六年级总复习(百分比 比例 相遇 追及问题)

时间:2019-05-14 21:19:16下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《六年级总复习(百分比 比例 相遇 追及问题)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《六年级总复习(百分比 比例 相遇 追及问题)》。

第一篇:六年级总复习(百分比 比例 相遇 追及问题)

相遇问题

【含义】 两个运动的物体同时由两地出发相向而行,在途中相遇。这类应用题叫做相遇问题。【数量关系】 相遇时间=总路程÷(甲速+乙速)总路程=(甲速+乙速)×相遇时间

【解题思路和方法】 简单的题目可直接利用公式,复杂的题目变通后再利用公式。

例1 南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,经过几小时两船相遇?

解 392÷(28+21)=8(小时)答:经过8小时两船相遇。

例2 小李和小刘在周长为400米的环形跑道上跑步,小李每秒钟跑5米,小刘每秒钟跑3米,他们从同一地点同时出发,反向而跑,那么,二人从出发到第二次相遇需多长时间?

解 “第二次相遇”可以理解为二人跑了两圈。因此总路程为400×2 相遇时间=(400×2)÷(5+3)=100(秒)答:二人从出发到第二次相遇需100秒时间。

例3 甲乙二人同时从两地骑自行车相向而行,甲每小时行15千米,乙每小时行13千米,两人在距中点3千米处相遇,求两地的距离。

解 “两人在距中点3千米处相遇”是正确理解本题题意的关键。从题中可知甲骑得快,乙骑得慢,甲过了中点3千米,乙距中点3千米,就是说甲比乙多走的路程是(3×2)千米,因此,相遇时间=(3×2)÷(15-13)=3(小时)两地距离=(15+13)×3=84(千米)答:两地距离是84千米。

追及问题

【含义】 两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体。这类应用题就叫做追及问题。

【数量关系】 追及时间=追及路程÷(快速-慢速)追及路程=(快速-慢速)×追及时间

【解题思路和方法】 简单的题目直接利用公式,复杂的题目变通后利用公式。

例1 好马每天走120千米,劣马每天走75千米,劣马先走12天,好马几天能追上劣马? 解(1)劣马先走12天能走多少千米? 75×12=900(千米)(2)好马几天追上劣马? 900÷(120-75)=20(天)列成综合算式 75×12÷(120-75)=900÷45=20(天)答:好马20天能追上劣马。

例2 小明和小亮在200米环形跑道上跑步,小明跑一圈用40秒,他们从同一地点同时出发,同向而跑。小明第一次追上小亮时跑了500米,求小亮的速度是每秒多少米。解 小明第一次追上小亮时比小亮多跑一圈,即200米,此时小亮跑了(500-200)米,要知小亮的速度,须知追及时间,即小明跑500米所用的时间。又知小明跑200米用40秒,则跑500米用[40×(500÷200)]秒,所以小亮的速度是

(500-200)÷[40×(500÷200)]=300÷100=3(米)答:小亮的速度是每秒3米。

例3 我人民解放军追击一股逃窜的敌人,敌人在下午16点开始从甲地以每小时10千米的速度逃跑,解放军在晚上22点接到命令,以每小时30千米的速度开始从乙地追击。已知甲乙两地相距60千米,问解放军几个小时可以追上敌人?

解 敌人逃跑时间与解放军追击时间的时差是(22-16)小时,这段时间敌人逃跑的路程是[10×(22-16)]千米,甲乙两地相距60千米。由此推知

追及时间=[10×(22-16)+60]÷(30-10)=120÷20=6(小时)答:解放军在6小时后可以追上敌人。

例4 一辆客车从甲站开往乙站,每小时行48千米;一辆货车同时从乙站开往甲站,每小时行40千米,两车在距两站中点16千米处相遇,求甲乙两站的距离。

解 这道题可以由相遇问题转化为追及问题来解决。从题中可知客车落后于货车(16×2)千米,客车追上货车的时间就是前面所说的相遇时间,这个时间为 16×2÷(48-40)=4(小时)所以两站间的距离为(48+40)×4=352(千米)

列成综合算式(48+40)×[16×2÷(48-40)]=88×4=352(千米)答:甲乙两站的距离是352千米。

例5 兄妹二人同时由家上学,哥哥每分钟走90米,妹妹每分钟走60米。哥哥到校门口时发现忘记带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇。问他们家离学校有多远?

解 要求距离,速度已知,所以关键是求出相遇时间。从题中可知,在相同时间(从出发到相遇)内哥哥比妹妹多走(180×2)米,这是因为哥哥比妹妹每分钟多走(90-60)米,那么,二人从家出走到相遇所用时间为 180×2÷(90-60)=12(分钟)

家离学校的距离为 90×12-180=900(米)答:家离学校有900米远。

例6 孙亮打算上课前5分钟到学校,他以每小时4千米的速度从家步行去学校,当他走了1千米时,发现手表慢了10分钟,因此立即跑步前进,到学校恰好准时上课。后来算了一下,如果孙亮从家一开始就跑步,可比原来步行早9分钟到学校。求孙亮跑步的速度。

解 手表慢了10分钟,就等于晚出发10分钟,如果按原速走下去,就要迟到(10-5)分钟,后段路程跑步恰准时到学校,说明后段路程跑比走少用了(10-5)分钟。如果从家一开始就跑步,可比步行少9分钟,由此可知,行1千米,跑步比步行少用[9-(10-5)]分钟。

所以 步行1千米所用时间为 1÷[9-(10-5)]=0.25(小时)=15(分钟)跑步1千米所用时间为 15-[9-(10-5)]=11(分钟)跑步速度为每小时 1÷11/60=5.5(千米)答:孙亮跑步速度为每小时 5.5千米。按比例分配问题

【含义】 所谓按比例分配,就是把一个数按照一定的比分成若干份。这类题的已知条件一般有两种形式:一是用比或连比的形式反映各部分占总数量的份数,另一种是直接给出份数。

【数量关系】 从条件看,已知总量和几个部分量的比;从问题看,求几个部分量各是多少。总份数=比的前后项之和

【解题思路和方法】 先把各部分量的比转化为各占总量的几分之几,把比的前后项相加求出总份数,再求各部分占总量的几分之几(以总份数作分母,比的前后项分别作分子),再按照求一个数的几分之几是多少的计算方法,分别求出各部分量的值。

例1 学校把植树560棵的任务按人数分配给五年级三个班,已知一班有47人,二班有48人,三班有45人,三个班各植树多少棵? 解 总份数为 47+48+45=140 一班植树 560×47/140=188(棵)二班植树 560×48/140=192(棵)

三班植树 560×45/140=180(棵)答:一、二、三班分别植树188棵、192棵、180棵。

例2 用60厘米长的铁丝围成一个三角形,三角形三条边的比是3∶4∶5。三条边的长各是多少厘米? 解 3+4+5=12 60×3/12=15(厘米)

60×4/12=20(厘米)60×5/12=25(厘米)

答:三角形三条边的长分别是15厘米、20厘米、25厘米。

例3 从前有个牧民,临死前留下遗言,要把17只羊分给三个儿子,大儿子分总数的1/2,二儿子分总数的1/3,三儿子分总数的1/9,并规定不许把羊宰割分,求三个儿子各分多少只羊。

解 如果用总数乘以分率的方法解答,显然得不到符合题意的整数解。如果用按比例分配的方法解,则很容易得到

1/2∶1/3∶1/9=9∶6∶2 9+6+2=17 17×9/17=9 17×6/17=6 17×2/17=2 答:大儿子分得9只羊,二儿子分得6只羊,三儿子分得2只羊。

例4 某工厂第一、二、三车间人数之比为8∶12∶21,第一车间比第二车间少80人,三个车间共多少人?

答:三个车间一共820人。

百分数问题

【含义】 百分数是表示一个数是另一个数的百分之几的数。百分数是一种特殊的分数。分数常常可以通分、约分,而百分数则无需;分数既可以表示“率”,也可以表示“量”,而百分数只能表示“率”;分数的分子、分母必须是自然数,而百分数的分子可以是小数;百分数有一个专门的记号“%”。

在实际中和常用到“百分点”这个概念,一个百分点就是1%,两个百分点就是2%。【数量关系】 掌握“百分数”、“标准量”“比较量”三者之间的数量关系: 百分数=比较量÷标准量 标准量=比较量÷百分数

【解题思路和方法】 一般有三种基本类型:(1)求一个数是另一个数的百分之几;(2)已知一个数,求它的百分之几是多少;(3)已知一个数的百分之几是多少,求这个数。

例1 仓库里有一批化肥,用去720千克,剩下6480千克,用去的与剩下的各占原重量的百分之几? 解(1)用去的占 720÷(720+6480)=10%(2)剩下的占 6480÷(720+6480)=90% 答:用去了10%,剩下90%。

例2 红旗化工厂有男职工420人,女职工525人,男职工人数比女职工少百分之几? 解 本题中女职工人数为标准量,男职工比女职工少的人数是比较量 所以(525-420)÷525=0.2=20% 或者 1-420÷525=0.2=20% 答:男职工人数比女职工少20%。

例3 红旗化工厂有男职工420人,女职工525人,女职工比男职工人数多百分之几? 解 本题中以男职工人数为标准量,女职工比男职工多的人数为比较量,因此(525-420)÷420=0.25=25% 或者 525÷420-1=0.25=25% 答:女职工人数比男职工多25%。

例4 红旗化工厂有男职工420人,有女职工525人,男、女职工各占全厂职工总数的百分之几? 解(1)男职工占 420÷(420+525)=0.444=44.4%(2)女职工占 525÷(420+525)=0.556=55.6% 答:男职工占全厂职工总数的44.4%,女职工占55.6%。

例5 百分数又叫百分率,百分率在工农业生产中应用很广泛,常见的百分率有: 增长率=增长数÷原来基数×100% 合格率=合格产品数÷产品总数×100% 出勤率=实际出勤人数÷应出勤人数×100% 出勤率=实际出勤天数÷应出勤天数×100% 缺席率=缺席人数÷实有总人数×100% 发芽率=发芽种子数÷试验种子总数×100% 成活率=成活棵数÷种植总棵数×100% 出粉率=面粉重量÷小麦重量×100% 出油率=油的重量÷油料重量×100% 废品率=废品数量÷全部产品数量×100% 命中率=命中次数÷总次数×100% 烘干率=烘干后重量÷烘前重量×100% 及格率=及格人数÷参加考试人数×100%

第二篇:高三物理教案 追及与相遇问题复习

高三物理教案 追及与相遇问题复习

一、相遇

指两物体分别从相距x的两地运动到同一位置,它的特点是:两物体运动的位移的矢量和等于x,分析时要注意:

⑴、两物体是否同时开始运动,两物体运动至相遇时运动时间可建立某种关系;

⑵、两物体各做什么形式的运动;

⑶、由两者的时间关系,根据两者的运动形式建立位移的矢量方程。

【例1】1999年5月11日《北京晚报》报道了一位青年奋勇接住一个从15层高楼窗口落下的孩子的事迹。设每层楼高是2.8m,这位青年所在的地方离高楼的水平距离为12m,这位青年以6m/s的速度匀速冲到楼窗口下方,请你估算出他要接住小孩至多允许他有的反应时间(反应时间指人从发现情况到采取相应行动经过的时间)。(g取10m/s2)【答案】0.8s

【针对练习1】一人站在离公路h=50m远处,如图所示,公路上有一辆汽车以v1=10m/s的速度行驶,当汽车到A点与在B点的人相距d=200m时,人以v2=3m/s的平均速度奔跑,为了使人跑到公路上恰与汽车相遇,则此人应该朝哪个方向跑?

【答案】此人要朝与AB连线夹角=arcsin(5/6)的方向跑

二、追及

指两物体同向运动而达到同一位置。找出两者的时间关系、位移关系是解决追及问题的关键,同时追及物与被追及物的速度恰好相等时临界条件,往往是解决问题的重要条件:

(1)类型一:一定能追上类

特点:

①追击者的速度最终能超过被追击者的速度。

②追上之前有最大距离发生在两者速度相等时。

【例2】一辆汽车在十字路口等绿灯,当绿灯亮时汽车以3m/s2的加速度开使行驶,恰在这时一辆自行车在汽车前方相距18m的地方以6m/s的速度匀速行驶,则何时相距最远?最远间距是多少?何时相遇?相遇时汽车速度是多大?

【方法提炼】解决这类追击问题的思路:

①根据对两物体运动过程的分析,画运动示意图

②由运动示意图中找两物体间的位移关系,时间关系

③联立方程求解,并对结果加以验证

【针对练习2】一辆执勤的警车停在公路边,当警员发现从他旁边驶过的货车(以8m/s的速度匀速行驶)有违章行为时,决定前去追赶,经2.5s将警车发动起来,以2m/s2的加速度匀加速追赶。求:①发现后经多长时间能追上违章货车?②追上前,两车最大间距是多少?

(2)、类型二:不一定能追上类 特点:

①被追击者的速度最终能超过追击者的速度。

②两者速度相等时如果还没有追上,则追不上,且有最小距离。

【例3】一辆汽车在十字路口等绿灯,当绿灯亮时汽车以3m/s2的加速度开使行驶,恰在这时一辆自行车在汽车后方相距20m的地方以6m/s的速度匀速行驶,则自行车能否追上汽车?若追不上,两车间的最小间距是多少?

【针对练习3】例3中若汽车在自行车前方4m的地方,则自行车能否追上汽车?若能,两车经多长时间相遇?

【答案】能追上。

设经过t追上;则有x汽+x0=x自;

3t2/2+4=6t

得t=(623)/3s,二次相遇

第三篇:应用题--行程问题(相遇,追及问题)

列方程解应用题之

行程问题

教学目的

1.知识与能力: 使学生会分析不同类型的相遇及追及问题中的相等关系,列出一元一次方程解简单的应用题。

2.过程与方法: 使学生加强了解列一元一次方程解应用题的方法步骤。

3.情感态度与价值观: 通过小组合作,加强同学们之间的交流以及团结互助的精神。

教学重点

利用路程、速度、时间的关系,根据相遇及追及问题中的等量关系,列出一元一次方程。

教学难点

寻找相遇及追及问题中的等量关系。教学过程

一、导入

想一想回答下面的问题:

1、A、B两车分别从相距S千米的甲、乙两地同时出发,相向而行,两车会相遇吗?

2、如果两车相遇,则相遇时两车所走的路程与甲、乙两地的距离有什么关系?

3、如果两车同向而行,B车先出发a小时,在什么情况下两车能相遇?为什么?

4、如果A车能追上B车,你能画出线段图吗?

二、例题1

A、B两车分别停靠在相距240千米的甲、乙两地,A车每小时行50千米,B车每小时行30千米。若两车同时相向而行,请问B车行了多长时间后与A车相遇?

三、练习1(1)挖一条长2200m 的水渠,由甲、乙两队从两头同时施工。甲队每天挖 130m,乙队每天挖90m,挖好水渠需要几天?

(2)A、B两车分别停靠在相距115千米的甲、乙两地,A车每小时行50千米,B车每小时行30千米,A车出发1.5小时后B车再出发。

若两车相向而行,请问B车行了多长时间后与A车相遇?

四、例题2

小明每天早上要在7:50之前赶到距离家1000米的学校上学,一天,小明以80米/分的速度出发,5分后,小明的爸爸发现他忘了带语文书,于是,爸爸立即以180米/分的速度去追小明,并且在途中追上他。

(1)爸爸追上小明用了多少时间?(2)追上小明时,距离学校还有多远?

五、练习2(3)A、B两车分别停靠在相距115千米的甲、乙两地,A车每小时行50千米,B车每小时行30千米,A车出发1.5小时后B车再出发。

若两车同向而行(B车在A车前面),请问B车行了多长时间后被A车追上?

(4)小王、叔叔在400米长的环形跑道上练习跑步,小王每秒跑5米,叔叔每秒跑7.5米。(1)若两人同时同地反向出发,多长时间两人首次相遇?(2)若两人同时同地同向出发,多长时间两人首次相遇?

六、归纳总结

1、如何区分相遇问题和追及问题?

2、解行程问题有何诀窍?相遇:相等关系:A车路程+B车路程=相距路程 追及:B车路程=A车先路程+A车后行路程 或B车路程=A车路程+相距路程

3、在列一元一次方程解行程问题时,我们常画出线段图来分析数量关系。用线段图来分析数量关系能够帮助我们更好的理解题意,找到适合题意的等量关系式,设出适合的未知数,列出方程。正确地作出线段图分析数量关系,能使我们分析问题和解问题的能力得到提高。

七、作业布置

导学案106-108练习。

第四篇:运动学——追及与相遇问题

●“运动学”中的追及和相遇问题

1、“匀加速直线运动”追“匀速直线运动”:何时相距最远、何时相遇

2、“匀速直线运动”追“匀加速直线运动”:

处理方法:求出“速度相等”时的时间t,再求出各自的位移,然后利用“位移关系”讨论。

3、“匀速直线运动”追“匀减速直线运动”

三种情况:追上时仍在运动、追上时刚好停止、追上早已停止

处理方法:求出“匀减速物体速度减到0”的时间t,再求出各自的位移,然后利用“位移关系”讨论。

例:A、B两物体相距s=7m,A正以VA=4m/s向右匀速运动,而B此时做VB=10m/s、a=2m/s2的减速运动,问从此时开始经多少时间A追上B。

4、“匀减速直线运动”追“匀速直线运动”

处理方法:求出“速度相等”时的时间t,再求出各自的位移,然后利用“位移关系”讨论

例:汽车正以10m/s的速度在平直公路上前进,突然发现正前方有一辆自行车以4m/s 的速度做同方向的匀速直线运动,汽车立即关闭油门做加速度大小为 6 m/s2的匀减速运动,汽车恰好不碰上自行车、求关闭油门时汽车离自行车多远?

练:经检测汽车A的制动性能:以标准速度20m/s在平直公路上行使时,制动后40s停下来。现A在平直公路上以20m/s的速度行使发现前方180m处有一货车B以6m/s的速度同向匀速行使,司机立即制动,能否发生撞车事故?

第五篇:六年级下册总复习《比和比例》教案

总复习《比和比例》

一、教学目标

1、整理和复习有关比的知识,理解比的意义、性质、比和分数、除法的关系,能正确求比值和化简比。

2、整理和复习有关比例的知识理解比例的意义,正比例、反比例的意义,会判断两种相关量的量之间的比例关系。

3、在解决问题的过程中,体会比和比例在解决问题中作用,从而体会数学的应用价值。

二、教学重难点

教学重点:理解比和比例的意义、性质及其作用,掌握关于比和比例的一些实际运用和计算。

教学难点:能理清知识间的联系与区别,建构起知识网络。

三、教具准备 课件

四、教学过程

一、谈话导入

我们以前学习了比和比例,你知道比和比例的哪些知识呢?今天我们就一起来整理和复习比和比例的知识。

二、互动整理

(一)出示课本第一题

1、生独立完成表格,并举例说明(同桌间互说)

2、那比的基本性质和比例的基本性质各有什么作用?

3、练习

求比值:

2.4:0.8= 化简比:

2:2/3= 解比例:

2/7:x=4:2(二)出示课本第二小题

生独立完成表格,并举例说明(同桌间互说)

(三)你能用基本性质来说下比、分数、除法的联系吗?

生全班交流,总结

(四)你是怎样判断两个相关联的量成正比例关系?还是反比例关系?

正比例: y/x =k(一定)

反比例: xy=k(一定)三:巩固练习

1、判断下面每题中的两种量是否成比例,成什么比例,并说明理由。

圆柱的体积一定,它的底面积和高。()每天生产的服装件数一定,生产的天数和总件数。()被减数一定,减数和差。()每公顷的施肥量一定,公顷数和施肥总量。()

2、化肥厂6天生产化肥420吨,照这样计算,要生产化肥140吨,需要多少天?

3、某人从甲地去乙地,去时每小时行24千米,5小时到,按原路回来时每小时行20千米,几小时到?

四、全课小结

这节课你学会了什么?

下载六年级总复习(百分比 比例 相遇 追及问题)word格式文档
下载六年级总复习(百分比 比例 相遇 追及问题).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    一元一次方程应用题7相遇,追及问题)

    一元一次方程应用题7(相遇、追及问题) 执笔人:彭再荣 审核人:邹伟杰 教学目标 1、 利用路程、时间、速度三者之间的关系,借助化示意图列一元一次方程解以现实为背景的应用题。 2......

    六年级总复习

    六年级总复习一(句子的训练) 1. 改为转述句。 (1).李涛说:“我把衣服洗完再去打球。” (2).李立说:“我要像王丹那样刻苦学习。” (3).王教练关切地对我们说:“你们在游泳的时候,要特别......

    六年级总复习材料(节选)

    六年级总复习材料 第一课:长江之歌 长江:它发源于青藏高原,流经11个省、市、自治区,最后流入东海。 奔:①bēn,奔波;②bèn投奔。 磅:①páng磅礴;②bàng磅秤。 我们赞美长江,你是无......

    比和比例总复习教学设计

    《比和比例》的总复习教学设计 韩愈小学 韩雪芬 教学内容:人教版小学数学第十二册P89内容,复习比和比例意义与性质及实际问题的解决。完成练习十七的第1—5题。教学目标: 1、知......

    六年级工程问题、比和比例A

    六年级工程问题、比和比例测试题(A卷) 1、甲、乙两车往返A、B两地。甲车去时50千米/小时,返回时30千米/小时,乙车往返都是45千米/小时。甲、乙两车往返一次所需时间的比是多少?2......

    相遇问题之整理与复习教案

    《整理与复习——解决问题》 宜宾市中山街小学校张琴 教学内容:西师版教材8册二单元整理与复习(相遇问题) 教学目标:1、能在具体情境中巩固相遇问题的数量关系,并形成解决此类问......

    六年级数学总复习

    填空 1、十八亿四千零五十九万九千八百改写成以亿为单位写作,保留两位小数写作亿,改写成以万为单位写作,保留一位小数写作万。 2、五个个大小相等的正方形,拼成一个长方形,这个长......

    六年级词语总复习

    专项部分 字词一、容易写错的字 壤 浃 赋 渭孰 玫 瑰恒 稚 陵 魁 悼 囫 囵 绚雕摊 恒 惘 舀 吭 唾婪荼哽 翩 汲 瓣 硕 恬 砌吮 腋 卸 嬉 沓 缭鬓殴 佣 搔 蔼 昧 冶窥 二、......