第一篇:课堂教学中关于数学思想方法的思考
课堂教学中关于数学思想方法的思考
一、对教材的思考
简算是小学数学运算中重要的学习内容,但是我们现在使用的京版教材中,没有安排加法的交换律和结合律。乘法的交换律和结合律只是通过教材中的知识窗进行了介绍。而加法的交换律和结合律以及乘法的交换律、结合律是小学阶段重要的运算定律,是学习简算的重要依据。教材在1-4册有这方面的渗透,我认为还需要总结提升出来。这个想法也是源于我校的校本教研。前年四年级的马红梅老师教学乘法分配律的时候,想把加法交换、结合律、乘法交换、结合律以及减法的性质都复习一下,结果发现孩子这部分知识没学过,于是一通恶补,老师和学生都叫苦不迭。于是我们的校本教研工作室对简算的教学知识进行了梳理,归纳了小学阶段的简算类型、常用方法以及简算依据,明确了每种简算类型出现在哪个年级。
简算方法:凑、分、合、转、变、略、消、估、找基准数、分组等。方法依据:
1、积、商不变规律;
2、加法的交换律、结合律;
3、乘法的交换律、结合律、分配率;
4、减法的性质;
5、除法的性质;
同时针对四年级简算出现的这种情况,校本教研工作室研究决定在三年级补充进去加法和乘法的交换律、结合律以及减法性质。
二、对本节课的思考
加法交换律和乘法交换律对三年级学生来讲比较简单,因为学生在一、二年级也有了大量的感性认识,本节课用语言概括表述及用字母表示加法交换律和乘法交换律并不困难。因此,我把这节课的教学目标确定了三点:
1、使学生理解掌握加法交换律和乘法交换律,并会用字母表示
2、让学生经历观察、概括、猜想、验证的过程,体验学习数学、探索数学规律的方法和策略
3、在探索规律的过程中,渗透归纳猜想法和变与不变的数学思想方法 重点是归纳猜想思想方法的教学。
三、为何把数学思想方法作为教学重点
我国传统的数学教学重视基础知识和基本技能的教学,但数学思想方法是数学的灵魂,却恰恰是我们所忽视的,薄弱的。有人说:“如果将学生的数学素质看作一个坐标系,那么数学知识、技能就好比横轴上的因素,而数学思想方法就是纵轴的内容。”
一位日本数学家说:“学生们在初中或高中所学习的数学知识,在进入社会后,几乎没有机会应用,因而这种作为知识的教学,通常在迈出校门后不到一两年就忘掉了。然而不管他们从事什么业务工作,那种铭刻于头脑中的数学精神和数学思想方法,却长期地在他们的生活和工作中发挥着重要作用。”
如今各国都比较重视数学思想方法的教学,美国把数学思想方法作为五条课程标准之一,俄罗斯把数学思想方法做为三条课程标准之一,我国的课程改革也开始重视数学思想方法的教学。
我国的《数学课程标准》呈现出以下八个特点:
1、把“现实数学”作为课程标准的一项内容
2、把“数学化”作为课程标准的一个目标
3、把“再创造”作为数学教育的一条原则
4、把“问题解决”作为数学教学的一种模式
5、把“数学思想方法”作为课程体系的一条主线,提出基本的数学思想方法有观察法、模型方法、分类法、归纳猜想法、演绎法等。
6、把“数学活动”作为数学课程的一个方面
7、把“合作交流”堪称学生学习的一种方式
8、把“现代信息技术”作为学生学习数学的一种工具
应该说,现在我们的数学教学已经开始越来越关注数学思想方法,但在我们的课堂教学中体现还很不够。
四、如何加强数学思想方法教学
(一)什么是数学思想方法:
所谓的数学思想,是指人们对数学理论与内容的本质认识。
所谓的数学方法,就是解决数学问题的方法,也可以说是解决数学问题的策略。
数学思想是宏观的,它更具有普遍的指导意义。而数学方法是微观的,它是解决数学问题的直接具体的手段。一般来说,前者给出了解决问题的方向,后者给出了解决问题的策略。但由于小学数学内容比较简单,知识最为基础,所以隐藏的思想和方法很难截然分开,更多的反映在联系方面,其本质往往是一致的。所以小学数学通常把数学思想和方法看成一个整体概念,即小学数学思想方法。
数学思想和数学方法之间既有区别又有联系。首先,两者都是以一定得数学知识为基础,反过来又促进数学知识的深化和数学能力的转化。其次,两者具有的抽象概略程度不同,表现出互为表里的关系。一方面,数学方法应受到数学思想的指引,是数学思想在数学活动的反映和表现,变现性是外显;另一方面,数学思想是相应数学方法的结晶和升华,表现为内隐。也就是说,数学思想往往带有理论性的特征,而数学方法具有实践性的倾向。他们紧密联系在一起,一般来说,强调指导思想的时候就称数学思想,强调操作过程的时候就说数学方法,人们在数学学习和研究活动中,很难把思想和方法严格区分开,所以常常统称为数学思想方法。同一数学成就,当用它去解决别的问题时就成为数学思想。例如,在解决平行四边形面积计算公式问题时,就用转化的方法,把平行四边形通过剪、拼等转化成学习过的长方形来解决,这时我们就说用“转化方法”,但当评价和讲座转化方法的价值时,我们又发现转化不仅可以用来解决平行四边形的面积建模,三角形、体形、圆面积、圆柱体积等的建模都可以,而且加法可以转化成乘法,两位数乘法可以转化为一位数乘法,小数除法可以转化为整数除法、比可以转化为除法或分数等等,于是,转化方法就具有了思想的价值了,就是转化思想了。很多时候,我们笼统地说数学思想方法。)
(二)如何落实数学思想方法教学
1、把数学思想方法的教学列为教学的一项目标
2、挖掘教材中蕴含的数学思想方法。
有专家对人教版小学数学教材和现代小学数学教材的数学思想方法进行了统计: 人教版小学数学教材数学思想方法频数分布表
数学思想方法频数数学思想方法频数分类方法数学模型方法58数形结合方法23抽象概括方法16归纳猜想方法11完全归纳法50类比法7不完全归纳法23比较法75化归方法27观察法65公式法27 现代小学数学教材数学思想方法频数分布表数学思想方法
频数数学思想方法频数分类方法36数学模型方法79数形结合方法93抽象概括方法58归纳猜想方法67完全归纳法61类比法21不完全归纳法75比较法86化归方法64观察法76公式法79特殊化方法15演绎法11坐标法27 可以看出,小学数学教材中蕴含这丰富的数学思想方法。数学思想方法大体上分为三种类型:(1)宏观性思想方法
包括抽象概括、化归方法、数学模型、数形结合方法、归纳猜想方法等。(2)逻辑思维方法
包括演绎法、分类方法、完全归纳法、不完全归纳法、观察法、类比法等。(3)操作技巧思想方法
包括比较法、公式法、特殊化法、坐标化法等。
从统计结果来看,在小学阶段出现频数最多的思想方法有:数形结合方法、抽象概括、数学模型、化归方法、不完全归纳法、归纳猜想法。因此,我们在教学时要充分挖掘教材中蕴含的数学思想方法,把它作为我们的教学任务之一。
(三)常见的几种数学思想方法
1、数形结合方法:
数形结合方法我们比较熟悉,一方面抽象的数学概念,复杂的数量关系,借助图形使之直观化、形象化、简单化。另一方面复杂的形体可以用简单的数量关系表示。华罗庚有这样一句话:“数无形时少直觉,形少数时难入微”,形象生动地说明了数形结合的必要性。教材当中数形结合的思想方法很多,:(1)以形辅数:比如借助线段图、树形图、集合图来分析理解数量关系,解决实际问题(植树问题),借助线段图来解答应用题是典型的数形结合,再比如我们将植树问题时,画图帮助孩子理解两端都植、一段植一段不植、两端都不植,形象直观;比如在数轴上表示分数、正负数,点与数相对应;比如学习分数的意义、分数基本性质时、分数加减法时借助图形帮助理解;(2)以数助形:如较复杂的平面或空间图形问题,可运用数量关系、公式、法则、计算等手段,使之转化为简单的数量关系来处理。
2、数学模型思想:
数学模型,一般是指用数学语言、符号或图形等形式来刻画、描述、反映特定的问题或具体事物之间关系的数学结构。小学数学中的数学模型,一般表现为数学的概念、法则、公式、性质、数量关系等。数学模型具有一般化、典型化和精确化的特点。
比如:探索发现规律就是发现数学模型;九九乘法表的规律、分数表的规律;正反比例;用字母表示数;循环赛问题;搭配问题、分数的初步认识等;
3、化归方法:
把有可能解决的或未解决的问题,通过转化过程,归结为一类以便解决可较易解决的问题,以求得解决,这就是“化归”。
有时我们称为转化方法。匈牙利著名数学家路莎˙彼得以生动的比喻对这种思维方式作了如下风趣的描述:有人提出了这样一个问题:“假设在你面前有煤气灶、水龙头、水壶和火柴,你想烧开水,应当怎样去做?”对此某人回答说:“在壶中灌上水,点燃煤气,再把壶放到煤气灶上。”提问者肯定了这一回答;但是,他又追问道:“如果其它的条件都没有变化,只是水壶中已经有了足够多的水,那你又应当怎样去做?”这时被提问者往往会很有信心地说:“点燃煤气,再把水壶放到煤气灶上。”但是,提问者指出,这一回答并不能使他满意,因为,更好的回答应当是:“只有物理学家才会这样做,而数学家们则会倒掉壶中的水,并声称我把后一问题化归为前面所说的问题了。”路莎˙彼得在这里说的就是化归方法。听起来很好笑,但是这正是数学家思维方式的一个特色——变形、转化,华罗庚称之为“退”。把“壶中的水倒掉”,就是把一个新问题化归为旧问题,从而利用旧知知识来解决新问题。例如:平面图形的面积:平行四边形面积、梯形面积、圆周长和圆面积;立体图形体积:圆柱体积;异分母分数的计算;一些应用题等。
4、对应思想方法 对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。
如直线上的点(数轴)与表示具体的数是一一对应。
5、假设思想方法
假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。比如鸡兔同笼问题。
6、符号化思想方法
用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。比如用字母表示数,表示定律、公式等。
7、极限思想方法:
事物是从量变到质变的,极限方法的实质正是通过量变的无限过程达到质变。例如“圆的面积和周长”,“化圆为方”“化曲为直”的极限分割思路,在观察有限分割的基础上想象它们的极限状态,这样不仅使学生掌握公式还能从曲与直的矛盾转化中萌发了无限逼近的极限思想。
8、归纳猜想
运用归纳法,得出对一类现象的某种一般性认识的一种推测性的判断,称为归纳猜想方法。
归纳猜想的思维步骤为:特例——归纳——猜想——验证 本节课我主要渗透的是归纳猜想的思想方法。以加法和乘法的交换律这一知识为载体,通过举例,让学生观察归纳出交换律,继而进行进一步的猜想,再举例验证,得出结论。在这个过程中,除了运用不完全归纳法,还渗透了一种反例反驳的方法,通过反例证明猜想错误,让学生明白,猜想通过验证,有时候是正确的,有时候是错误的。
之所以最后归纳总结出归纳猜想法,也是遵循了一个“化隐为显”的原则。因为数学思想方法是隐含在数学知识背后的,如果不是有意识地、有目的地把数学思想方法作为教学内容,那么学生常常只注意到处于表层的数学知识,而注意不到处于深层的思想方法。因此,进行数学思想方法教学时应该以数学知识为载体,把隐藏在知识背后的思想方法显示出来,使之明朗化,才能达到教学之目的。当然,数学思想方法的教学也不能一蹴而就,要循序渐进。
第二篇:浅谈如何在课堂教学中有效渗透数学思想方法
浅谈如何在课堂教学中有效渗透数学思想方法
数学概念、法则、公式、性质等知识都明显地写在教材中,是有“形”的;而数学思想方法却隐含在数学知识体系里,是无“形”的,并且不成体系地散见于教材各章节中,教师讲不讲、讲多讲少,随意性较大,常常因教学时间紧而将它作为一个“软任务”挤掉,对于学生的要求是能领会多少算多少。因此,作为教师首先要更新观念,从思想上不断提高对渗透数学思想方法重要性的认识,把掌握数学知识和渗透数学思想方法同时纳入教学目的,把数学思想方法教学的要求融入备课环节。在小学阶段,数学思想方法主要有符号化思想、数形结合思想、化归思想、推理思想、变换(转化)思想、分类思想、集合思想、极限思想、方程函数思想、模型思想、对应思想、统计与概率思想等。小学数学教学内容,贯穿着两条主线,第一条是数学基础知识,第二条是数学思想方法,数学基础知识是明线,用文字的形式写在教材里了,反映了知识之间的纵向联系。数学思想方法是暗线,反映知识之间的横向联系,需要老师在教材中加以分析。数学史本身就蕴涵一些重要的数学思想和方法。例如:向学生介绍十进制计数法的由来,介绍祖冲之关于圆周率的探索史等让学生了解数学知识产生的背景和发展的过程,知道来龙去脉,也就把握了知识本源和数学思想方法。一 通过挖掘教材体验数学思想方法。
小学教材中数学思想方法呈现隐蔽形式,教师要认真分析和研究教材,理清教材的体系和脉络,统揽教材全局,高屋建瓴,建立各类概念、知识点之间的联系,归纳和揭示其蕴含在数学知识中的数学思想方法。极限思想在教材中有许多地方渗透,如在“自然数”、“奇数”、“偶数”这些概念教学时,教师可让学生体会自然数是数不完的,奇数、偶数的个数有无限多个,初步体会“极限”思想。在循环小数这一部分内容,在教学l÷3=0.333……是一循环小数,它的小数点后面的数字是写不完的,是无限的。在直线、射线、平行线的教学时,可让学生体会线的两端是可以无限延长的。再如,在“圆的面积”这节中圆面积的求法:先把圆分成相等的两部分,再把两个半圆分成若干等分,然后把它剪开,再拼成近似于长方形的图形。如果把圆等分的份数越多,拼成的图形越接近于长方形。这时长方形的面积就越接近圆的面积了。这部分内容应让学生体会到这是一种用“无限逼近”的方法来求得圆面积的,也就是验极限思想的运用。
二、通过教学过程渗透数学思想方法。
如果在学生获得知识和解决问题的过程中能有效地引导学生经历知识形成的过程,让学生在观察、实验、分析、抽象、概括的过程中看到知识负载的方法、蕴涵的思想,那么,学生所掌握的知识就是鲜活的,可迁移的,学生的数学素质才能得到质的飞跃。如,在“面积与面积单位”一课教学中,当学生无法直接比较两个图形面积的大小时,引进“小方块”,并把它一个一个地铺在被比较的两个图形上,这样,不仅比较出了两个图形的大小,而且,使两个图形的面积都得到了“量化”。使形的问题转化为数的问题。在这一过程中,学生亲身体验到“小方块”所起的作用。接着又通过“小方块大小必须统一”的教学过程,使学生深刻地认识到:任何量的量化都必须有一个标准,而且标准要统一。很自然地渗透了“单位”思想。
三、通过解决实际问题应用数学思想方法。
在教学中,要鼓励学生应用数学知识去分析和解决生活中的实际问题,引导学生抽象、概括,建立数学模型,探求问题解决的方法,使学生进一步体验数学思想方法。例:生活中“付整找零”的生活原型是学生熟悉的事例。教学中创设情景:小明的爸爸原来有325 元钱,这个月又可以领到298元奖金,让学生扮演爸爸和发奖人,发奖人给爸爸3张100元的,爸爸要找回2元。把这样的生活原型提炼为数学模型,编成应用题,学生在计算325+298时,用325+298=325+300-2,从而明白“多加要减”的算理。象这样从学生熟悉的“常识”上升为“数理”就是一个建模的过程。再如教学“三角形”时,教师创设小明上学的情境,出示图例:小明家和学校、商店、邮局形成两个三角形,让学生在情境中初步感知小明走中间这条路上学是最近的,使学生产生探究其原因的欲望。接着让学生在教师提供的4根小棒(4cm、5cm、6cm、10cm)中任选三根摆三角形。学生通过操作发现,能摆成三角形的是:5cm、6cm、10cm和4cm、5cm、6cm,不能摆成三角形的是:4cm、5cm、10cm和4cm、6cm、10cm。让学生通过观察、猜测、验证,从而归纳出“三角形任意两边之和大于第三边”的结论。
四、通过归纳总结提炼数学思想方法。
在课堂教学小结、单元复习时,适时对某种数学思想方法进行概括和强化,不仅可以使学生从数学思想方法的高度把握知识的本质和内在的规律,而且可使学生逐步体会数学思想方法的精神实质。现行小学数学教材内容,许多知识都可以用化归思想方法思考。如:几何教学中运用变换思想,将原图形通过割补、分割、平移、翻折等途径加以“变形”,把未知的面积计算问题转化成已知图形的面积计算问题,可使题目变难为易,求解也水到渠成。小学课本中,除了长方形的面积计算公式之外,其他平面图形的面积计算公式都是通过变换原来的图形而得到的。例如,平行四边形通过割补、平移转化成长方形,三角形和梯形也都可以转化成平行四边形来求出面积。圆也可以通过分割转化成长方形。利用这些图形变换,从而概括出结论。小这里的归纳,不仅使每个学生明确了不同图形面积计算的相应方法,而且领悟到了还有比计算公式更重要的东西。那就是:把新知转化为旧知,再利用旧知解决新知的化归思想方法。
总之,在我们日常教学中,只要认真发掘教材内容中隐含的数学思想方法,把它渗透到自己的备课中,渗透到学生思维过程中,渗透到知识形成的过程中,渗透到课堂小结中,渗透到学生作业中,使学生在探究学习中渗透数学思想方法,在操作中亲身经历、感受、理解、掌握和领悟数学思想方法,才能真正地让数学思想方法在与知识能力形成的过程中共同生成。
第三篇:关于小学数学教学中渗透数学思想方法的思考
关于小学数学教学中渗透数学思想方法的思考
三明市列东小学 王家琦
一、数学教学中渗透数学思想方法的必要性
数学思想方法是指数学思想和数学方法两个方面。数学思想是数学活动的基本观点,而数学方法则是在数学思想指导下,为数学活动提供思路和逻辑手段以及具体操作原则的方法。所以说,数学思想方法以数学知识为载体,是数学知识发生过程中的提炼、抽象、概括和升华,是对数学规律更一般的认识。
数学思想方法和数学知识相比,知识的有效性是短暂的,思想方法的有效性却是长期的,能够使人“受益终生”。布鲁纳指出,掌握基本数学思想和方法能使数学更易于理解和记忆,领会基本数学思想和方法是通向迁移大道的“光明之路”。事实上,数学思想方法不但对学生学习具有普遍的指导意义,而且有利于学生形成科学的思维方式和思维习惯,为将来从事科学研究和参加社会实践打下良好基础。因此,向学生渗透一些基本的数学思想方法,是数学教学改革的新视角,是进行数学素质教育的突破口,是未来社会的要求和 国际数学教育发展的必然结果。
二、小学数学教学中应渗透哪些数学思想方法
古往今来,数学思想方法不计其数,每一种数学思想方法都闪烁着人类智慧的火花。一则由于小学生的年龄特点决定有些数学思想方法他们不易接受,二则要想把那么多的数学思想方法渗透给小学生也是不大现实的。因此,我们应该有选择地渗透一些数学思想方法。笔者认为,以下几种数学思想方法学生不但容易接受,而且对学生数学能力的提高有很好的促进作用。
1、化归思想
化归思想是把一个实际问题通过某种转化、归结为一个数学问题,把一个较复杂的问题转化、归结为一个 较简单的问题。应当指出,这种化归思想不同于一般所讲的“转化”、“转换”。它具有不可逆转的单向性。例1 狐狸和黄鼠狼进行跳跃比赛,狐狸每次可向前跳4 米,黄鼠狼每次
233可向前跳2 米。它们每 秒种都只跳一次。比赛途中,从起点开始,每隔12 48米设有一个陷阱,当它们之中有一个掉进陷阱时,另 一个跳了多少米?
这是一个实际问题,但通过分析知道,当狐狸(或黄鼠狼)第一次掉进陷阱
13时,它所跳过的距离即是它每次所跳距离4(或2)米的整倍数,又是陷
243133阱间隔12 米的整倍数,也就是4 和12 的“ 最小公倍数”(或2 和8284312 的“最小公倍数”)。针对两种情况,再分别算出各跳了几次,确定谁先掉
8入陷阱,问题就基本解决了。上面的思考过程,实质上是把一个实际问题通过分析转化、归结为一个求“最小公倍数”的问题,即把一个实际问题转化、归结为一个数学问题,这种化归思想正是数学能力的表现之一。
2、数形结合思想
数形结合思想是充分利用“形”把一定的数量关系形象地表示出来。即通过作一些如线段图、树形图、长 方形面积图或集合图来帮助学生正确理解数量关系,使问题简明直观。
例2 一杯牛奶,甲第一次喝了半杯,第二次又喝了剩下的一半,就这样每次都喝了上一次剩下的一半。甲五次一共喝了多少牛奶?
11111此题若把五次所喝的牛奶加起来,即++++就为所求,但这
2481632不是最好的解题策 略。我们先画一个正方形,并假设它的面积为单位“1”,由1图可知,1-就为所求,这里不但向学生渗透了数形结合思想,还向学生渗32透了类比的思想。(如上图)
3、极限思想
可以这样理解,如果一个无穷数列,当它的项数无限增大或减小时,这个数列中的项无限趋近了某一个常数,这个常数就是这一无穷数列的极限。如在《庄子·天下篇》中,有“一尺之棰,日取一半,万世不竭”的说法。用通俗的话讲,就是有一根一尺长的棒,第一天取棒的一半,第二天取剩下的一半的一半,这样取下去,这一根棒是永远取不尽的。我们小学数学中,也存在着许多极限思想。如最大的自然数,最小的小数等。谈及这些,主要是达到将极限思想扩展到生活以及生活中的学习和认识的目的,这才真正达到极限思想的实质。
4、统计思想
统计思想要求学生养成一定的搜集、整理的意识和进行简单发现、推论的能力。反映在日常数学教学中,即加大调查课、实践课的力度,培养学生良好的自学习惯和合作意识,使学生在搜集、整理和归类、推理中形成良好的统计意识。
此外,还有符号思想、对应思想、集合思想、函数思想等,在小学数学教学中都应注意有目的、有选择、适时地进行渗透。
三、小学数学教学应如何进行数学思想方法的渗透
从教材的构成体系来看,整个小学数学教材所涉及的数学知识点汇成了数学结构系统的两条“河流”。一条是由具体的知识点构成的易于被发现的“明河流”,它是构成数学教材的“骨架”;另一条是由数学思想方法构成的具有潜在价值的“暗河流”,它是构成数学教材的“血脉”灵魂。有了这样的数学思想作灵魂,各种具体的数学知识点才不再成为孤立的、零散的东西。因为数学思想能将“游离”状态的知识点(块)凝结成优化的知识结构,有了它,数学概念和命题才能活起来,做到相互紧扣,相互支持,以组成一个有机的整体。可见,数学思想是数学的内在形式,是学生获得数学知识、发展思维能力的动力和工具。数学思想是教材体系的灵魂,是我们进行教学设计和教材重组的指导思想。所以,小学数学教学中进行数学思想方法的渗透,具体表现在教师在更新观念,从思想上不断提高对渗透数学思想方法重要性的认识的基础上,把掌握数学知识和渗透数学思想方法同时 纳入教学目的,把数学思想方法教学的要求融入备课环节;同时,要深入钻研教材,努力挖掘教材中可以进行数学思想方法渗透的各种因素,对于每一章每一节,都要考虑如何结合具体内容进行数学思想方法渗透,渗透哪 些数学思想方法,怎么渗透,渗透到什么程度,应有一个总体设计,提出不同阶段的具体教学要求。比如,函数思想中的“变与不变”在小学低中高年级渗透的程度因学生的年龄特征和接受水平各异。低年级只要求学生能够联系生活,认识到相关联的三个量,其中一种量不变,另外两种量发生相反或相同的增减变化即可;中年级则在低年级已知的基础上,进一步认识一种量不变,另外两种量发生成倍相反或相同的变化,但不一定要求对这不同类型的“变与不变”进行深度辨析;高年级则要求学生进入深度辨析阶段,从比例关系上区分“变与不变”的差异。也就是说,数学思想的渗透是随着学生已有知识经验的积累、能力的提高逐步加深的。
四、小学数学教学中加强数学思想方法的渗透应注意些什么
1、把握渗透的规律性,为学生营造广阔的探索空间。
数学思想方法的教学必须通过具体的教学过程加以实现。因此,必须把握好教学过程中进行数学思想方法 教学的契机——概念形成的过程,结论推导的过程,方法思考的过程,思路探索的过程,规律揭示的过程等;要注意有机结合、自然渗透,要有意识地潜移默化地启发学生领悟蕴含于数学、知识之中的种种数学思想方法,切忌生搬硬套、和盘托出、脱离实际等适得其反的做法。一般在小学阶段,采取小组合作的形式,利用学生熟悉的生活挖掘素材,加之多媒体的教学手段,使学生在动手操作、讨论、发现中形成一定的数学思想,符合规律探索的一般过程,比较合理。
2、注重渗透的反复性,为学生提供楼梯式实践的舞台。
数学思想方法是在启发学生思维过程中逐步积累和形成的。为此,在教学中,首先要特别强调解决问题以 后的“反思”,因为在这个过程中提炼出来的数学思想方法,对学生来说才是易于体会、易于接受的。如通过 分数和百分数应用题有规律的对比板演,指导学生发现、归纳解答这类应用题的关键,找到具体数量的对应分率,从而使学生自己体验到对应思想和化归思想。其次要注意渗透的长期性,应该看到,对学生数学思想方法的渗透,不是一朝一夕就能见到学生数学能力提高的,而是有一个过程。数学思想方法必须经过循序渐进和反复训练,才能使学生真正地有所领悟。
3、认清渗透的可行性和“渗透”性,使之真正成为学生学习方法积累的摇篮。
数学思想相对于教材而言,是其隐性工程;对于学生,则是通俗而又抽象的领域。与其生活阅历相当的数学思想的渗透通俗易懂,超乎其生活经验和理解力许多的数学思想则高不可攀,没有渗透的必要和条件。所以,在小学数学教学中,要注意渗透的可行性。
我国《九年义务教育全日制初级中学数学教学大纲(试用修订版)》明确指出:“初中数学的基础知识主要是初中代数、几何中的概念、法则、性质、公式、公理、定理以及由其内容所反映出来的数学思想和方法”。根据这一要求,在中学数学教学中必须大力加强对数学思想和方法的教学与研究。但小学数学教学对于数学思想的教学没有专门提出如此之高的要求。所以,我们还要注意小学数学的数学思想是“渗透”,而不能等同于一般教材的处理。
第四篇:如何在课堂教学中有效渗透数学思想方法
如何在课堂教学中有效渗透数学思想方法
数学思想对我们认识、分析和解决问题有非常重要的作用,它告诉我们怎样思考,从什么角度去思考。数学思想是数学内容价值的核心体现,是一种观念形态的策略创造,它指引人们如何用数学的眼光、数学的方法去透视事物,提出概念,解决问题。同时,它又能培养人们的抽象思维能力、逻辑推理能力和数学应用能力,进而激发灵感,诱发创造。
只有将数学思想同具体的知识相结合,用具体的知识来分析和解决问题,数学思想才能发挥其在认识论、方法论上的价值。因此,在进行具体的知识教学时,要将思想方法渗透其中。让学生在理解和运用数学知识的同时,领悟和使用体会数学思想。下面就数学数形结合思想、化归的思想、分类的思想浅谈自己在教学中的实践。
一、数形结合思想方法在教学中的应用。
在“数与式”这一部分,经常会遇到一些探索规律题,在教学中图形规律题的探索也是常见一种形式,遇到这一类问题,我们必须学会分析图形位置序号与图形本身一种联系,将几何图形变化情况进行数字化、代数化,这就是“以数解形”。例如:如图,用火柴棒按以下方式搭小鱼,搭1条小鱼用8根火柴棒,搭2条小鱼用14根,„„,则搭n条小鱼需要多少根火柴棒。(用含n的代数式表示)
分析:第①个图形,8根
第②个图形,+6 =1+6×1 第③个图形,8+6+6=1+6×2
第n个图形,8+6(n-1)=6n+2 图形规律探索题,重在考查学生的观察、分析、归纳的能力,要使学生具备这些能力,需要教师在平常教学中多引导。教学中引导学生观察分析各个图形之间变化情况是其一,另一点是此类问题还要懂得将图形变化情况数字化,找到数字与序号间一种隐性关系,从而将一个在不断变化中几何图形代数化,达到精化解题目的。
二、化归的思想方法在教学中的应用。
所谓化归思想,就是把问题转化为能用现成方法解决的思想方法,一般是将复杂问题转化为简单问题。通过旧的定理或方法证明得到新的结论,其实也是一种化归思想。例如:解方程23x=
1x1
在方程两边同时乘最简公分母3x(x+1),得2(x+1)=3x,从而解得x=2,经检验x=2是原方程的解。
本例通过去分母将分式方程转化成2(x+1)=3x的一元一次方程,从而解决了问题,这实质就是化归思想的一种体现。再如三角形全等的证明公理“角边角”去证明了“角角边”的正确性,从而得到一种新的证明三角形的方法,也充分体现了化归的思想。
三、分类的思想方法在教学中的应用。
根据研究对象的本质属性的差异,将所研究的问题分为不同种类的思想叫做分类思想,其作用是克服思维的片面性,防止漏解,另外分类时要满足不重复,无遗漏的原则。分类思想,贯穿于整个数学教学的内容中,当知识积累到一定的程度就需要适时分类、归纳的思想来帮助学生建构自己的知识网络。例如:等腰三角形ΔABC中,∠A=150゜,求∠B的度数。
[讲析]本题要分∠A是底角还是顶角来讨论。若∠A是顶角,则∠B为底角,∠B=65゜。若∠A是底角,又要分∠B是底角和顶角两种情况。所以∠B=50゜或∠B=80゜。
综上,∠B=65゜或50゜或80゜。
本题在分成两大类讨论时,其中一类又再分成两类进行讨论。在分类讨论思想的过程中,首要是分类,教师要培养学生分类意识,然后才能引导学生在分类的基础上进行讨论,比如在研究相反数、绝对值,都是按有理数分成正数、负数、零三类分别研究;在研究加减乘除四种运算法则时,也是按同号、异号与零运算这三类分别研究,在几何教学中,用分类讨论进行了角的分类,点和直线的位置关系,两条直线位置关系的分类;渗透分类讨论的思想方法,对培养学生全面观察事物,灵活处理问题的能力有积极促进作用。
数学知识的学习要听讲、复习、做练习等过程才能掌握与巩固。数学思想方法的形成同样要有一个循序渐进的过程并经过反复训练才能使学生真正领悟,也只有经过一个反复训练,不断完善的过程才能使学生形成直觉的运用数学思想方法的意识,建立起学生自我的“数学思想方法系统”。只有这样学生才能学的轻松、有条理、扎实,适应未来的发展和需要。
第五篇:小学数学教学中教学思想方法探讨
小学数学教育教学思想探索
摘要:在小学教学中,教师应重视数学思想的融入,提高小学生对数学技能的掌握能力,改善小学生数学教学质量。在小学数学中渗透数学思想,提高小学生对数学知识价值的认知,提高学生思考问题并解决问题的能力成为小学数学教学的关键点。本文对小学数学教育教学的数学常用思想渗透做了简单探索。
关键词:小学数学教学;数学思想渗透;实践应用
一、渗透数学思想方法的必要性
小学数学教材是数学教育教学的显性知识系统,许多重要的公式、法则,教材中只能看到美丽的设计,大部分例题的解法,也只能看到高明的处理,而看不到由观察、试验、分析、归纳、抽象概括或探索推理的学生心理过程。因此,数学思想教育方法是数学教育教学中的隐性知识,小学数学教学应包括显性和隐性两方面知识的教学。如果教师在教育教学中,仅仅依照课本的安排,沿袭从例题、概念到公式、练习这一传统的教学过程,即使教师滔滔不绝、讲深讲透,并要求学生记住结论,掌握解题的类型和方法,这样培养出来的学生也只能是“知识型”、“记忆型”的,将完全背离数学教育教学的初心。
在认知心理学里思想方法它对人们的认知活动起着监控、调节作用,对培养能力起着决定性的作用。学习数学的目的“难道就意味着解题”,解题关键在于找到合适的解题思路、方法,数学思想方法就是帮助构建解题思路的指导思想。因此,向学生渗透一些基本的数学思想方法,提高学生的认知水平,是培养一名学生分析问题和解决问题能力的重要途径之一。
数学知识本身是非常重要的,有人说没有数学就没有科学。但它并不是惟一的决定因素,真正对学生以后的学习、生活和工作长期起关键作用,并使其终生受益的是数学思想方法。未来社会需要大量具有数学意识和数学素质的人才。21世纪国际数学教育的根本目标就是“学会做人”。因此,向学生渗透一些基本的数学思想方法,是未来社会和国际数学教育发展的必然要求。
小学数学教育教学的根本任务是全面提高学生素质,其中最重要的因素是思维素质,而数学思想方法就是增强学生的学习观念,养成良好思维素质的关键。如果将学生的数学素质看作一个坐标点,那么数学知识、技能就好比横轴上的因素,而数学思想方法就是纵轴的内容。淡化或忽视数学思想方法的教育教学,不仅不利于学生从纵横两个维度上把握数学的基本结构,也必将影响其能力的发展和数学素质的提高。因此,向学生渗透一些基本的数学思想方法,是数学教育教学改革的新视角,是进行数学素质教育的突破口之一。
二、常见的数学思想方法在小学数学教学中的应用
1、化新为旧,给新知寻找一个合适的生长点
任何一个新知识,总是原有知识发展和转化的结果。在实际教学中,教师可以把学生感到生疏的问题转化成比较熟悉的问题,并利用已有的知识加以解决,促使其快速高效地学习新知,而已有的知识就是这个新知的生长点。
如空间与图形中的平行四边形、三角形、梯形等图形的面积公式推导,它们均是在学生认识了这些图形,掌握了长方形面积的计算方法之后安排的,是整个小学阶段平面图形面积计算的一个重点,也是整个小学阶段中能较明显体现转化思想的内容之一。教学这些内容,一般是将要学习的图形转化成已经学会的图形,再引导学生比较后得出将要学习图形的面积计算 例如,平行四边形的面积推导,当教师通过创设情境使学生产生迫切要求出平行四边形面积的需要时,可以将“怎样计算平行四边形的面积”直接抛向学生,让学生独立自由地思考。这个完全陌生的问题,需学生调动所有的相关知识及经验储备,寻找可能的方法,解决问题。当学生将没有学过的平行四边形的面积计算转化成已经学过的长方形的面积。其他图形的教学亦是如此。
1、推导三角形面积时,把三角形转化成平行四边形。
2、推导圆的面积公式时,把圆形转化成长方形。
3、推导圆柱体积公式时,把圆柱体转化成长方体。4。圆锥的体积公式进,把圆锥转化成圆周柱。
2、化繁为简。优化解题策略
在处理和解决数学问题时,常常会遇到一些运算或数量关系非常复杂的问题,这时教师不妨转化一下解题策略,化繁为简。反而会收到事半功倍的效果。
例如:在教学植树问题时,出示例题:同学们在全长100m的小路一边植树,每隔5m栽一棵(两端都栽)。一共要栽多少棵树?
引导学生理解题意,大胆猜测,并开始验证时。看来这个问题值得我们研究,可100米有点长,研究起来不方便,怎样才能使我们的研究更方便呢?把小路缩短,我们就将原来的复杂的问题变得简单了。那下面我们就将小路缩短到20米来研究。
这时,学生在转化思想的影响下,茅塞顿开,将一道生活中的数学问题既形象又有创意地解决了。从这里可以看出:学生掌握了转化的数学思想方法,就犹如有了一位“隐形”的教师,从根本上说就是获得了自己独立解决数学问题的能力。
3、化曲为直,突破空间障碍 “化曲为直”的转化思想是小学数学曲面图形面积学习的主要思想方法。它可以把学生的思维空间引向更宽更广的层次,形成一个开放的思维空间,为学生今后的发展打下坚实的基础。
例如,圆面积的教学,教师在教学过程中,先请学生把圆16等分以后,请他们动手拼成近似的平面图形,即用转化思想,通过“化曲为直”来达到化未知为已知。学生兴趣盎然,通过剪、摆、拼以及多种感官协同参与活动,拼出学过的图形。
4、化数为形
像画示意图、线段图解决问题就是应用了数形结合的方法。数形结合的思想方法将小学数学中一些抽象的代数问题给以形象化的原型,将复杂的代数问题赋予灵活变通的形式,从而给人们思维灵活性的思维迁移训练,这正是反映了数形结合的思想方法解决数与代数问题的有效途径所在。
三、小学数学教学中数学思想方法实现的路径
1、在钻研教材时挖掘数学思想方法
小学数学教材体系有两条基本线索:一条是明线, 既数学知识,另一条是暗线,既数学思想方法。
数学教学中无论是概念的引入、应用,还是数学问题的设计、解答,或是复习、整理已学过的知识,都体现着数学思想方法的渗透和应用。因此,教师要认真分析和研究教材,归纳和揭示其蕴含在数学知识中的数学思想方法。如在“角的分类”中,要挖掘分类的思想方法;在“平行四边形、梯形面积的计算”中,要挖掘转化、化归的思想方法。
2、在教学目标中体现数学思想方法
数学思想方法的渗透,教师要有意识地从教学目标的确定、教学过程的实施、教学效果的落实等方面来体现。在备课时就必须注意数学思想方法的梳理,并在教学目标中体现出来。例如在备“除数是小数的除法”一课时,就要突出化归的思想方法,让学生明确如何把除数是小数的除法转化成除数是整数的除法;在备“比的基本性质”一课时,就要抓住类比的思想方法,明确比的基本性质与分数的基本性质、商不变的性质的联系和区别。
3、在学生课前预习的过程中加以指导
课前预习是学生学习数学知识的必要环节,有利于学生充分利用已有的知识、经验,在自主学习、探究中初步了解知识的形成脉络、结构;了解知识中蕴含的算理、算法;理清编者的意图。在学生预习时只要稍加指导就可以将一些数学思想方法潜移默化的渗透给学生。如,北师大版数学四年级《找规律》。在课前预习时,教师提出明确的预习要求:仔细看书中的主题图,叙述出你从图中知道的信息,弄清数量是多少?你能发现哪些数量之间有关系?你能从中找到规律吗?学生在教师的提示指导下完成了以上的课前预习作业,思考了相关的问题。在课堂新授时只要教师稍加点拨,大部分学生都会理解。教师将探索规律有意识的渗透到教学之前,在教学中就可以充分为学生进行思维的深层次引领。
4结语
古语有云,“授之以鱼不如授之以渔”,在小学数学教学中,数学思想方法的渗透既是教师授学生以“渔”的过程,是提高小学生数学学习效果的有效对策,是教师教学质量的保障。对此,在小学数学教育中,教师应深入教材,提炼其中蕴含的数学思想,并在后续教学过程中渗入数学思想,提高学生的数学学习能力与解题能力,促进学生全面发展。