第一篇:北师大版《小学六年级数学下册第一单元试卷及答案-参考
北北京京全全脑脑通通教教育育滕滕州州分分校校
(北师大版)六年级数学下册第一单元检测试卷 姓名________ 得分________
一、填空:(每题2分,共20分)
1. 一个圆锥底面面积是24厘米,高是5厘米,它的体积是()立方厘米。
2. 一个圆柱体,底面直径和高都是6厘米,它的侧面积是()平方厘米,体积是()立方厘米。3. 一台压路机前轮直径1.5米,轮宽4米,前轮滚动一周,压路的面积是()。4. 一个圆柱和一个圆锥底面积和体积都相等,它们高的比是()。5. 求长方体、正方体和圆柱体的体积都可以用()×()来计算。
6. 把一根长5米,底面半径3厘米的钢条截成4段,表面积将增加()平方厘米。7. 2.4立方分米=()升()毫升
8. 把圆柱的侧面沿高剪开,得到一个(),这个()的长等于圆柱底面的(),宽等于圆柱的(),所以圆柱的侧面积等于()。
9. 一个圆锥的底面周长是12.56厘米,高8厘米,从顶点沿高把它切成相等的两半,表面积增加了()平方厘米。
10.把一个棱长为6厘米的正方体,削成一个最大的圆柱体,这个圆柱体的体积是()立方厘米。
二、判断:(每题2分,共10分)1.圆柱的体积等于圆锥体积的3倍。()2.圆柱体的底面直径是2厘米,高是6.28厘米,它的侧面展开后是一个正方形。()3.一个圆柱的底面半径缩小2倍,高扩大2倍,这个圆柱的体积不变。()4.一个正方体和一个圆柱体的底面积和高都相等,它们的体积也一定相等。()5.如果两个圆柱体的体积相等,那么它们的侧面积也相等。()
三、选择:(每题3分,共15分)
1.做一个圆柱形油桶,至少要用多少平方米铁皮是求它的()。
A、体积 B、侧面积 C、表面积
2.在长4米的圆柱形钢柱上,用一根长31.4分米的铁丝正好沿钢柱绕10圈,这根钢柱的体积是()立方分米。
A、31.4 B、125.6 C、31400
3.一个圆柱的体积是一个等底圆锥体积的6倍,这个圆柱的高是圆锥高的。()
A、6倍 B、3倍 C、2倍
4.把一个圆柱形的材料切削成和它等底等高的圆锥,削去部分的体积是原材料的。()
A、1
3B、3倍 C、23
5.一块圆柱形橡皮泥,能捏成_______个和它等底等高的圆锥形橡皮泥。
A、1 B、2 C、3 D、4
电电话话::00663322--55887799222266
北北京京全全脑脑通通教教育育滕滕州州分分校校
四、求下列图形:(单位:m 每题8分,共16分)
表面积:
体积:
体积:
五、应用题:(共39分)
1.做一个圆柱形无盖铁皮水桶,高6分米,底面直径4分米,至少需要多少平方分米铁皮?(得数保留整平方分米)(7分)
2.一个圆柱形粮仓,底面直径6m,高3m,如果每立方米稻谷重600千克,这个粮仓可装稻谷多少千克?(7分)
3.一个圆锥形容器,底面直径6厘米,高8厘米。如果把这个容器装满水倒入底面半径是2厘米的圆柱形容器,圆柱形容器里的水深是多少厘米?(9分)
4.一个圆柱形汽油桶,从内部量得它的底面半径是4分米,深8分米。如果每升汽油重0.75千克。这个汽油桶可装汽油多少千克?(7分)
5.一个底面直径8厘米,高12厘米的圆柱形杯子,里面装有6厘米深的水。把一个圆锥形铁块放完全浸没在水中,水面上升到离杯口2厘米的地方。这个圆锥形铁块的体积是多少立方厘米?(9分)
电电话话::00663322--55887799222266
第二篇:北师大版六年级下册数学第一单元练习题
一、必记公式(用文字表示)及进率:
圆的面积= 圆的周长= 圆柱的侧面积= 圆柱的表面积= 圆柱的体积=
长方体体积= 正方体体积=
1平方米=()平方分米 1平方分米=()平方厘米 1立方米=()立方分米 1立方分米=()立方厘米
1升=()毫升 1立方分米=()升 1立方厘米=()毫升
二、填空
1.圆柱的()面积加上()的面积,就是圆柱的表面积。
2.把一张边长为5.5厘米的正方形白纸,围成一个圆柱形纸筒,这个纸筒的侧面积是()平方分米。
3.圆的半径是3分米,它的周长是(),面积是()。
4.圆柱的底面直径和高都是10厘米,它的侧面积是(),表面积是()。
5.一个圆柱的侧面展开是一个正方形,这个圆柱体的底面半径和高的最简单整数比是()。
三、应用题
1、一个圆柱形无盖的水桶,底面的直径是0.6米,高是40厘米,做这样一个水桶,需要多少平方米的铁皮?(得数保留整数)
2、一个圆柱形水池,底面内半径是2米,高是1.5米,在池内周围和底面抹上水泥,抹水泥的面积是多少?
3、做5节底面直径是2分米,长8分米的圆柱形通风管,至少需要多少铁皮?
4、某宾馆大堂有6根圆柱形大柱,高10米,大柱周长25.12分米,要全部涂上油漆,如果按每平方米的油漆费为80元计算,需用多少钱?
5、一个圆柱形铁皮盒,底面半径是2分米,高5分米,在这个盒子的侧面帖上商标纸,需多少平方米的纸?
6、一个压路机的滚筒横截面的直径是1米,长是1.8米,转一周能压路多少平方米?如果每分钟转8周,半小时能压路多少平方米?
7、一个圆柱的高减少2厘米侧面积就减少50.24平方厘米,它的体积减少多少立方厘米?
8、一个圆柱的高增加3分米,侧面积就增加56.52平方分米,它的体积增加多少立方分米?
9、一个圆柱的侧面展开是一个正方形。如果高增加2厘米,表面积增加12.56平方厘米。原来这个圆柱的侧面积是多少平方厘米?
10、一个圆柱的侧面展开是一个正方形。如果高减少3分米,表面积减少94.2平方分米。原来这个圆柱的体积是多少立方分米?
11、把一个高是6分米的圆柱,沿着底面直径竖直切开,平均分成两半,表面积增加48平方分米。原来这个圆柱的体积是多少立方分米?
12、把两个完全一样的半个圆柱合并成一个圆柱,底面半径是3厘米,表面积减少72平方厘米。现在这个圆柱的侧面积是多少平方厘米?
13、把一个长3分米的圆柱,平均分成两段圆柱,表面积增加6.28平方分米。原来这个圆柱体积是多少立方分米?
14、把3完全一样的圆柱,连接成一个大圆柱,长9厘米,表面积减少12.56平方分米。原来每个圆柱的体积是多少立方厘米?
15、一个正方体棱长是4分米,把它削成一个最大的圆柱,削去的体积是多少?
16、一个正方体棱长是20厘米,把它削成一个最大的圆柱,这个圆柱的表面积是多少平方厘米?
17、一个长方体,长8分米,宽8分米,高12分米。把它削成一个最大的圆柱,这个圆柱的体积为多少立方分米?
18、一个圆柱体的高和底面周长相等。如果高缩短2厘米,表面积就减少12.56平方厘米,求这个圆柱的表面积。
19、一个长方形的长是5厘米,宽是2厘米,以其中的一条边为轴旋转一周,可以得到一个圆柱,圆柱体积最大是多少立方厘米?
20、、一根圆柱形木材长2米,把它截成相等的4段后,表面积增加了18.84平方厘米。截成后每段圆木的体积是多少立方厘米?
21、底面直径是20厘米的圆钢,将其截成两段同样的圆钢,两段表面积的和为7536平方厘米,原来圆钢的体积是多少立方厘米?
22、把一根圆柱形木材沿底面直径切开成两个半圆柱体,已知一个剖面的面积是960平方厘米,半圆柱的体积是3014.4立方厘米,求原来圆柱形木材的体积和侧面积。
23、把一个圆柱的底面平均分成若干个扇形,然后切开拼成一个近似的长方体,表面积比原来增加了200平方厘米。已知圆柱高20厘米,求圆柱的体积。
24、把一个正方体削成一个体积最大的圆柱体。如果圆柱的侧面积是314平方厘米,求正方体的表面积。
第三篇:北师大版六年级数学下册第一单元教案
一、圆柱和圆锥
一、单元教学目标 知识目标:
1.经历由面旋转成体的过程,认识圆柱和圆锥的基本特征,知道圆柱和圆锥各部分的名称。
2.通过观察、动手操作等,初步体会点线面体之间的关系,发展空间观念。
3.结合具体情境和操作活动,探索并掌握圆柱表面积的计算方法,并能解决生活中一些简单的问题。
3.结合具体情境和操作活动,了解圆柱和圆锥体积(包括容积)的含义,探索并掌握圆柱和圆锥体积的计算方法,能解决一些简单的实际问题。
4.经历类比验证说明的探索圆柱、圆锥体积的计算方法的过程,体会类比、转化等思想,初步发展推理能力。
情感目标:
1.在数学学习活动中获得成功的体验,建立学习数学的自信心。2.形成进行质疑和独立思考的习惯
二、单元教学重难点 教学重点:
圆柱和圆锥的认识,圆柱的表面积与体积公式推导与应用,圆锥的体积公式推导与应用。教学难点:
圆柱的表面积与体积公式推导与应用
三、教学措施
1.培养学生在四人学习小组中发表意见,讨论,交流,倾听的能力,学会合作。2.培养学生用规范的数学语言表述和分析数学现象。3.继续培养学生学会倾听、独立思考的好习惯。
四、课时安排:
面的旋转、圆柱和圆锥的认识(2课时)圆柱的表面积:(2课时)圆柱的体积(2课时)圆锥的体积(2课时)练习一(2课时)实践活动(1课时)机动一课时
第一课时:面的旋转
教学内容:圆柱、圆锥的特征。圆柱、圆锥各部分的名称。教学目标: 1.知识目标:
使学生认识圆柱的特征,认识圆柱侧面的展开图。2.能力目标:
使学生认识圆柱和圆锥,掌握他们的形体特征,了解圆柱、圆锥各部分名称。3.情感目标:
学会与他人合作,能交流各自的思维过程和结果。
教学准备:教师与学生每人带一个圆柱,教师给学生每4人小组发一个纸制的圆柱。每位学生准备好制作圆柱的材料。教学重点:使学生认识圆柱的特征。
教学难点:理解圆柱侧面展开是长方形,并理解长与宽与圆柱之间的关系。教学方法:情境设疑法 教学过程: 基本练习。设疑自探 活动一
如图:将自行车后轮架支起,在后车车条上系上彩带。转动后车轮,观察并思考彩带随着车轮转动后形成的图形是什么?
学生根据发现的现象(彩带随着车轮的转动形成了圆)说明自己的想法,并体验:点动成线
活动二
观察下面各图,你发现了什么?
学生发现:
风筝的每一个节连起来看,形成了一个长方形;雨刷器扫过后形成一个半圆形 学生体验:线动成面
活动三
如图:用纸片和小棒做成下面的小旗,快速的旋状小棒,观察并想象旋转后形成的图形,再连一连。
1、学生实际动手操作,然后根据想象的图形连线
1——1(圆柱)
2——3(球)
3——4(圆锥)
4——2(圆台)
2、介绍:圆柱、圆锥、球的名称。并请学生根据自己的观察介绍一下这几个立体图形的特点。指名请学生说。
小结:我们学过的长方体、正方体都是由平面围成的立体图形,今天我们学习的圆柱、圆锥和球也是立体图形,只是与长方体、正方体不同,围成的图形上可能有曲面。
活动四:找一找
请你找一找我们学过的立体图形
三、解疑合探
圆柱与圆锥有什么特点?和小组的同学互相说一说
圆柱:有两个面是大小相同的圆,有另一个面是曲面。圆锥:它是由一个圆和一个曲面组成的。
四、质疑再探
圆柱的上下两个面叫做底面,它们是完全相同的两个圆。圆柱有一个曲面,叫做侧面。圆柱两个底面之间的距离叫做高。
圆锥的底面是一个圆。圆锥的侧面是一个曲面。从圆锥顶点到底面圆心的距离是圆锥的高。(教师画出平面图进行讲解。并在图上标出各部分的名称。)
五、拓展运用
1. 找一找,下图中哪些部分的形状是圆柱或者圆锥?
再和同学们说一说生活中哪些物体的形状是圆柱或者圆锥的。
2. 下面图形中是圆柱或圆锥的在括号里写出图形的名称,并标出地面的直径和高。
3. 想一想,连一连
4. 应用题
六、板书
七、课后反思 作业设计:
第二课时:圆柱的表面积(1)
教学内容:圆柱的表面积、侧面积的计算。教学目标: 1.知识目标:
使学生理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法。并根据圆柱的表面积与侧面积的关系使学生学会运用所学的知识解决简单的实际问题。2.能力目标:
使学生能运用侧面积、表面积的计算方法解决一些有关的实际问题。3.情感目标:
经历数学活动,丰富对圆柱体的认识,建立初步的空间观念,发展形象思维。
教具准备:圆柱形的物体,圆柱侧面的展开图。
教学重点:运用侧面积公式、表面积公式进行计算。教学难点:侧面积公式的推导过程。教学方法:自学探究法 教学过程:
一、基本练习
1.指名学生说出圆柱的特征。2.质疑
怎样推倒圆柱的侧面积呢?
二、设疑自探
拿出圆柱体茶叶罐,谁能说说圆柱由哪几部分组成的?想一想工人叔叔做这个茶叶罐是怎样下料的?(学生会说出做两个圆形的底面再加一个侧面)那么大家猜猜侧面是怎样做成的呢?(说说自己的猜想)
三、解疑合探
研究圆柱侧面积
1、独立操作:利用手中的材料(纸质小圆柱,长方形纸,剪刀),用自己喜欢的方式验证刚才的猜想。
2、观察对比:观察展开的图形各部分与圆柱体有什么关系?
3、小组交流:能用已有的知识计算它的面积吗?
4、小组汇报。(选出一个学生已经展开的图形贴到黑板上)
重点感受:圆柱体侧面如果沿着高展开是一个长方形。(这里要强调沿着高剪)这个长方形与圆柱体上的那个面有什么关系?(长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高)
长方形的面积=圆柱的侧面积即 长×宽 =底面周长×高,所以,圆柱的侧面积=底面周长×高
S 侧 == C × h 如果已知底面半径为r,圆柱的侧面积公式也可以写成:S侧=2∏r×h 如果圆柱展开是平行四边形,是否也适用呢?
学生动手操作,动笔验证,得出了同样适用的结论。(因为刚才学生是用自己喜欢的方式剪开的,所以可能已经出现了这种情况。此时可以让已经得出平行四边形的学生介绍一下他的剪法,然后大家拿出准备好的圆柱纸盒用此法展开)
研究圆柱表面积
1、现在请大家试着求出这个圆柱体茶叶罐用料多少。
学生测量,计算表面积。
2、圆柱体的表面积怎样求呢?
得出结论:圆柱的表面积 = 圆柱的侧面积+底面积×2
3、动画:圆柱体表面展开过程
四、质疑再探
五、拓展运用
1、填空
圆柱的侧面沿着高展开可能是()形,也可能是()形。第二种情况是因为()
2、要求一个圆柱的表面积,一般需要知道哪些条件()
3、试一试。
六、板书
圆柱体的表面积
圆柱的侧面积 = 底面周长×高 → S侧=ch
↓
↑
↑
长方形 面积 = 长
× 宽
圆柱的表面积 = 圆柱的侧面积+底面积×2 作业设计:
第三课时:圆柱的表面积(2)
教学目标: 1.知识目标:
通过圆柱切分和拚合的练习,使学生进一步加深对圆柱的特征认识,掌握圆柱体表面积变化的规律。2.能力目标:
能根据具体的情境,灵活地运用表面积的计算方法解决生活中一些简单的实际问题。3.情感目标:
通过回忆、讨论和交流,结合练一练,加深对所学知识的理解,提高掌握水平。
教学重点:掌握求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。教学难点:圆柱表面积的实际应用。
教学方法:指导练习、巩固交流 教学过程:
一、基本练习
说说计算方法
二、实际应用
求压路的面积是求什么?
说自己的想法,独立解答。
三、实践活动
第四课时:圆柱的表面积(3)
教学内容:圆柱侧面积、表面积的计算及解决有关问题 教学目标:
1、知识目标
进一步理解圆柱体侧面积和表面积的含义。
2、能力目标
掌握求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。3情感目标
通过回忆、讨论和交流,结合练一练,加深对所学知识的理解,提高掌握水平。教学重点:掌握求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。教学难点:圆柱表面积的实际应用。
教学方法:指导练习、巩固交流 教学过程 :
1、实际应用 1、2、3、教后反思
作业设计:
第五课时:圆柱的体积(1)
教学内容:圆柱的体积计算方法。教学目标: 1.知识目标:
通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式;使学生理解圆柱的体积公式的推导过程,能够运用公式正确地计算圆柱的体积。2.能力目标:
能运用圆柱体积计算方法,解决有关的实际问题,发展实践能力。3.情感目标:
能积极参与圆柱体积计算方法的推导的活动,能有条理地清晰地阐述活动过程。教学重点:能够正确计算圆柱体体积
教学难点:圆柱体体积公式的推导过程。
教具准备:圆柱的体积公式演示教具(把圆柱底面平均分成16个扇形,然后把它分成两部分,两部分分别用不同颜色区别开)。
教学方法:讲解法、教具操作法 教学过程:
复习引新
1.求下面各圆的面积(回答)。
(1)r=1厘米;(2)d=4分米;(3)C=6.28米。
要求说出解题思路。
2.想一想:学习计算圆的面积时,是怎样得出圆的面积计算公式的?指出:把一个圆等分成若干等份,可以拼成一个近似的长方形。这个长方形的面积就是圆的面积。
3.提问:什么叫体积?常用的体积单位有哪些? 4.已知长方体的底面积s和高h,怎样计算长方体的体积?(板书:长方体的体积=底面积×高)
二、设疑自探
1. 根据学过的体积概念,说说什么是圆柱的体积。(板书课题)2. 怎样计算圆柱的体积呢?我们能不能根据圆柱的底面可以像上面说的转化成一个长方形,通过切、拼的方法,把圆柱转化为已学过的立体图形来计算呢,现在我们大家一起来讨论。
三、解疑合探
公式推导。(有条件的可分小组进行)(1)请同学指出圆柱体的底面积和高。
(2)回顾圆面积公式的推导。(切拼转化)(3)探索求圆柱体积的公式。
根据圆面积剪、拼转化成长方形的思路,我们也可以运用切拼转化的方法把圆柱体变成学过的几何形体来推导出圆柱的体积计算公式。你能想出怎样切、拼转化吗?请同学们仔细观察以下实验,边观察边思考圆柱的体积、底面积、高与拼成的几何形体之间的关系。教师演示圆柱体积公式推导演示教具:把圆柱的底面分成许多相等的扇形(数量一般为16个),然后把圆柱切开,照下图拼起来,(图见教材)就近似于一个长方体。可以想象,分成的扇形越多,拼成的立体图形就越接近于长方体。
(4)讨论并得出结果。
你能根据这个实验得出圆柱的体积计算公式吗?为什么?让学生再讨论:圆柱体通过切拼,圆柱体转化成近似的长方体。这个长方体的底面积与圆柱体的底面积 相等,这个长方体的高与圆柱体的高相等。因为长方体的体积等于底面积乘以高,所以,圆柱体的体积计算公式是:圆柱的体积=底面积×高(板书:圆柱的体积=底面积×高)用字母表示:(板书:V=Sh)(5)小结。
圆柱的体积是怎样推导出来的?计算圆柱的体积必须知道哪些条件?
四、质疑再探
审题。提问:你能独立完成这题吗?指名一同学板演,其余学生做在练习本上。集体订正:列式依据是什么?应注意哪些问题?最后结果用体积单位)教学“试一试”
小结:求圆柱的体积,必须知道底面积和高。如果不知道底面积,只知道半径r,通过什么途径求出圆柱的体积?如果知道d呢?知道C呢?知道r、d、C,都要先求出底面积再求体积。
五、拓展运用
六、课堂小结
这节课学习了什么内容?圆柱的体积怎样计算,这个公式是怎样得到的?指出:这节课,我们通过转化,把圆柱体切拼转化成长方体,(在课题下板书:圆柱些长方体)得出了圆柱体的体积计算公式V=Sh。
七、板书:
作业设计:
第六课时:圆柱的体积(2)
教学内容:圆柱体容积的概念及计算方法。教学目标: 1.知识目标:
使学生理解物体容积的概念。2.能力目标:
使学生进一步掌握求圆柱体积的计算方法,并能正确计算圆柱体的容积。3.情感目标:
进一步丰富对圆柱的认识,提高空间观念。教学重点:灵活运用公式解决问题 教学方法:实验探究法 教学过程:
一、基本练习
二、实际应用
说解题思路
说说你的解题思路
这道题的注意的地方:单位的统一
说说哪个体积大?为什么?
上升的2厘米是什么
分别说说表面积和体积的计算方法。
三、实践活动
第七课时:圆柱的体积(3)
教学内容:圆柱体表面积与体积的计算。教学目标: 1.知识目标:
使学生进一步熟练掌握求圆柱的表面积和体积的方法,并能根据实际情况运用公式解决一些实际问题。2.能力目标:
进一步掌握圆柱表面积、体积的计算方法,能正确运用圆柱体积计算公式解决生活中的实际问题。
3.情感目标:
让学生在独立思考的基础上进行合作交流,在解决实际问题的过程中巩固所学知识,加深对圆柱表面积、体积和容积的含义的理解。教学重点:灵活运用公式解决问题 教学方法:巩固练习。教学过程:
一、判断:
1、求长方体、正方体、圆柱体的体积都可以用底面积乘高的计算方法。
2、圆柱体的底面扩大3倍,高扩大2倍,体积扩大6倍
3、当一个圆柱体的底面周长和高相等时,沿着高线将圆柱体切开,这时这个侧面展开是一个正方形。
二、求圆柱体的体积和表面积(略)
三、投影(图)
四、解答应用题
五、作业 教后反思:
作业设计:
第八课时:圆锥的体积(1)
教学内容:圆锥体积的计算方法。
教学目标: 1.知识目标:
培养学生空间观念,建立立体图形意识,认识圆锥 2.能力目标:
能运用圆锥体积的计算方法,解决有关的实际问题,增强学生的应用意识。3.情感目标:
能积极参加实验活动,对周围环境中与圆锥有关的某些事物具有好奇心 教学重点:认识圆锥的特征 教学难点:空间观念的培养。教具学具: 教具:(1)铅笔、卷笔刀(2)圆锥体、圆 柱体教具各1个(3)大三角板一个 学具:(1)圆锥体实物(2)纸做的圆锥体、圆柱体模型各1个(3)小刀、绳子、直尺、剪刀
教学方法:讲解法、教具操作法、实验法等 教学过程:
一、基本练习
二、设疑自探
1、出示一支圆柱形铅笔,问:这是什么形体?你能说说圆柱体各部分的名称和它的特征吗? 生述
2、问:把这支铅笔横截成两段,各是什么形体?
猜一猜,把它放进卷笔刀卷一卷,会出现什么形体?生述完后师操作,出现一个圆锥体。这就是我们这堂课要学习的内容,板书课题:圆锥的认识。看了课题后,你想学习什么?
三、解疑合探
放手寻找圆锥体各部分名称。(1)联系实际举例。
师问:日常生活中,你见过哪些物体是圆锥形的?(2)引导观察特征 取出圆锥体学具,问:
我们要进一步认识圆锥,可以用哪些方法?(看一看,摸一摸)请大家看一看,摸一摸圆锥,你发现了什么?说给同桌听。让一生上来指,回答后师板书: 顶点:1个 侧面(曲面)面:2个 底面(圆)
同桌互指互说一遍。认识圆锥的高
(1)显示两个圆锥一个高、一个低,问:观察这两个圆锥,你发现了什么?(高、低不同)是由圆柱的什么决定的? 下面我们来研究圆锥的高。你想知道什么?(什么是圆锥的高?圆锥有几条高?在哪里?怎么画等)请同学们带着这些问题来自学课本。(2)讨论交流
A.什么是圆锥的高? B.①拿出一个捏成圆锥体的橡皮泥,这条高在圆锥的哪里?看见吗?指母线,这条是不是圆锥的高? ②利用手中的工具,四人小组合作找出圆锥的高.(工具:小刀、绳子)③交流汇报:
生汇报用小刀把圆锥切开,师问:切时要注意什么?这样切可以吗?显示斜切的过程,为什么?(和底面不垂直)这样切可以吗?显示沿着底面直径的平行线切的过程,为什么?(没有从顶点出发,找不到圆心)拉时要注意什么?(跟底面直径垂直)
C.通过操作,你能再来用自己的话说说什么是圆锥的高?圆锥的高有几条?为什么? D.在下发的练习纸上的立体图上画高,标上字母h。
3、测量圆锥的高(1)我们在一个可切开的圆锥体上找到了它的高,那么在一些不可切的物体上怎样找到它的高,并知道高是多少呢?同桌互相商量一下,利用手中的工具,互相配合着试试看,量出圆锥体学具的高,有困难的可以看书本。(2)操作
(3)汇报测量的步骤及测量结果。
师问:其实,同学们手中的圆锥高度都是一样的,为什么测量结果不太一致呢?你认为测量时要注意什么?
(圆锥平板必须放平、刻度处理、尺子必须竖直等)
4、认识圆锥侧面展开图
让学生把圆锥体学具侧面剪开,问:侧面展开是什么形状?(扇形)
四、质疑再探
想象,对圆柱有一个完整的认识。出示直角三角板:握住一个角的顶点旋转一周,会形成一个什么形体?三角形的三条边分别是圆锥体的什么?
四、拓展运用
1、找一找,哪些图形是圆锥体,哪些物体是由圆锥体和其它物体组成的?
2、判断
(1)圆锥有无数条高()
(2)圆锥的底面是一个椭圆()
(3)圆锥的侧面是一个曲面,展开后是一个扇形()
(4)从圆锥的顶点到底面上任意一点的连线叫做圆锥的高()
3、同桌交流说说圆柱和圆锥的特征,并比较它们的相同点和不同点。指名回答后,整理入下表:
五、总结
这节课我们学习了什么?除了上面表中的一些内容外,你还学到了什么知识?你还学到了什么本领?你还想了解有关圆锥的哪些知识?
六:作业:到生活中去找更多的圆锥形状的物体。
七、板书设计
作业设计:
第九课时:圆锥的体积(2)
教学内容:圆锥体积计算的巩固练习教学目标: 知识目标
进一步掌握圆柱和圆锥体积的计算方法,能正确熟练地运用公式计算圆锥的体积。能力目标 进一步培养学生运用所学知识解决实际问题的能力和动手操作的能力。
情感目标
进一步熟悉圆锥的体积计算
教学难点:圆锥的体积计算 教学重点:圆锥的体积计算 教学方法:指导练习教学过程:
一、基本练习圆锥体积计算公式
相邻两个面积单位之间的进率是多少? 相邻两个体积单位之间的进率是多少?
二、实际应用
占地面积是求得什么?
三、实践活动
教后反思:
第十课时:练习一(1)
教学内容:圆柱表面积与体积、圆锥的体积计算 教学目标: 1、知识目标
能在老师指导下,进行单元知识整理。加深理解和掌握圆柱和圆锥体积计算公式的推导,联系前面所学有关内容,形成有关体积计算的知识结构。2、能力目标
会应用公式熟练进行计算,独立解决一些实际问题。掌握一定的问题解决策略。3、情感目标
通过本课教学,培养学生主动学习的良好品质,开发学生智力,发展创造思维。教学重点:会应用公式熟练进行计算,独立解决一些实际问题。教学方法:回顾整理、练习巩固 教学过程:
一、进行知识整理。
回忆公式
二、针对性练习。
一个圆柱和一个圆锥等底等高,体积和是48立方厘米,圆柱体()把一个圆柱削成一个最大的圆锥,削去18立方厘米,圆柱体积是()
圆柱的体积是和它等底等高的圆锥体积的()圆锥的体积是和它等底等高的圆柱体积的()圆柱的体积比和它等底等高的圆锥体积多()圆锥的体积比和它等底等高圆柱的体积少()三.选择题:
1、一个圆柱体,侧面展开图是正方形,它的边长是18.84厘米,它的底面半径是()厘米。A 0.3 B 10 C 3 D 6
2、一个圆柱和一个圆锥的底相等,体积也相等.圆柱的高是1.2分米,圆锥的高是()分米.A 0.4 B 3.6 C 1.2 D 0.6
4、学校修建一个圆形喷水池,容积是37.68立方米,池内直径是4米,.那么这个水池深()米.A 2 B 3 C 0.6 D 5 四.求下组合体的体积:(单位:厘米)五.应用题:(第(1)8分,其它每题7分,共29分)1.一根空心钢管长2米,内直径是10厘米,外直径是20厘米,如果每立方厘米的钢材重7.8克,这根钢管重多少千克? 2.把圆柱体铁块熔制成一个圆锥体铁块,已知圆柱的底面半径是2厘米,高是3厘米,熔制成圆锥的底面半径是3厘米.那么圆锥的高是多少?
三、全课小结。
第十一课时:练习一(2)
教学内容:圆柱、圆锥的体积计算,直柱体体积计算方法,体积、底面积及高的关系等。教学目标: 1、知识目标
使学生能综合运用所学知识与技能解决有关问题。2、能力目标
会应用公式熟练进行计算,独立解决一些实际问题。掌握一定的问题解决策略。3、情感目标
通过本课教学,培养学生主动学习的良好品质,开发学生智力,发展创造思维。教学重点:会应用公式熟练进行计算,独立解决一些实际问题。教学方法:综合练习教学过程:
一、复习:
提问:
1、圆柱与圆锥的体积公式是什么?
2、填空
(1)一个圆锥体积是与它等底等高的圆柱体积的();(2)圆柱的体积相当于和它等底等高的圆锥体积的();
(3)把一个圆柱削成一个最大的圆锥,削去的部分的体积相当于圆柱体积的(),相当于圆锥体积的()。
二、课堂练习
1、求圆锥体积
(1)底面积是12平方厘米,高是6厘米(2)底面半径是6厘米,高是4厘米(3)底面直径是10厘米,高是12厘米
(4)底面周长是18.84厘米,高是3.5厘米。
2、计算容积
(1)一个圆锥形沙滩,底面半径是1.5米,高4.5分米,用这推沙子铺一个长5米,宽2米的沙坑.沙坑的沙子厚多少厘米?
(2)一个圆锥形的麦堆,量得底面直径是4米,高是1.5米。按每立方米小麦重740千克,这堆小麦约重多少千克?
三、作业:5、6、7题。作业设计:
第十二课时:机动1课时
第一单元反思:
第四篇:小学六年级数学下册第三单元试卷(本站推荐)
六年级数学下册第三单元试卷
一、我会填。(20分)
1、0.4∶2化成最简整数比是()∶()
2、把0.5×80=4×10改写成比例式,可能是()。
3、如果3x=4y,那么x:y=():()。
4、圆的半径和周长成()比例。
5、在一张精密零件图纸上(比例尺为5∶1),量得零件长40毫米,这零件实际长()。
6、在一个比例式中,两个比的比值等于2,比例的外项为1.4和5,这个比例式是()。
7、甲、乙两地相距100千米,在一幅地图上量得两地距离是10厘米,这幅地图的比例尺是(),如果甲、乙两地的距离在地图上量得是20厘米,那么甲、乙两地的实际距离是()千米。
8、在一个比例尺里,两个外项的积是最小合数,一个内项是8,另一个内项是()。
9、在比例35:10=21:6中,如果将第一个比的后项增加30,第二个比的后项应该加上()才能使比例成立。
二、我会判断。(对的画 √,错的画 ×,共10分)
1、比例尺只有数值比例尺。()
2、如果4b=5a,那么a:b=4:5()
3、在比例里,两个内项和外项的积的比值一定是1。()
4、分数值一定,分子和分母成正比例关系。()
5、比的前项和后项同时乘上同一个数,比值不变。()
6、平行四边形的面积一定,它的底和高成正比例。()
7、零件总数一定,已生产的零件和还要生产的零件个数成反比例。()
三、我会选。(10分)
1、在100克水中放2克盐,盐与盐水的比是()。
A、1:50B、1:51C、50:1D、51:12、被减数一定,减数与差()。
A、成反比例B、成正比例C、不成比例
3、在比例尺是8:1的图纸上量的一个零件的长度是12厘米,这个零件实际长()。
A、1.5 厘米B、0.96米C、9.6厘米
4、比例尺是1:500000,表示实际距离是图上距离的()。
A、1/500000B、500000 倍C、5倍
5、在一幅地图上,用20厘米的线段表示30千米的实际距离,那么这幅地图的比例尺是()。
A、1∶1500B、1∶15000C、1∶150000D、1∶15000006、表示c和a成反比例关系的式子是()。
A、c+a=0B、ca=15C、c= a7、两个正方形的棱长之比是1 :2,那么,它们的体积之比是()。
A、1∶2B、1∶4C、1∶8D、1∶168、甲数比乙数多80%,乙数与甲数的比是()。
A、5∶4B、4∶5C、9∶5D、5∶94、一辆汽车要从甲地开往乙地,2小时行了1605、食堂里的一批煤,如果每天烧0.6吨,可以烧千米,照这样的速度,再行3小时能到达乙地。24天;如果每天少烧0.12吨,这批煤可以烧多甲、乙两地相距多少千米?(用比例方法解答)少天?(两种方法解答)(6分)
(6分)
第五篇:北师大版小学六年级数学第一单元测试题
测 试 题
一.填一填,你能行!
1.把圆柱的底面平均分成许多(偶数个)相等的扇形,然后切开,拼成一个近似的长方体,这两个立体图形()不变,长方体的体积等于(),所以圆柱的体积公式是()。
2.用一张长15cm,宽12cm的长方形纸围成一个圆柱,这个圆柱的侧面积是()cm²。
3.一个圆柱和一个圆锥的底面积相等,高也相等,那么圆锥的体积是圆柱体积的()。
二.想一想,下判断,你真棒!
1.圆柱的侧面展开图不可能是平行四边形。()
2.圆锥的体积是圆柱体积的三分之一。()
3.一个圆柱的高扩大2倍,底面积缩小½,它的体积不变。()
4.两个圆柱的侧面积相等,它们的体积也一定相等。()
三.善运用,解问题,成功属于你!
1.一个圆柱形油桶,底面直径0.6米,高1米,制作这个油桶,至少用铁皮多少平方米?这个油桶的容积是多少升?
2.一个直角三角形,以6cm的直角边所在的直角线为轴旋转后是()体?并计算出它的体积。