忆一些一些特殊位置的点的坐标的特点:如平行平面 XOY 、平面 XOZ 、平面 |YOZ 的点的坐标的特点等。二、平面的法向量是非零向量,有时在计算过程中要多观察,有些平面的法向量,可以利用与平面垂直的直线直接给出。三、向量夹角与空间角的关系。要求学生牢记异面直线直线所成的角、直线与平面所成的角、二面角与向量所成的角的关系。尤其是直线与平面所成的角的正弦等于向量的夹角余弦的绝对值。

总之,立体几何在高考中的考查以 “ 三定观点 ” 统一组织材料,一是 “ 定型 ” 考查,通过三视图、直观图来识图和用图作为空间想象能力考查的开始;二是 “ 定性 ” 考查,以判定定理和性质定理为核心判断线面位置关系进行思维发散考查;三是 “ 定量 ” 考查,以空间角、表面积、体积和高的计算进行思维聚合考查。文理试题坚持以空间想象能力立意,小题注重几何图形构图的想象和辨识,大题以垂直、平行论证为核心,空间角的计算(理科)、体积、表面积的计算(文科),强调空间想象能力在处理问题时的作用。

以上乃敝人愚见,如有不当,请斧正,不胜感激!

立体几何教学反思3

我这节公开课的题目是《立体几何VS空间向量》选题背景是必修2学过立体几何而选修21又学到空间向量在立体几何中的应用。学生有先入为主的观念,总想用旧方法却解体忽视新方法的应用,没有掌握两种方法的特征及适用体型导致做题不顺利。针对此种情况,我特意选了这节内容来讲。

整节课,我是这样设计的。本着以学生为主,教师为辅的这一原则,把学生分成两组。利用学生的求知欲和好胜心强的这一特点,采取竞赛方式通过具体例题来归纳。分析概括两种方法的异同及适用体型。最终让学生在知识上有所掌握。在能力和意识上有所收获。

那么这节课我最满意的有以下几个地方

(1) 学生的参与

这节课的主讲不是我,是学生我要做的是设置问题和激发兴趣。至于整个分析过程和解决过程都是由学生来完成的。这节课二班学生积极参与,注意力集中。课堂气氛活跃学生兴趣浓厚,求知欲强,参与面大,在课堂中能够进行有效的合作与平等的交流。

(2) 学生的创新

这一点是我这节课的意外收获。在求一点坐标时,我用的是投影而该班周英杰同学却利用的是共线,方法简洁,给人以耳目一新的感觉。另外该班的徐汉宇同学在两道中都提出了不同的做法。有其独特的见解。可见学生真的是思考了,我也从中获益不少。真的是给学生以展示的舞台。他回报你以惊喜。

(3) 学生的置疑

林森同学能直截了当的指出黑板上的错误而且是一个我没发现的错误这一点是我没想到的这说明了学生的注意力高度集中.善于观察也说明了我们的课堂比较民主,学生敢于置疑.这种大胆质疑的精神值得表扬.

我不满意的地方有以下几点

(1) 题量的安排

5道题虽然代表不同的`类型. 但从效果上看显得很匆忙.每道题思考和总结的时间不是很长,我觉得要是改成4道题.时间就会充裕效果就会更好些.

(2) 课件的制作

立体几何着重强调的是空间想象力,如果能从多个角度观察图形学生会有不同发现.比如徐汉宇同学的不同做法.需要对图形旋转.如果让他上黑板做图时间又不够.我想不妨让他画好图后用投影仪投到大屏幕上,效果会更好.

(3) 总结时间短

这节课的主题是两种方法的比较和不同方法的适用题型,后来的小结时间不够.这和我设置的容量大.有直接关系.没有突出主题.我想不如直接删掉一道题.空出时间让学生自己谈谈心得体会.自己找找解题规律应该会更好.

以上就是我对这节课的反思.其实我最想说的是我的心路历程.每次上公开课都能发现新问题.正是这些问题使我变得成熟,完善,我很珍惜每一次上公开课的机会.它使我理智的看待自己的教学活动中熟悉的习惯性的行为.使自己的教育教学理念和教学能力与时俱进.

立体几何教学反思4

立体几何是高中数学的重要部分,不断培养学生的空间思维能力、空间想象能力和严密的逻辑推理能力。在实际教学中,由于初、高中思维模式的差别巨大、平面与空间的思维跨度大及学生的学习兴趣取向没有形成等各方面的原因,造成大多学生对立体几何这一门课存在畏惧心理,普遍感到“入门难”!所以上好立体几何第一节课是至关重要的,应着重做好以下工作。

一、注重激发兴趣,渗透情感教育

充分调动学习兴趣,借用平面几何基础、生活实例、实物模型及多媒体等教学手段,充实学生对客观事物(空间图形)的感知,引导从平面向立体转化,为学生进行形象思维创造条件,促使学生建立起一定的空间想象力。上立体几何第一节课,除作了一些必要的.生活铺垫,我即抛出了一个趣味思考题:六根等长木棒任意搭建,最多可得多少正三角形?让学生分组(课前准备好道具)协作构思,极大地调动了学生的参与热情和探求欲望,在学生大多得出正确结果的基础上,用多媒体展示搭建过程,后提炼出“空间中思考问题”的实质,有效地培养了学生的空间思维能力及空间想象能力。

二、注重概念的导入教学,促进空间思维的建立

立体几何是平面几何在空间的延伸,学好平面几何是学好立体几何的基础。学生掌握的平面几何概念(上位学习)对立体几何的学习(下位学习)起着重要的作用:如果上位学习对下位学习产生积极有效的促进作用,在认知心理学上称之为正迁移;如果上位学习对下位学习引起障碍及抑制作用,在认知心理学上称之为负迁移。这种正负迁移在立几概念教学中是难以避免的,甚至可说影响极大。为此在教学法中需努力地防止负迁移,促使正迁移,才能顺理成章地引导学生从平面到空间的过渡,建立正确的空间概念。

三、重概念的表述教学,促进对概念的应用与理解

在立体几何教学中,学生往往会出现:“上课听得懂,而课下题目不会做”的局面,这主要是学生不能正确、合理地使用数学语言将所学概念表达出来的缘故。

数学语言分为文字语言、符号语言、图象语言三种。学好和掌握数学语言,对于掌握概念、理解题意、准确分析推理至关重要。数学文字语言、符号语言、图形语言虽然形式各异,但它们在描述同一概念时其本质属性是相同的。因此它们之间可相互转化。

立体几何教学反思5

今天我上了立体几何后,对这节课有许多的想法。立体几何同学们在前面已经学习过,现在我们是一轮复习。今天,我们复习立体几何,却没有达到我预计的目的,主要表现在以下几个方面:

一、课堂气氛不活跃

立体几何要说难也难,要说简单也简单, 但涉及的知识比较多,定理定义比较多。学生认为立体几何比较难学,原因有这几个方面:(1)他们对三种语言之间的转换不熟练,给出符号语言,他们画不出图形,更不会用文字语言表达。(2)定理、定义记不得。例如证明线面平行,他们就不知道如何下手。(3)不会分析观察图形。给出一个图形,他们不知道怎样观察,如何入手。特别用空间向量来证明立体几何,很多同学建系是错的。所以他们一点兴趣都没有。看着学生上课一副无精打采的样子, 我心里也很着急。这样下去怎么办呢?。

二、没有完成教学目标

我们这节课主要是复习立体几何基础知识及应用。我举例正方体来讲基础知识,我知道正方体学生比较熟悉,而且用空间向量来做也比较容易。在复习时,我坚持由浅入深,循序渐进,逐步提高的原则,学生的确比较感兴趣,也容易理解。但由于在这用时过多,使立体几何的应用没有讲解。

三、没有做到精讲精练

这节课,学生参与课堂教学的机会少,整节课都是自己在台上讲,老师把所有的事情都包办了,使学生的能力得不到提高,约束了学生的`发展。 通过这节课的反思,我知道以后自己要在这几个方面下功夫:(1)充分、认真备课,对学生的学习情况作认真的分析和预测,完成每节课的教学目标。(2)课堂教学中,注重师生互动交流,使学生积极参与学习,注重精讲精练。(3)要谦虚,再谦虚,多向别人请教、共同提高。

立体几何教学反思6

高中数学必修二第二章:点、线、面的位置关系新课内容,估计约占20个课时,并且还经常感觉教学进度较快。回头反思这章的教学过程是必要的,也是重要的,毕竟这章教学的过程中老师们付出了太多的时间及精力,也充分体验了其中的酸甜苦辣。总之,感悟多多,收获也不少。

刚开始对这一章的备课时,在充分阅读并领会了教学参考书之后,我对这章的教学充满了信心及热情。主要原因有:第一,对于教材的处理与新课标理念的理解与教学参考书有诸多一致的地方,第二,对学生及学情渐渐地有了比较全面的了解及把握。

在教学过程中,我倡导“动手实验、直观感知、归纳猜想、操作确认”学习方式,充分体现学生的“主体性”,让学生不断经历“概念及定义的探索及发现过程”,强化生生、师生互动,等等。在这些措施的综合因素之下,有力地降低了学生学习的难度,同时激发了他们的学习兴趣,进而发展了“空间想像、逻辑思维”等能力,学会了“实验、观察、归纳猜想”等数学方法。

随着学习的深入,知识量不断增加,譬如概念、判定及性质定理等。由于刚学习,大多数学生对这些知识理解不够深刻,进而出现了“学习负担明显加重,知识互相混淆,甚至张冠李戴”现象。越到后来,这种现象表现得更加严重,进而不少学生出现了消极情绪及负面心态。

另外,立体几何的一大难点就是“思维证明”,主要原因在于:

①理性思维能力欠缺

②思维品质如严密性、敏捷性、灵活性、发散性等较差

③没有相关的解题经验,缺少可操作性的解题方法、策略及步骤等。

④心理因素,不少同学患有“证明恐惧症”。

尽管新教材在这个方面作出了诸多尝试及努力,大大降低了证明的要求及难度,只须对性质定理及应用给予证明。可是,学习几何,不可能回避“证明”,何况证明对于逻辑思维的训练及发展有相当重要的作用。在学习到平行及垂直性质定理及证明的过程中,从作业反馈及学生建议来看,诸多学生对于证明习题无法入手;有些学生明晰思路,可无法用书面语言加以描述;有些学生书面语言欠缺规范,解题思路混乱,等等,不一而是。

反思:

数学知识具有系统及连续性,作为教师应该在新授课过程中,要随时注意与旧知识的联系,并有意识地复习前面的知识。譬如,在例题、习题的设置过程中,可以设置一些有层次性的'题目,既照顾到旧知识,同时又为新知识的理解及掌握打好良好的基础。

另外,如何突破“数学证明”的难关,目前我总结如下看法:

①重在分析,让学生学会分析

②教师应该做好格式的示范及榜样作用

③引导学生归纳常见证明策略、方法、步骤等

④遵循由易到难原则,设置系列证明习题,强化训练,让学生积累相关的解题经验

⑤当然,几何中的三种语言规范使用是一切几何学习的前提及保证。

最后,感觉内容太多,而课时偏少,很多内容无法展开,进而学生学到的多是表面知识,无法领会知识的核心及精华,在解题中不断遭遇挫折,在挫折中逐步丧失了学习的兴趣及信心。

立体几何教学反思7

新课程标准理念要求教师从片面注重知识的传授转变到注重学生学习能力的培养,教师不仅要关注学生学习的结果,更重要的是要关注学生的学习过程,促进学生学会自主学习、合作学习,引导学生探究学习,让学生亲历、感受和理解知识产生和发展的过程,培养学生的数学素养和创新思维能力,重视学生的可持续发展,培养学生终身学习的能力,因此我们应该更新教育观念,真正做到变注入式教学为启发式,变学生被动听课为主动参与,变单纯知识传授为知能并重。在教学中让学生自己观察,让学生自己思考,让学生自己表述,让学生自己动手,让学生自己得出结论。

立体几何是高中数学相对比较容易的一部分,从目前复习情况来看,学生学不好的原因大致有三个:一是没有建立立体感和空间概念;二是基础知识不牢固;三是表述不规范。以下是我在教学中对如何帮助学生学好立体几何的一些反思:

1、建立空间概念,强化空间思维能力

从认识平面图形到认识立体图形是一次飞跃,要有一个过程。建立空间观念要做到:

(1)重视看图能力的培养:对于一个几何体,可从不同的角度去观察,可以是俯视、仰视、侧视、斜视,体会不同的感觉,以开拓空间视野,培养空间感。

(2)加强画图能力的培养:掌握基本图形的画法;如异面直线的几种画法、二面角的几种画法等等;对线面的位置关系,所成的角,所有的定理、公理都要画出其图形,而且要画出具有较强的立体感,除此之外,还要体会到用语言叙述的图形,画哪一个面在水平面上,产生的视觉完全不同,往往从一个方向上看不清的图形,从另方向上可能一目了然。

(3)加强认图能力的培养:对立体几何题,既要由复杂的几何图形体看出基本图形,如点、线、面的位置关系;又要从点、线、面的位置关系想到复杂的几何图形,既要看到所画出的图形,又要想到未画出的部分。能实现这一些,可使有些问题一眼看穿。

此外,多用图表示概念和定理,多在头脑中“证明”定理和构造定理的“图”,对于建立空间观念也是很有帮助的。

案例一:起始课中注意空间立体感的培养

立体几何第一节课导入部分中,我要求学生共同完成一个任务。首先,用一张纸经过剪裁、折叠做成一个正方体;然后,画出所做的正方体。通过这个任务的完成大大提高了学生的学习兴趣,使学生感悟数学世界的简洁美、和谐美,培养学生审美意识。课后,我留的作业是画可两个课本中你感兴趣的立体图形。进一步帮助学生建立空间立体感。

案例二:游戏中感受数学美

在讲解《空间直线》这节课中我让学生做一个游戏:用一张纸对折,把它看成两个相交平面,我们在这两个平面内各画一条直线,使它们成为:①平行直线;②相交直线;③异面直线。然后画出你做的图形并观察所画直线和两平面交线的关系。游戏中同学们都积极动手、动脑,充分调动学生主观能动性,通过自己的努力认识到3种直线的位置关系,建立空间立体观念,并进而研究三种直线位置关系的画法。

其实在每节课中都能设立这样的`实际操作的问题,并且让同学在自制一些空间几何模型后反复观察,这样有益于建立空间观念。让同学对这些立体图形进行观察、揣摩,并且判断其中的线线、线面、面面位置关系,探索各种角、各种垂线作法,同样也是建立空间观念的好方法。

2、平面几何基础使立体几何学习事半功倍

因为无论什么样的立体几何问题,都是在平面上处理的,因而平面几何知识的掌握与否也影响立体几何的学习。因而在教学过程中要注意对平面几何知识的复习。要让学生在做题时找到所需平面和相应的点、线的位置关系,要把立体问题,转化为平面问题,其实也需要很多经验和技巧,通过多给学生作题,使他们自己慢慢体会。

3、教学中注重“转化”思想的培养

我个人觉得,解立体几何的问题,主要是充分运用“转化”这种数学思想,要明确在转化过程中什么变了,什么没变,有什么联系,这是非常关键的。例如:

(1)两条异面直线所成的角转化为两条相交直线的夹角即过空间任意一点引两条异面直线的平行线。斜线与平面所成的角转化为直线与直线所成的角即斜线与斜线在该平面内的射影所成的角。

(2)异面直线的距离可以转化为直线和与它平行的平面间的距离,也可以转化为两平行平面的距离,即异面直线的距离与线面距离、面面距离三者可以相互转化。而面面距离可以转化为线面距离,再转化为点面距离,点面距离又可转化为点线距离。

(3)面和面平行可以转化为线面平行,线面平行又可转化为线线平行。而线线平行又可以由线面平行或面面平行得到,它们之间可以相互转化。同样面面垂直可以转化为线面垂直,进而转化为线线垂直。

(4)三垂线定理可以把平面内的两条直线垂直转化为空间的两条直线垂直,而三垂线逆定理可以把空间的两条直线垂直转化为平面内的两条直线垂直。

以上这些都是数学思想中转化思想的应用,通过转化可以使问题得以大大简化。

4、教学中注重规范的训练

不少学生对作、证、求三个环节交待不清,表达不够规范、严谨,因果关系不充分,图形中各元素关系理解错误,符号语言不会运用等。这就要求学生在平时养成良好的答题习惯,具体来讲就是按课本上例题的答题格式、步骤、推理过程等一步步把题目演算出来。答题的规范性在数学的每一部分内容的学习中都很重要,在立体几何中尤为重要,因为它更注重逻辑推理。所以要让学生明确几何语言是最讲究言之有据,言之有理。也就是说没有根据的话不要说,不符合定理的话不要说。

至于怎样培养学生证明立体几何问题可从下面两个角度去研究:

(1)把几何中所有的定理分类。按定理的已知条件分类是性质定理,按定理的结论分类是判定定理。

如:平行于同一条直线的两条直线平行,既可以把它看成是两条直线平行的性质定理,也可以把它看成是两条直线平行的判定定理。又如:如果两个平面平行且同时和第三个平面相交,那么它们的交线平行。它既是两个平面平行的性质定理又是两条直线平行的判定定理。

这样分类之后,就可以做到需要什么就可以找到什么,比如:我们要证明直线和平面垂直,可以用下面的定理:

①直线和平面垂直的判定定理

②两条平行垂直于同一个平面

③一条直线和两个平行平面同时垂直

(2)让学生明确自己要做什么。在牢牢地掌握立体几何的概念、定理、法则、公式的基础上,面对一道题一定要让学生知道自己要做什么!不要拿到一道题就盲目地去做。在证明之前就要设计好证明的路线,明确自己的每一步的目的,让学生学会大胆假设,仔细推理。并能再作题过程中强化立体几何的概念、定理、法则、公式的记忆,从而能融会贯通。

立体几何教学反思8

今天我们结束了必修二的第一部分内容立体几何的学习,学生们感觉学的太快了,还没学得多透彻呢就结束了,心里可没底。之所以出现这样的情况,我认为可能有这几方面的原因,一,一些同学一直没有建立起来良好的空间感,二没有找到学习立体几何的方法和方向,三没有形成自己的知识网络,很多东西成散点分布并没有成线连网。所以感觉在解决问题的时候力不从心,无从下手。

其实,任何知识的学习都要遵循知识构建的结构和规律。我们只要循着知识的发展和递进的规律进行学习和感悟总能有所收获。课本的设计就是这样的,采用的是螺旋式上升的方法力图使学生的认识得到上升。只不过很多学生并没有体会到这种思想,没有及时消化和构建知识。

要在教学中做到胸有成竹,有的放矢,我们首先要研究教材,了解课本是如何设计的。必修二整册书以几何为主题,分欧式几何和解析几何两大部分,前者是传统几何学的研究方式,从空间几何体的整体观察入手,认识空间图形,了解简单几何体的结构特征,在此基础上研究其他的组合体,基本方法是:直观感知,操作确认,度量计算。从整体把握完以后再从构成几何体的点,线,面的.位置关系去研究,并用数学语言表述有关平行和垂直的性质和判定,对某些结论进行论证。整个来说就是从整体到局部进行研究。欧式几何把几何和逻辑思想结合起来,用逻辑推理的方法研究几何问题,可以培养学生的空间想象力和逻辑推理能力。后者解析几何是通过坐标系,把几何中的点,直线与代数的基本研究对象数对应起来,建立图形与方程的对应,从而把代数和几何紧密结合起来,用代数的方法解决几何问题,这是数学的巨大进步。

课本的设计是巧妙的,能不能取得较好的教学效果还需要我们师生共同努力去完成。老师有宏观的认识才能影响学生有较高的认识。

立体几何教学反思9

本学期主要复习了立体几何,空间想象一直是学生很头痛的问题。如何把抽象难懂的立体几何变的通俗易懂是困扰老师们已久的问题。下面我谈谈自己的一点体会。

一、排除心理障碍,激发学习兴趣。很多学生认为立体几何难学,存在畏惧心理,信心不足。因此在教学中,把排除心理障碍,激发学习兴趣作为首要任务。

二、从生活中学习数学,认识图形告诉学生,数学源于生活,服务生活。大街小巷,房屋楼群到处都是数学,都是立体几何。让学生留意身边的建筑物,并想象它们的构造。日积月累,便可轻松学好立体几何。

三、利用教具、模具教具模具是实物的`抽象,但比较数学化,它们应该介于生活与数学之间,是帮助学生完成抽象思维和空间想象的桥梁。又可以培养学生的观察能力。敏锐的观察能力是学好数学的重要前提。

四、层次递进,注重基本,不钻难偏由简到繁,注重基本知识和基本图形,使学生感觉有成就感,使学生都有收获。有助于增强学生的信心。

第四篇:立体几何教学反思

立体几何教学反思

篇一:立体几何>教学反思

今天我们结束了必修二的第一部分内容立体几何的学习,学生们感觉学的太快了,还没学得多透彻呢就结束了,心里可没底。之所以出现这样的情况,我认为可能有这几方面的原因,一,一些同学一直没有建立起来良好的空间感,二没有找到学习立体几何的方法和方向,三没有形成自己的知识网络,很多东西成散点分布并没有成线连网。所以感觉在解决问题的时候力不从心,无从下手。

其实,任何知识的学习都要遵循知识构建的结构和规律。我们只要循着知识的发展和递进的规律进行学习和感悟总能有所>收获。课本的设计就是这样的,采用的是螺旋式上升的方法力图使学生的认识得到上升。只不过很多学生并没有体会到这种思想,没有及时消化和构建知识。

要在教学中做到胸有成竹,有的放矢,我们首先要研究教材,了解课本是如何设计的。必修二整册书以几何为主题,分欧式几何和解析几何两大部分,前者是传统几何学的研究方式,从空间几何体的整体观察入手,认识空间图形,了解简单几何体的结构特征,在此基础上研究其他的组合体,基本方法是:直观感知,操作确认,度量计算。从整体把握完以后再从构成几何体的点,线,面的位置关系去研究,并用数学语言表述有关平行和垂直的性质和判定,对某些结论进行论证。整个来说就是从整体到局部进行研究。欧式几何把几何和逻辑思想结合起来,用逻辑推理的方法研究几何问题,可以培养学生的空间想象力和逻辑推理能力。后者解析几何是通过坐标系,把几何中的点,直线与代数的基本研究对象数对应起来,建立图形与方程的对应,从而把代数和几何紧密结合起来,用代数的方法解决几何问题,这是数学的巨大进步。

课本的设计是巧妙的,能不能取得较好的教学效果还需要我们师生共同努力去完成。老师有宏观的认识才能影响学生有较高的认识。

篇二:立体几何教学反思

今天我上了立体几何后,对这节课有许多的想法。立体几何同学们在前面已经学习过,现在我们是一轮复习。今天,我们复习立体几何,却没有达到我预计的目的,主要表现在以下几个方面:

一、课堂气氛不活跃

立体几何要说难也难,要说简单也简单,但涉及的知识比较多,定理定义比较多。学生认为立体几何比较难学,原因有这几个方面:(1)他们对三种语言之间的转换不熟练,给出符号语言,他们画不出图形,更不会用文字语言表达。(2)定理、定义记不得。例如证明线面平行,他们就不知道如何下手。(3)不会分析观察图形。给出一个图形,他们不知道怎样观察,如何入手。特别用空间向量来证明立体几何,很多同学建系是错的。所以他们一点兴趣都没有。看着学生上课一副无精打采的样子,我心里也很着急。这样下去怎么办呢?。

二、没有完成教学目标

我们这节课主要是复习立体几何基础知识及应用。我举例正方体来讲基础知识,我知道正方体学生比较熟悉,而且用空间向量来做也比较容易。在复习时,我坚持由浅入深,循序渐进,逐步提高的原则,学生的确比较感兴趣,也容易理解。但由于在这用时过多,使立体几何的应用没有讲解。

三、没有做到精讲精练

这节课,学生参与课堂教学的机会少,整节课都是自己在台上讲,老师把所有的事情都包办了,使学生的能力得不到提高,约束了学生的发展。通过这节课的反思,我知道以后自己要在这几个方面下功夫:(1)充分、认真备课,对学生的学习情况作认真的分析和预测,完成每节课的教学目标。(2)课堂教学中,注重师生互动交流,使学生积极参与学习,注重精讲精练。(3)要谦虚,再谦虚,多向别人请教、共同提高。

篇三:立体几何教学反思

立体几何作为主干知识之一,知识点包括:与空间结构有关的 2 个图形:直观图和三视图;与计算有关的表面积、体积、空间角和距离;与平面有关的 4 个公理和 1 个定理;与平行与垂直有关的定理。

此篇博客再就立体几何大题的考查为主,做出反思如下:

立体几何大题的考查主要集中在空间位置关系判断,体积计算,空间角和空间几何体高的计算。

文科立体几何的考查在近几年高考试题中通常设置两问,第一问,主要是空间位置判断:线线平行、线面平行、面面平行以及线线垂直、线面垂直、面面垂直的判定,这一问主要考查学生对于平行、垂直相关判定定理与性质定理的掌握,此题比较容易得分,但需要强调学生证明过程的规范性,证明过程中说理的理由要严谨,要做到有据可依且不罗嗦。2009 年至 2012 年文科数学对于立体几何的考查第二问的设置在前三年都是计算几何体的体积,2012 年计算的是线段的长度,这和 2012 年考试说明的变动有很大的关系,2012 年考试说明中最重要的改变是“简单几何体表面积和体积的计算公式要求记忆(之前一直不要求记忆表面积与体积的计算公式)”,也就是说试卷上不再印简单几何体的表面积与体积的计算公式,而当年的考试却避开了对表面积和体积公式的考查,这应该就是对考试说明变动的一种体现。而对线段长度的计算实际上是计算表面积与体积的基础,计算线段长度的重要性也可想而知。所以,对线段长度的计算应该在后期的复习中引起足够重视,要做到让学生心中有数,脑中有方法。另外,2013 年的考试说明把中心投影删除,那对平行投影的理解应该会更加重要,所以对平行投影的理解应该在教学过程中加以强调。

理科立体几何的考查也多设置两问,有时也会设置三问。前两问多以证明为主,且通常会设置一个证明垂直的问题,然后利用垂直的关系建立空间直角坐标系,利用空间直角坐标系计算第三问设置的空间角。在利用空间向量计算角时,需要注意三点:

一、空间点的坐标,尤其是不在坐标轴上的点的坐标。所以要要求学生多观察,有必要的话可以让学生记忆一些一些特殊位置的点的坐标的特点:如平行平面 XOY、平面 XOZ、平面 |YOZ 的点的坐标的特点等。

二、平面的法向量是非零向量,有时在计算过程中要多观察,有些平面的法向量,可以利用与平面垂直的直线直接给出。

三、向量夹角与空间角的关系。要求学生牢记异面直线直线所成的角、直线与平面所成的角、二面角与向量所成的角的关系。尤其是直线与平面所成的角的正弦等于向量的夹角余弦的绝对值。

总之,立体几何在高考中的考查以 “ 三定观点 ” 统一组织材料,一是 “ 定型 ” 考查,通过三视图、直观图来识图和用图作为空间想象能力考查的开始;二是 “ 定性 ” 考查,以判定定理和性质定理为核心判断线面位置关系进行思维发散考查;三是 “ 定量 ” 考查,以空间角、表面积、体积和高的计算进行思维聚合考查。文理试题坚持以空间想象能力立意,小题注重几何图形构图的想象和辨识,大题以垂直、平行论证为核心,空间角的计算(理科)、体积、表面积的计算(文科),强调空间想象能力在处理问题时的作用。

以上乃敝人愚见,如有不当,请斧正,不胜感激!

第五篇:《立体几何》教学反思

《立体几何》是高中数学较难理解的内容之一,就其原因,主要是学生受平面思维的束缚,尚未建立起相应的空间观念,缺乏空间想象能力和逻辑思维能力所致。怎样让学生更好的学好空间几何呢?

一、抓好入门教学,准确、牢固的理解和掌握概念、定理。

1、直观形象的引入观念。

在概念教学中应在对足够的感性材料加以比对、分析和抽象的基础上从感性认识出发引进新概念。如:平面这一概念可借助平静的水面、平板玻璃的表面等这些给我们以平面形象的具体实物来引入。需注意的是,几何中的平面是在空间无限延展的,平静的水面、平板玻璃等只能看做平面的一部分。

2、借助已知概念理解新概念。

如借助直线理解平面,一条直线有两个点在一个平面内,那么这条直线上的所有点都在这个平面内。直线很直,平面必很平,直线无限延长,平面必无限延展。利用学生对直线的认识加深对平面的理解。

3、抓住要点掌握概念。

如二面角的平面角概念教学中应抓住三个要点:(1)顶点必须在棱上;(2)两边分别在两个半平面内;(3)两边必须垂直于棱,再配以相关的图形,学生对这个概念的理解就比较准确了。

4、对比联系记忆概念。

如“不同在任一平面内的两条直线”与“在不同平面内的两条直线”有着本质的差异,前者是异面直线,而后者中的两条直线则有在同一平面内的可能。这样,对比不同的表述。找出其相异点,才能更好的理解记忆所学概念。

5、抓住定理中的关键“字词”。

如在线面垂直的判定定理中,如果一条直线垂直于一个平面内的两条“相交直线”那么线面垂直。“两条”与“垂直”缺一不可,而垂直是否过交点则不必考虑。又如在射影定理中,“从平面外一点向一个平面引垂线段和斜线段”,必须强调“从平面外一点”和“一个平面”,否则会片面得出“射影长相等时斜线也相等”的错误结论。

6、把握实质,概括精髓,加强对定理的记忆。

记得牢才能用的好,如对于三垂线定理和逆定理的记忆,可概括为“影垂则斜垂,斜垂则影垂,又如记忆线面平行的判定定理和性质定理,可概括为”线线平行则线面平行,及线面平行则线线平行。

二、避免常犯错误培养学生的空间想象力。

1、把立体问题当做平面问题来处理。

2、书写不规范,不严谨、不完善。

3、忽视图形的多种可能性。

下载教学立体几何心得5篇word格式文档
下载教学立体几何心得5篇.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    立体几何入门教学之我见

    立体几何入门教学之我见甘肃省康县一中 (746500)杜红全立体几何是研究空间图形的形状、大小和位置关系的一门学科。在教学中,我们发现学生要从平面观念过渡到立体几何观念, 使......

    立体几何专题复习教学设计

    立体几何专题教学设计【考情分析】立体几何主要培养学生的发展空间想像能力和推理论证能力。立体几何是高考必考的内容,试题一般以“两小题一大题或一大题一小题”的形式出现......

    立体几何2018高考

    2018年06月11日青冈一中的高中数学组卷 一.选择题(共11小题) 1.中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图......

    教案 立体几何

    【教学过程】 *揭示课题 9 立体几何 *复习导入 一、点线面的位置关系 1 点与直线的位置关系:Aa Aa 2.点与面的位置关系: A A 3.直线与直线的位置关系:平行 相交 异面 4直线......

    高中立体几何

    高中立体几何的学习高中立体几何的学习主要在于培养空间抽象能力的基础上,发展学生的逻辑思维能力和空间想象能力。立体几何是中学数学的一个难点,学生普遍反映“几何比代数难......

    立体几何复习题

    立 体 几 何 复习题二、垂直关系一、平行关系(1) 线线平行(2)线面平行(3)面面平行证明线线平行的常用方法: 证明线面平行的常用方法: 证明面面平行的常用方法: 练习:1、已知有公共边......

    立体几何复习资料

    立体几何判定方法汇总 一、判定两线平行的方法 1、平行于同一直线的两条直线互相平行 2、 垂直于同一平面的两条直线互相平行 3、 如果一条直线和一个平面平行,经过这条直线......

    立体几何证明题[范文]

    11. 如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=1,D是棱2AA1的中点(I)证明:平面BDC1⊥平面BDC(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比.2. 如图5所示,在四棱锥PAB......