第一篇:1.8六年级数学圆锥的体积练习
3eud教育网 http://www.3edu.net 百万教学资源,完全免费,无须注册,天天更新!
圆椎的体积 ☆知识要点:
1、圆锥的体积计算公式:
圆锥的体积等于和它等底等高的圆柱体积的三分之一.用字母表示
在解题时不要忘掉”,还要注意只有在“等底等高”的情况下,圆锥的体积才等于圆柱的体积的。
2、圆锥的体积和容积的区别与联系:
计算圆锥形容器的容积时,也用体积公式进行计算.但体和容积是不同的概念,体积是指物体所占空间的大小,而容积是指容器所能容纳物体的体积,虽然计算公式一样,但要注意它们的区别.
计算圆锥形容器的容积时,也用体积公式进行计算.但体和容积是不同的概念,体积是指物体所占空间的大小,而容积是指容器所能容纳物体的体积,虽然计算公式一样,但要注意它们的区别.
3、圆柱和圆锥的三种关系:
① 等底等高,体积不等.
圆锥体积等于圆柱的 ② 等底,等体积,高不等,圆柱体积是圆锥的3
圆锥的高是圆柱高的3倍,圆柱高是圆锥的③ 等高,等体积,高不等.
圆柱的底面积是圆锥底面积的
圆锥的底面积是圆柱的底面积的3倍. 利用上面关系,解决下面问题.
例如:等底等高的圆柱体和圆锥体体积之和是 12.56立方厘米,圆柱体积是多少?
3eud教育网 http://www.3edu.net 教学资源集散地。可能是最大的免费教育资源网!3eud教育网 http://www.3edu.net 百万教学资源,完全免费,无须注册,天天更新!
分析:等底等高,圆柱体积等于圆锥体积的3倍.
12.56÷(3+1)×3=9.42(立方厘米)也可以用对应思想去解决此题:
12.56÷(1+)=9.42(立方厘米)
答:圆柱体积是9.42立方厘米.
3eud教育网 http://www.3edu.net 教学资源集散地。可能是最大的免费教育资源网!
第二篇:圆锥的体积8
圆锥的体积
教学内容:九年义务教育六年制小学数学第十二册P29、30 教学目标:
1.通过转化的思想,在实验的基础上使学生理解和掌握圆锥体积公式,能运用公式正确地计算圆锥的体积。
2.培养学生的观察、操作能力和初步的空间观念,培养学生应用所学知识解决实际问题的能力。
3.渗透事物间相互联系的辩证唯物主义观点的启蒙教育。教学重点:通过转化的思想理解和掌握圆锥体积的计算公式。教学难点:理解圆柱和圆锥等底等高时体积间的倍数关系。教学过程:
一、铺垫孕伏
1、提问:
(1)圆柱的体积公式是什么?我们是如何推导的? 圆柱------(转化)------长方体
(2)投影出示圆锥体的图形,学生指图说出圆锥的底面、侧面和高. 2.今天我们要学习圆锥体的体积,同学们觉得用什么方法比较好? 3.同学们觉得把圆锥体转化成什么比较好呢? 圆锥------(转化)------圆柱
学生回忆所学的数学知识中有哪些地方用到了转化的思想。
4导入:同学们,前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积怎样计算呢?这节课我们就来研究这个问题.(板书:圆锥的体积)
二、正确选择、训练直觉思维。
1、教师拿出许多大小不等的圆柱体和圆锥体容器展示给学生。提问:(1)同学们打算如何转化圆柱体和圆锥体之间的关系?
(2)如果让你在这么多的圆柱体和圆锥体中选择两个来探究,你打算选择什么样的圆柱体和圆锥体,说说你选择的理由。
2、在学生讨论的基础上教师强调用等底等高的圆柱体和圆锥体进行讨论。
三、大胆猜想、培养想象能力。
在确定用等底等高的圆柱体和圆锥体进行讨论的基础上教师让学生猜想:等第等高的圆柱体和圆锥体的体积之间到底有什么关系呢?
同学之间互相交流并说明想法。
四、动手实验,得出结论。
为了我们研究圆锥体体积的方便,每个组都准备了一个圆柱体和一个圆锥体。你们小组比比看,这两个形体有什么相同的地方?学生操作比较。
(1)提问学生:你发现到什么?(这个圆柱体和这个圆锥体的形状有什么关系)(学生得出:底面积相等,高也相等。)底面积相等,高也相等,用数学语言说就叫“等底等高”。(板书:等底 等高)(2)为什么?既然这两个形体是等底等高的,那么我们就跟求圆柱体体积一样,就用“底面积×高”来求圆锥体体积行不行?(不行,因为圆锥体的体积小)教师:(把圆锥体套在透明的圆柱体里)是啊,圆锥体的体积小,那你估计一下这两个形体的体积大小有什么样的倍数关系?(指名发言)的水和圆柱体、圆锥体做实验。怎样做这个实验由小组同学自己商量,但最后要向同学们汇报,你们组做实验的圆柱体和圆锥体在体积大小上有什么样的倍数关系。
(3)学生分组做实验。
A.谁来汇报一下,你们组是怎样做实验的?
b.你们做实验的圆柱体和圆锥体在体积大小上发现有什么倍数关系?(学生发言:圆柱体的体积是圆锥体体积的3倍)同学们得出这个结论非常重要,其他组也是这样的吗?
我们学过用字母表示数,谁来把这个公式整理一下?(指名发言)(4)学生操作:出示另外一组大小不同的圆柱体和圆锥体进行体积大小的比较,通过比较你发现什么?
学生回答后,教师整理归纳:不是任何一个圆锥体的体积都是任何一个圆柱体体积的。
(老师拿起一个小圆锥、一个大圆柱)如果老师把这个大圆锥体里装满了沙子,往这个小圆柱体里倒,倒三次能倒满吗?(不能)为什么你们做实验的圆锥体里装满了沙子往圆柱体里倒,倒三次能倒满呢?(因为是等底等高的圆柱体和圆锥体。)呢?(在等底等高的情况下。)(老师在体积公式与“等底等高”四个字上连线。)现在我们得到的这个结论就更完整了。(指名反复叙述公式。)今后我们求圆锥体体积就用这种方法来计算。
思考:要求圆锥的体积,必须知道哪两个条件?(5)单项练习
圆锥的底面积是5,高是3,体积是()
圆锥的底面积是10,高是9,体积是()
五、运用公式,解决实际问题。
1、一个圆锥形沙堆,高是1.5米,底面半径是2米,每立方米沙重1.8吨。这堆沙约重多少吨?
2、选择题。每道题下面有3个答案,你认为哪个答案正确就用手指数表示。
(1)一个圆锥体的体积是a立方米,和它等底等高的圆柱体体积是()
⑴ 立方米 ②3a立方米 ③ 9立方米
(2)把一段圆钢切削成一个最大的圆锥体,圆柱体体积是6立方米,圆锥体体积是()立方米
(1)6立方米(2)3立方米(3)2立方米
3、判断对错,并说明理由.
(1)圆柱的体积相当于圆锥体积的3倍.()
(2)一个圆柱体木料,把它加工成最大的圆锥体,削去的部分的体积和圆锥的体积比是2 :1.()
(3)一个圆柱和一个圆锥等底等高,体积相差21立方厘米,圆锥的体积是7立方厘米.()
六、课堂小结:
通过本节的学习,你学到了什么知识?(从两个方面谈:圆锥体体积公式的推导方法和公式的应用)
七、完成书上练习。1.运用公式完成试一试。
一个圆锥形零件,底面积是170平方厘米,高是12厘米。这个零件的体积是多少立方厘米?
评讲时强调求圆锥体体积时要注意什么。2.学生独立完成30页练一练。3.口答练习八4。
学生口答后进一步强调等底等高的圆柱体和圆锥体体积之间的关系。4.学生在作业本上完成练习八1、2、3 5.同学们自己谈谈学习圆锥体积的收获。
第三篇:8《圆锥的体积练习》教学设计
《圆锥体积的练习》教学设计
张鸿森供稿
【教学内容】《义教课标实验教科书 数学》(人教版)六年级下册P27-28页联系四。
【教学目标】
1、通过练习,进一步掌握圆锥的体积计算方法,能运用公式熟练地计算圆锥的体积。
2、经历练习活动过程,渗透变与不变的数学思想方法。
【教学重点】:熟练、正确地计算圆锥的体积。
【教学难点】:圆锥体积公式的实际应用。【教学准备】:多媒体课件 【自学内容】:见预习作业 【教学预设】
一、基础练习
1、圆锥有什么特征?
2、一个圆锥形的零件,底面积是28.26平方厘米,高9厘米。这个零件的体积是多少?
(1)你是怎样解答的?(2)你是怎么想的?
3、一个圆锥形的零件,底面半径是3厘米,高9厘米。这个零件的体积是多少?
4、一个圆锥形的零件,底面直径是6厘米,高9厘米。这个零件的体积是多少?
5、一个圆锥形的零件,底面周长是18.84厘米,高9厘米。这个零件的体积是多少?
6、仔细观察,上面几个题目有什么相同和不同?
二、对比练习
1、一个圆柱的体积是75.36立方米,与它等底等高的圆锥的体积是()立方米
2、一个圆锥的体积是25.12立方米,与它等底等高的圆柱的体积是()立方米
3、你是怎么想的?你认为应该注意什么?
三、综合练习
1、判断对错,并说明理由。
(1)圆柱的体积相当于圆锥体积的3倍。()
(2)一个圆柱体木料,把它加工成最大的圆锥体,削去的部分的体积和圆锥的体积比是2:1。()
(3)一个圆柱和一个圆锥等底等高,体积相差21立方厘米,圆锥的体积是7立方厘米。()
2、一队煤成圆锥形,底面半径是1.5米,高是1.1米。
听课随想这堆煤的体积是多少?如果每立方米的煤约重1.4吨,这堆煤约有多少吨?(得数保留整数)
4、一个长方体木料的长8厘米、宽9厘米、高12厘米,把这个长方体削成一个最大的圆柱,圆柱的体积是多少立方厘米?
补问:如果再把这个圆柱削成与它等底等高的圆锥,削去部分的体积是多少立方厘米?
追问:你是怎么想的?
四、分享收获 畅谈感想 这节课,你有什么收获?
反思与体会
第四篇:第8课时 圆锥的体积练习课
第一单元
圆柱与圆锥
第8课时
圆锥的体积练习课
教学内容:六年级下册第一单元P12内容
教学目标:
知识与能力:进一步掌握圆柱和圆锥体积的计算方法,能正确熟练地运用公式计算圆锥的体积。
过程与方法:进一步培养学生运用所学知识解决实际问题的能力和动手操作的能力。
情感态度和价值观:进一步熟悉圆锥的体积计算
教学难点:圆锥的体积计算
教学重点:圆锥的体积计算
教
法:引导法
学
法:自主探究
教学过程:
一、基本练习
圆锥体积计算公式
相邻两个面积单位之间的进率是多少?
相邻两个体积单位之间的进率是多少?
二、实际应用
三、作业布置
板书设计
第五篇:六年级数学《圆锥体积》评课稿
六年级数学《圆锥体积》评课稿2篇
六年级数学《圆锥体积》评课稿1高启杰老师上了一节精彩的数学课,让我领略了高老师与六(2)班的小伙伴们的风采,让我获益颇多。
本节课的亮点:
1.本节课有生活中实物(垂线锤)引入,让学生初步感知其体积的大小、用量杯测量体积的方法;再与不能用量杯的方法来测量生活中圆锥形屋顶的体积,产生矛盾,引入探究圆锥体积,暴露学生的思维。
2.圆锥的体积公式推导让学生体验非常深刻:实验中每倒一次水就让学生体验一次圆锥与等底等高的'圆柱体积的关系,逐步感知两者之间的倍数关系。这是本节课最大的亮点。
……
同时也存在一些遗憾:
1.例题中的数据不理想,不便于计算;计算方法比较单一;计算的技巧缺乏指导,比如×31可以与题中数据进行先约分再计算,这样可以使计算方便,提高正确率。
2.练习层次有待调整。
六年级数学《圆锥体积》评课稿2今天听了史老师的圆锥的体积一课,深深地被老师精湛的教学艺术,深厚的教学经验所打动了。
本节课值得学习的地方很多:
1、导入创设的情景,能极大激发学生的学习的欲望。
情景来源于生活,既学生活动可造房子,又与两位教师家孩子有关,学生兴趣盎然。其中的数学问题又与本节学课教学目标紧密联系。起到很好的导入效果。
2、导学问题精炼,适合学生放手展开活动,真正体现在做中学数学的教学理念。
教师为每个组准备了学具,学生都能参与到实验中,印象深刻。
3、展示汇报阶段任然体现学生的主体地位。
操作完毕后,学生加以汇报,把实验过程和发现交代的都很清楚,在这个环节学生还能引发更深层的思考,对老师板书进行质疑补充,充分体现教学中师生关系的民主化。
如:等底等高这一前提条件的引出。接着教师自然而然的让学生又以观察圆柱圆锥的关系,比较他们的底面积和高。这一环节学生对等底等高这一条件理解就更为深刻了。
4、公式的总结在实验和小练习之后,安排较为合理。
实验结束,学生发现等底等高圆柱和圆锥的体积关系后,教师设计了一个小练习看图填空,根据圆柱体积求圆锥体积,根据圆锥体积求圆柱体积,这样独特的设计,方便了更多的学生总结圆锥体积计算公式。
5、练习形式多样,注重算法多样性的指导。
练习的安排,由易到难,先是独立列式计算,我来评评理,然后是直列式不计算,列式过程注重听取不同的方法,拓宽学生的思路。再后来又出现填空判断等练习,综合性较强,加上教师随口编出的练习将知识分数除法联系起来,融会贯通,到此学生对本节知识得以较好的掌握。提升练习为学生联系实际生活理解数学知识在生活中的价值提供了很好的资源。
建议:练习中再多创设一些独立练习的环节,给学困生一思考的空间,也方便教师考查学生当堂的掌握情况。