第一篇:提高肥料利用率的方法及新技术研究
提高肥料利用率的方法及新技术研究
作者 单飞新农村 2013年12期
从1980年起,中国化肥施用量以年均4%的速度增长,但利用率较低,化肥通过挥发、淋溶和径流等途径损失巨大,化肥的大量损失还引起地表水富营养化等一系列环境问题。因此如何提高肥料利用率、充分发挥化肥的作用,对中国农业可持续发展具有极其重要的意义。1 中国肥料利用率现状
肥料利用率是衡量肥料施用是否合理的一项重要指标。大范围肥料利用率的结果一般通过两个渠道获得:一是从宏观的角度估算而来。具体做法是根据各地区化肥施用量和粮食产量的数据,从不同年份单位播种面积粮食产量和施肥量的变化,求出相应不施肥产量和通过施肥可以达到的最高产量,以上述结果为基础计算出化肥利用率。这种方法计算出的肥料利用率与田间实际测定结果往往有一定出入。二是汇总大量的田间试验结果。目前,多数研究都是根据田间试验的结果汇总而来的。由于田间试验受土壤、水分、气候等多种条件的影响,因此,不同地区、不同作物肥料利用率大田试验结果相差较大,需要汇总大量试验结果。据统计,中国小麦、水稻和玉米对氮肥的利用率在28%-41%之间,但磷肥的当季利用率却比氮肥、钾肥低,因为磷肥在土壤中容易与铁离子、铝离子发生化学反应,形成沉淀并累积在土壤中。根据大田试验、盆栽试验包括同位素示踪试验的结果统计表明,磷肥的当季利用率大体在10%-25%左右,钾肥当季利用率在50%左右。提高肥料利用率的方法
传统的、在农业生产中较为普及的提高肥料利用率的方法可概括如下:
2、1合理的氮肥施用量。当氮肥的施用水平较低时,农作物产量与氮肥用量成正相关,当氮肥的施用超过一定量时,农作物产量不再增加反而下降;此后随着氮肥施用量的增加,氮肥通过各种途径的损失也会不断增加,氮肥利用率就会下降。因此,氮肥施用量要控制在经济最佳施氮量以内。
2、2肥水调控技术。肥水是土壤中氮运转及作物氮吸收过程中的关键因子,生产上要根据不同作物不同生长阶段的需求特点,制定适宜的氮肥施用量和水分供应量,只有综合运筹才利于提高肥料利用率。
2、3氮肥深施及分次施肥。氮肥深施能够减少养分的挥发损失并促进农作物持久有效地吸收利用养分,试验结果表明,碳铵或尿素深施增产效果比表施高2.7%-11.6%左右,氮肥利用率也可提高7.2%-12.8%。根据农作物的不同生育期分次、定量地进行施肥,能够有效减少一次施肥造成的损失,从而提高氮肥利用率。
2、4平衡施肥。是依据作物需肥规律、土壤供肥特性与肥料效应,在施用有机肥的基础上,合理确定氮、磷、钾和中、微量元素的适宜用量和比例,并采用相应科学施用方法的施肥技术。平衡施肥技术要点在于不同种类营养元素的种类和比例的调节及作物不同生长时期肥料供应的强度与作物需求的平衡。
提高肥料利用率新技术研究进展
随着科学技术的进步,叶绿素仪的运用、缓控释肥料的运用、农田养分精准管理技术等技术已经或正在逐步应用到农业生产中来,为减少肥料损失,提高肥料利用率发挥着重要的作用。
3、1叶绿素仪(SPAD)进行作物营养诊断并推荐施肥。叶绿素仪工作原理是利用叶片中叶绿素含量和叶片含氮量的关系来确定作物的氮素营养状况。对于种植者来说,通过这种仪器就能够知道作物的氮需求量,从而控制氮肥的供应在恰当的数量上,有利于合理施用氮肥,提高氮的利用率。实验结果表明,在保证作物产量不减少的前提下,可以减少10%的氮肥用量。
3、2缓控释肥料运用。缓控释肥料是采用各种机制对常规肥料的水溶性进行控制,通过对肥料养分释放强度、时间等的有效控制,使肥料养分的释放强度和时间与农作物吸收养分的规律基本吻合,起到了促进土地养分供给、保障植物养分需求、提高农作物品质和产量的作用。
3、3农田养分精准管理技术。精准农业是现代空间信息技术与农艺技术相结合而产生的一次农业技术革命。它根据每一操作单元的具体情况,精细准确地确定田间物资投入量并进行田间管理,根据土壤状况和农作物的需肥规律,在农作物的整个生长期进行适时、适量地精准施肥,以满足农作物不同生育时期对养分的需求,争取以最少的肥料投入达到较高的经济效益,从而提高化肥利用率。
3、4脲酶抑制剂和硝化抑制剂的使用。尿素每年的施用量占中国化学氮肥的一半以上,土壤的尿素经土壤脲酶的水解作用,易造成NH3的挥发,不光经济损失严重,而且还污染环境。脲酶抑制剂和硝化抑制剂的作用就是通过延缓尿素的水解,来延长尿素在土壤中的扩散时间,既达到了降低土壤溶液中NH4+和NH3的浓度的作用,又减少了NH3的挥发。提高肥料利用率技术研究展望
当今中国面临着人口不断增长、耕地日益减少和粮食需求不断增加的严峻现实,如何能够最大限度地提高肥料利用率并减轻对环境的压力,建议加强以下几方面工作。
4、1加快新型肥料研制及常规肥料升级,研制低成本、高性能包膜材料和高效缓,控释作物专用肥料,制定缓,控释肥料环境评价和质量标准;开展有机肥高温、快速发酵与除臭复合菌群筛选和组合研究;进行高效造粒黏结剂工艺研发,进行有机和有机、无机复合肥生产关键技术研究,加快新型液体肥料生产关键技术研究。
4、2研究作物养分高效利用的生态和生理学机理,研发作物高产、高效施肥新技术,集成和提升作物高产、高效、优质和环保的养分资源管理技术体系。
4、3研究作物基因型营养元素效率差异的生理和遗传机制,应用生物技术改良作物营养遗传性状,筛选和培育具有养分高效利用基因型的农作物优良新品种,实现植物营养性状改良,从而提高作物养分利用效率。
4、4应用信息技术和网络技术,构建全国和不同地区养分资源高效利用信息化管理系统和监测平台,实时掌握全国和各主要农区主要作物对各种肥料的效应和土壤养分状况;建立不同地区、不同作物科学施肥决策系统和环境评估预警系统,实现肥料资源在全国和区域范围内的合理配置与高效利用。
第二篇:我国烤烟肥料利用率现状及提高肥料利用率途径 2
我国烤烟肥料利用率现状及提高肥料利用率途径
摘要:我国肥料利用率低、氮肥损失严重的现状,化肥价格剧烈增长的情况下,合理施用化肥成为保证农业发展和农民增收的关键,综述了肥料利用率低的原因及提高肥料利用率的有效途径,提出了优质烟合理施肥,研制开发新型烟草专用肥等综合性技术措施,同时提高作物产量和养分利用效率,协调作物高产与环境保护。关键词:肥料利用率,现状,对策,利用率
China tobacco fertilizer utilization status and raise fertilizer utilization way
Abstract: the utilization rate of fertilizer nitrogen loss situation of low, serious, sharp increase of fertilizer prices, rational application of fertilizer becomes the key to ensure the agricultural development and peasant incomes, summarized the reasons for the low rate and the effective way to improve the utilization rate of fertilizer of fertilizer use, the high quality tobacco fertilization, development model special fertilizer for tobacco and comprehensive technical measures, and increase crop yield and nutrient use efficiency of crop production and environmental protection, coordination.Keywords: the utilization rate of fertilizer, present situation, countermeasure, utilization rate
烤烟是我国主要经济作物之一,是卷烟工业重要的基础原料。我国烤烟种植范围广,气候条件和土壤条件差异大,加之烤烟生长有其自身的营养规律和特殊的品质要求,形成了烤烟特有的施肥技术和施肥特点。但是由于受多种因素的影响,目前我国烤烟施肥技术还存在许多问题和不足。为了提高我国烟叶质量,满足卷烟工业要求,必须进一步研究改进烤烟施肥技术以及相应的策略和措施。
1.我国肥料利用率的现状
世界农业发展的实践证明,施用化肥是最快、最有效、最重要的增产措施。我国是生物密集
型农业,农业增产对化肥的依赖程度很高,目前,每年化肥施用量折纯量达4 300万t,占全球化肥使用量的l/3,居世界第一。从1980年起,我国化肥施用量以年均4%的速度增长,单位面积用肥量是世界平均水平的3倍多,我国用占全球9%的土地消耗了占世界总量32%的化肥[1]。我国化肥利用率低养分损失造成经济上的直接损失仅氮肥每年损失折合人民币达380多亿元[9],在我国,化肥(含农药)占农业成本的20%以上,我国已成为世界上最大的化肥生产国和消费国。目前,我国肥料的当季利用率氮肥为30%~35%,磷肥为10%~25%,钾肥为35%~50%。我国的肥料施用还处于以速效性肥料分次施用为主体的施肥阶段,而速效性肥料不仅利用率低,而且成本高、污染严重,也很不适应现代化农业的要求——应用缓效性肥料和专用复合肥料。如何提高肥料利用率、充分发挥肥料的作用,对我国农业可持续发展意义重大。我国主要粮食作物的氮肥利用率为28%~41%,平均为35%;据估计,我国每年损失的氮素在1 500万吨左右,价值超过4050 年代, 我国烤烟施肥以农家肥和饼肥为主, 每公顷烟叶产量 1500kg 左右。由于肥料中各种营养元素齐全, 烟叶质量较好。50 年代末期, 由于全国性原料缺乏, 烟叶生产上以增加产量为主, 烟叶质量受到一定影响。60 至 70 年代, 单位面积产量出现盲目增高趋势, 烟叶质量受到很大影响。这一阶段烟草栽培存在的主要问题, 在品种上, 主要是采用了多叶型品种, 高密度、多留叶;在施肥上, 以施用氮素化肥为主, 轻施磷钾肥, 土壤养分不全, 以至营养元素比例失调[3]。这一时期我国烟叶质量较差, 上中等烟比例减少, 低次烟增加。由于烟叶质量变劣, 直接导致出口量锐减。在烟叶生产质量处于低谷的形势下, 我国烟叶生产者普遍存在“恐氮心理” , 只采取降低氮肥措施, 未从均衡营养、全面协调营养供给等方面入手, 结果造成烟叶营养不良, 发育不全, 烟叶质量难以达到卷烟工业的要求[6]。我国每年损失的氮素在1 500万吨左右,价值超过400亿元。国际上,发达国家粮食作物的氮肥利用率一般在40%~60%(Ladha et a1.,2005)[5]。
2.存在问题
2.1 营养不平衡 重氮轻磷缺钾, 是目前我国烤烟生产上的突出问题一是由于氮是形成烟叶产量的主要因子, 烟叶生产偏重施氮。二是国内钾肥资源缺乏, 难以满足生产需要。现在全国烟区缺钾面积进一步扩大, 过去一些不缺钾的北方省份近几年来也发生缺钾现象。三是由于烟草种植者对磷的作用认识不足, 轻视磷
2.2 烟田土壤肥力不同程度出现下降趋势 由于缺乏良好的培肥地力措施, 加之轮作条件差, 烟田常年连作, 土壤主要营养元素都不同程度出现下降趋势, 同时土壤物理性状变劣。据山东烟区调查, 常年连作的烟田, 有机质含量一般在 013%~ 1% 之间, 超过 1% 的烟田只占有相当少的比例;速效磷含量在 1×10-6~ 9×10-6之间, 5×10左右的烟田占多数;速效钾含量虽多在 90×10-6~ 150 ×10-6之间[7], 但因其利用率不高, 烟叶含钾量较低。
2.3 肥料利用率不高 有资料表明我国烤烟肥料利用率较低, 南方一些省份肥料利用率仅 20% 左右。其原因是对肥料利用率的相关性技术缺乏深入研究, 特别是对南方烟区肥料流失的控制和北方烟区的营养吸收障碍等没有从根本上研究解决。
2.4 对旱作烟草的施肥技术缺乏 究北方烟区如黄淮海烟区, 缺水少雨是普遍的现象和问题[11]。近年来为解决后期烟草赤星病发生危害的问题, 北方烟区烤烟普遍提前移栽, 其结果是烤烟生长与大气自然降水不协调, 烤烟生长前期基本处于干旱之下, 生长发育受到严重影响。相反当雨季来临时, 大量肥料发生作用, 烟株徒长、干物质积累少。此外由于烤烟生育期有限, 大量肥料难以短期内发生作用, 成熟期推迟, 烟叶质量受到影响。
3提高途径
3.1应用缓效性肥料和专用复合肥料
我国的肥料施用还处于以速效性肥料分次施用为主体的施肥阶段,而速效性肥料不仅利用率
低,而且成本高、污染严重,也很不适应现代化农业的要求——应用缓效性肥料和专用复合肥料。采用针对性施肥技术是从根本上解决我国目前施肥落后现状的唯一途径,也是农业生产发展的必然选择[2]。
3.11 缓控肥
目前,国际上缓,控释肥料可以分成四大类,一是有机合成微溶型缓释氮肥。此类肥料的需求有下降的趋势。二是包膜(包裹)类缓/控释肥料。近年来,高分子聚合物包膜缓,控释肥料发展较快,是国际上缓/控释肥发展的主流方向。三是胶结型有机一无机缓释肥料[习。该肥尚未推广应用。四是生物生化抑制型肥料[13]。缓/控释肥料能缓慢而持久地释放出植物生长必需的营养元素,具有养分齐全、配方合理、无公害、长效化等特点,还可以减少因淋溶、固定或分解作用而造成的养分损失,防止作物前期早衰和后期脱肥,在规定释放期内养分释放不低于75%[10]。缓/控释肥料是采用各种机制对常规肥料水溶性进行控制,通过对肥料本身进行改性,有效地延缓或控制了肥料养分的释放,使肥料养分释放时间和强度与作物养分吸收规律相吻合(或基本吻合)[16]。
3.12 专用肥
大力推广配方施肥技术。根据作物的需肥规律、土壤测试结果以及肥料的利用率,调整氮、磷、钾和微量元素的合理用量和比例,使作物得到全面合理的养分供应,最大限度地发挥作物的增产潜力,提高经济效益。近年来,实施的配方施肥就是一项行之有效的途径。精准施肥根据作物生长的土壤状况和需肥规律,适时、适量地进行投肥,满足作物不同时期的肥料需求,以最少的肥料投入达到较高的经济效益,从而提高化肥利用率,改善农业生态环境。
精准施肥是精准农业决策分析中应用最广泛的技术之一,也是发展最为成熟的技术。研究结果表明,水稻和玉米精准施肥与农民习惯施肥相比,氮肥利用率可平均提高7.8百分点[8]。
3.2农田养分精准管理技术
精准农业是现代空间信息技术与农艺技术相结合而产生的一次农业技术革命。它根据每一操作单元的具体情况,精细准确地确定田间物资投入量并进行田间管理,将传统的高耗、低效型的生产结构方式转变为低耗、高效的生产结构方式,节约了大量的物质资源,同时保护了生态环境[20]。精准施肥根据作物生长的土壤状况和需肥规律,适时、适量地进行投肥,满
足作物不同时期的肥料需求,以最少的肥料投入达到较高的经济效益,从而提高化肥利用率,改善农业生态环境。精准农业技术按实施过程来分可分为4个部分:农田信息获取、农田信息管理、决策分析、决策的田间实施[25]。农田信息获取的方式通常有传统采样法、GPS采样和通过遥感方式获取信息,分区平衡施肥法也是在精准农业的基础上发展起来的施肥技术,是根据种植方式、土壤养分状况、肥料施用情况、土壤类型、土壤质地等对某一区域进行分区划片,以片为管理单元进行推荐施肥的方法。其具有宏观控制和具体指导的功能,是普及推荐施肥技术、培肥地力、提高肥料利用率和增加产量的一条有效途径[28]。
3.3开发生物肥料,减少化肥用量
化肥投入数量的不断增加,使我国耕地土壤质量不断下降,耕层土壤迅速流失,有机质含量不断下降,十壤结构受到严重破坏,保肥、保水性明显降低,土壤酸化、碱化、盐渍化现象不断出现,耕地抵御自然灾害的能力大幅降低。为了保护人类生存环境、提高人类生活质量、探索生态农业可持续发展的新路,联合同粮农组织和许多经济发达国家共同倡导成立,有机农业联盟,以推动尢公害土壤环境的监测。许多国家对化肥的投入已作出了不同程度的限制,并开始引导农业生产逐渐向全面利用生物有机肥料过渡。使用生物有机肥料是提高农业生产效率、减少碳排放和保障农产品质量安全的重要手段:目前,欧美等西方国家的生物有机肥料的使用量已达到总用肥量的40%(质量分数)以上。有关专家预测,生物有机肥料将是21世纪逐步取代化肥的主要肥料之一。我国有关部门针对我国化肥施用超量、低效、耕地质量逐年下降的突出问题,提出了:“减少化肥施用量,改善耕地质量,发展新型高效生物肥料
产业化,建设万吨级固氮生物肥料、溶磷生物肥料、解钾生物肥料、抗病生物肥料、降解化学农药的生物肥料的项目规划目标”。
3.4坚持有机肥与无机肥相结合壤有机质含量低是造成养分损失的重要原因之一
第三篇:提高钢板利用率及降低下料成本方法
提高钢板利用率及降低下料成本方法
钢板下料材料利用率和切割耗材寿命的高低是影响企业的经济效益的主要因素之一,本文从钢板下料的特点和我公司现在的生产状况分析计算,提出几项措施,以提高钢板利用率,降低切割成本,从而为我公司获得更多的经济效益。
(一)合理采购板材(1):固定板材规格 目前我公司产品形式单一,零件形状不规则,零件面积较大,所以给数控切割排料计算时带来的工作难度加大。以δ28mm的板厚为例,假若购买回来的钢板规格是2100mm×8000mm,而下料排列最大宽度却只能到2000mm,所以就会有一条8米长;10厘米宽;28毫米厚的钢板被闲置浪费,并且10厘米宽的板材也不好再利用,基本上相当于废品,可见若能根据实际切割排列方式购买固定规格板材将减少很多不必要的边角料浪费。根据公司现在生产的机型,不断组合排列,现将板材规格固定如下:
δ6mm: 主要用于弧板,下侧板,三角板,固定规格1.5M×6M最为合适。
δ8mm: 用于侧板,固定规格1.5M×6M最为合适。(现在所使用的6mm和8mm的板材刚好合适)δ12mm:用于上侧板,1耳板,封板,固定规格1.5M×6M最为合适。(最好能再宽3到5厘米最好,1.53M可以控制变形)δ14mm:用于16机唇板,65机耳板,固定规格2M×(6-8)M最为合适。(小于6米切割就不划算,大于8米吊板不安全)δ16mm:用于45A耳板,唇板,65机上侧板, 固定规格2M×(6-8)M最为合适。(小于6米切割就不划算,大于8米吊板不安全)δ20mm:使用量小于其它板材,用于立板和耳板, 2M×(6-8)M最为合适。
δ22mm:仅用于742唇板和耳板,由于零件单一,但用量较大,请严格控制规格2.2M×(6-8)M δ28mm:仅用于立板,零件单一,使用量大,最好能同时购买两种规格的,一种用于切割,一种板宽为1.85M,2M,若有2.73M宽的板材,则可以通用。长度不限,越长越省料,但不能超过10M。
(2)注意钢板购买时质量
在钢板已经生锈或已经变形弯曲的情况下,尽量不要购买。弯曲变形的钢板会加大切割难度,容易造成切割质量差,并且切割完毕后需要大锤敲打校形,影响产品外观并增加制作工时,耽误生产进度,目前下料组堆放十几块立板,因板材已经弯曲变形而无法较直,造成了材料积压和人力资源的浪费。严重变形的,只能够当废品处理。如宽度仅90mm,假如变形不合格的话,就毫无利用价值。若钢板生锈,则在切割过程中,很容易出现断线,切割面不平等现象,解决该问题的方法是换大一号的割嘴切割生锈的板,众所周知,3号割嘴所消耗的氧气和丙烷是2号割嘴的一倍多,所以为生锈钢板付出双倍的切割成本,显然很不划算。并且锈铁的溶点高于钢板,在切割时,会不断的炸出小铁屑,严重时,会直接烧伤、炸伤割嘴,造成不必要的耗材损失。
(二)提高切割效率
切割效率一直被忽视,但它却是生产的重中之重。效率的高低直接影响到钢材利用率和切割质量。目前,我公司对数控切割方面认识不足,满足于“可以切”的基本要求。只要能够编程,生成切割程序,可以切割就行了,忽视了切割效率、切割质量和钢材利用率。随着市场竞争的加剧和钢材价格的上涨,传统的切割已经不能满足大批量高效率的切割要求。应该对数控切割提出更科学的方法,不是简单的“可以切”,而是要“切得快”、“切得好”、“切得省”,特别是计算机辅助系统的广泛应用,已经涉及到数控切割行业,从而更好的为企业节省钢材和耗材,引进先进的切割技术也是迫在眉睫的事。(1)全时切割
改变切割工人在数控切割机控制器上进行手工编程套料的传统落后生产方式(20%的时间切割机不是在切割,而是在等待切割工人在控制器上进行编程套料,并且又慢又不好),使用计算机辅助系统,在普通电脑上进行整张钢板套料和余料板套料,为数控切割机提供切割程序,数控切割机全时用来切割(不再用来编程),有效提高数控切割机的切割生产效率。在我公司7月份以前,数控机需要从早上八点至凌晨两点连续工作,才能保证生产需要。经过不断的优化切割方案,现在每天仅需八个小时(少数情况需要加班)就能满足正常生产需要,不仅降低了工人的劳动强度,节省了人力资源,更是延长机器设备的寿命,减少夜间照明电力消耗。(2)高套料切割
传统的切割方式已经不能满足目前我公司的生产现状,对于数量多而复杂并且形状极不规则的零件,更是头痛,如一品公司的产品。但是通过计算机机辅助技术实现整板套料和共边套料,提高钢板利用率,有效避免局部套料和局部切割产生的大量剩余材料,对剩余钢材进行重复套料和使用,使大量剩余钢材得到再利用。如下图为一品公司零件套料:
使用专业的计算机软件能完成传统手工套料做不到的事,并且还能达到意想不到的效果。若这一技术能应用到我公司所有零件的实际切割中来,所节省的钢板和耗材也不可估量。下面对传统切割和高套料优化切割来做一个对比,如下图:
上图为模拟传统套料下侧板切割方案。图中钢板为1.5M×6M.,零件数48,钢板利用率75.8%,穿孔数48个,切割长度80.2米,切割时间64分钟。
上图为高套料下侧板共边切割方案。同样是1.5M×6M.的钢板,使用计算机高套料后,零件数达到54个,比前者多出两块下侧板和四块三角板,钢板利用率达到84.2%,穿孔数33个,切割长度70.3米,切割时间50分钟。经过专业软件共边并优化切割程序后,钢板利用率上升8.4%,等离子电极寿命延长10%左右。(3)共边切割
共边切割是节省切割耗材最有效的方法。在我公司长直线边的零件还是挺多的,如上下侧板,三角板等。使用计算机辅助技术,合理的运用共边切割方法,如下图:
仅使用一次穿孔,就完成八个零件的连续切割,提高了生产效率的同时,也为公司创下不少的经济效益。传统切割方法效率低的主要原因是每个零件都要预热穿孔,相同或临近的直线边重复切割,使用专业软件先进的等离子共边、桥接、连割等高效切割技术和工艺,可直接减少预热穿孔时间30%,减少切割路径10%,提高切割效率10%,提高钢材套料利用率1~2%,同时,有效节省氧气、丙烷、等离子电极、火焰割嘴等耗材以及水电气等的消耗10%。(4)零件桥接或连割
零件的桥接和连割编程方法更注重的是提高切割速度和切割效率,这种编程模式是传统切割方法无法办到的。通过专门的计算机软件画图,将多个零件的切割路径连在一起,使得数控切割机在工作时,只用穿一次孔就能完成整张钢板的切割,如下图就是圆台的桥接编程图:
与传统的切割方法相比,假如要切割400个圆台,传统方法则需要穿孔400次,如果每个穿孔预热时间为1分钟的话,就会有400分钟也就是将近7个小时的时间花在预热穿孔上面,氧气和丙烷白白的燃烧了7个小时。使用先进的编程工艺方法,只需穿孔一次就能完成400个零件的桥接连割,生产效率将飞一般的提高,比传统切割方法可直接减少预热穿孔80%,减少切割路径30%,提高切割效率50%,提高钢材利用率1~3%,同时,有效节省火焰割嘴、等离子电极等耗材以及水电气等的消耗40%。(5)避免或减少二次切割
数控全自动切割机以强大的优势超越了仿形切割机。使用仿形切割,其割缝质量差、尺寸误差大、材料浪费大、后道加工工序的工作量大、同时作业环境恶劣、劳动强度大。而数控切割机工作效率高,切割速度快,尺寸精度高,材料浪费少等。在我公司,使用仿形切割机主要是用于切割数控机所切剩的小板材,其实只要当板材规格被固定之后,采用先进的高套料编程方案,完成整张钢板的切割编程,所有的余边废料将可以大量的减少,再加上对余边角料的合理管理(后文中会提到),就可以把现在属于仿形机切割的零件,用数控机来切割。举个例子,用仿形机切割钩子,一上午最多可切割60个,并且还需要花一天的时间来打磨,但如果用数控机连割编程工艺,60个钩子仅需40分钟,再加上20分钟的清渣时间即可完成,相比之下,节省11小时人力资源,11小时电力资源,还有3小时氧气丙烷燃烧,另外还有砂轮片,火焰割嘴,劳保用品等。
(三)提高切割质量
产品的质量是企业生存壮大的根本,质量从第一道工序起就开始形成,下料质量的好坏,奠定最后成品质量的基础,只有合格的零件,才能焊接出合格的产品。切割质量的好坏不仅关系到产品质量,更关系到材料的利用率和耗材成本。一个好的零件切割出来仅需要清除周围毛刺和铁屑溶渣就可以转入下一道工序;倘若零件切割出来不合格,则需要打磨,校形等。使得人力资源极大的浪费,并且耗材和劳保用品也比前者明显增多,如沙轮片,角磨机损坏,用电量增加,手套用量增多等。更严重的还会直接产生废品。所以质量是一刻也不能松的大事。针对我厂现在的生产状况,提出以下几点措施:①提高员工质量意识;②加大监管力度,质检部门跟踪检验,一旦发现问题立即告知机器操作者想办法解决,争取不产生批量的不合格产品;③提高员工技能水平和工作积极性,只有提高员工的自身素质,才是解决问题的关键,主观能动性增强了,并且细心工作,很多浪费都可以避免,所以从招聘起,就应该对员工严格把关,入厂后,严格按技能分配工资;④改善作业环镜,由于我公司厂地面积不大,通风条件不好,等离子切割灰尘太多,很不利于员工的身心健康,所以工作积极性有所降低,它也是企业应该为员工考虑到的问题。⑤对设备进行定期除尘,加油,保养和检修。
(四)建立半成品和余边角料管理体系(1)建立余边角料管理体系
目前下料组所堆放的余边角料已达数十吨之多,原材料的积压将直接导致公司资金周转困难,先来分析一下余边料积压的原因:①板材采购不合理,导致零件排列无法排完,形成余边。②机器操作员对钢板排列预算能力不够,不恰当的排列导致钢板剩余。③堆积的余边料长时间没清理,一直被掩埋在底下,一旦需要小钢板下料时,却找不到小钢板,只能从大钢板上面切割,从而又形成余边料,如此恶性循还,导致余边料越堆越多。针对这一情况,有必要建立一个余边角料管理体系,第一步,清理现有的余边料,分板厚在固定区域摆放,分别标识规格,并作相关记载,当下次需要使用时,则很容易找到。第二步,加强员工成本意识和作业能力,若仅仅需要极少量的小零件,则不要从整张大钢板上直接切割,必需查看相关记载,找出以前留下的边角钢板下料,减少原材料积压,提高公司经济效益。
(2)建立半成品管理体系
不仅仅是余边角料的积压,车间里到处都堆放有一些不常用机型的零件,如角板,唇板,弧板等等。虽然公司每个月都盘存清理,但车间内所存在的零件清单却没有下发到下料组和剪板折弯组,一旦有这些不常见机型的生产任务,又将重复下料,积压的成品还是没有利用出去,不但占用车间生产面积,长此以往,将会导致零件报废。针对上述情况,建议如下:①提高盘存清理质量,清理出来的零件必需贴上明显的标识,如机型和名称,有关部门要做好监督工作;②下达不常见机型生产任务时,先清查已有的零件,并通知下料和剪板组不能够多下料;③改制不再需要的零件。
(五)增加小面积零件业务
仔细观察公司生产所需要的零件,如三角板,就算经过高套料之后,零件之间仍然存在很宽的间隙,这些钢板丢弃了很可惜,但留着又实在没用。如下图:
生产对此类零件大量需要,但这类零件对钢板的利用率却不高,并且以我公司现生产的产品,又没有小零件可以填充进来。唯有发展一些小零件业务,利用这些废料完成小零件切割,使原本只能丢弃的废料变成高价出售的商品,如下图:
从图中可以看出,使用专业的套料技术,在原有零件的基础上,添加另外的小零件排列,仅需要少量的切割耗材,就可以变废为宝,钢板利用率将会很大幅度的增长,获得巨大的经济效益。综合全文所述,利用先进的编程切割工艺,改善管理方法,保守估计将可为公司节省如下: 钢板5%左右
假如公司每月使用钢板100吨,一年就1200吨,1200×5%=60吨 以钢板每吨5000元计算,则可以节省30万元
数控切割机使用的氧气和丙烷3%左右
火焰割嘴5%左右
等离子电极6-8%左右
用电量及其它耗材3-5%左右 另外产品合格率得到很大程度的保证
第四篇:微生物肥料生产新技术
微生物肥料生产新技术
一、微生物肥料生产新工艺及流程
一般传统的微生物肥料生产工艺是:保藏菌种→斜面菌种培养活化→摇瓶扩大培养→发酵罐液体发酵→按一定的比例用草炭吸附后包装或按一定的比例稀释后直接包装。建立这样的生产企业需要建立大面积的无菌培养室、购置发酵罐、空压机、过滤器等设备,而且培养、发酵条件不易控制,菌种质量难以保证,投资大、成本高。
河北省生物工程技术公司针对众多微生物肥料生产企业中存在的上述难题,联合河北农业大学、河北大学、河北省科学院微生物研究所等单位微生物专家,经多年研究攻关、多次实验,开发出微生物肥料生产新工艺,成功解决了上述难题,非常适合中小微生物肥料生产企业采用,尤其是特别适合现有的复混肥料、有机肥料生产企业生产生物有机无机肥料、生物有机肥料,作为其产品功能更新、升级或提高应用效果而添加。
河北省生物工程技术公司微生物肥料新的生产工艺是:使用公司新开发出的高活性、高含量微生物菌粉按一定比例直接加入或包衣到有机肥或复混肥料中,即可生产出符合国家农业部登记标准要求的微生物菌剂、生物有机肥、复合微生物肥料、微生物冲施肥、拌冲剂等产品。
具体工艺流程为:
(1)微生物菌剂工艺:
草炭或其他吸附剂 + 菌粉 微生物固体菌剂或颗粒肥 包装
(2)生物有机肥工艺:
有机肥粉状或颗粒 + 菌粉 生物有机肥 包装
(3)复合微生物肥料(生物复混肥):
化肥(N、P、K)配料→混合→造粒 →烘干冷却→筛分→ 包装
菌 粉
(4)微生物冲施肥微生物拌种剂
和其他辅料配比制成微生物冲施肥及拌种挤
上述新工艺,实际上相当于将微生物肥料生产中投资大、工艺复杂、技术难度大、质量要求高、用量少的菌剂生产环节交给我们来完成,由我们统一规模化生产提供给每个企业。这样将使微生物肥料的生产变得简便、高效、低成本。就象手机市场研发出强大的手机芯片,从而使手机生产变得简化进而出现山寨手机一样,高活性的菌粉就是这种“芯片”,只需嫁接到你的产品中,即可生产出各种成分、含量的微生物肥料。所不同的是:高活性菌粉中的有效菌是国家已认可、明确用于农业生产的菌种,用于生产出来的各种微生物肥料均可获得农业部的微生物肥料登记证。
河北省生物工程技术公司提供的菌粉产品,采用现代化的生产设备,在工业化发酵生产生物肥料的基础上,将菌剂进一步浓缩低温脱水精制而成,实现了菌剂生产的规模化、现代化,保证了菌剂的质量,降低了成本。
二、高活性菌粉技术指标:
含(胶质芽孢杆菌)活性芽孢100亿/克个以上,有效期24个月
三、在微生物肥料生产中使用高活性菌粉的特点及优势
1、生产投资成本低
微生物肥料生产的投资主要是在微生物菌剂车间建设的投资,而通过添加高活性菌粉这一工艺,菌剂车间的投资便节省了。生产微生物肥料的准
入门槛降低了,投资风险也随之减少。高活性菌粉单位含菌量高,技术稳定性好,浓缩干燥后的菌粉价格低廉,微生物肥料生产成本大大降低。
2、技术工艺要求低
微生物菌剂需要专业人员生产,技术要求高,技术工艺复杂;稳定性差,成品率低,这也是目前困扰我国微生物行业发展的一大难题。而不做微生物菌剂的生产工作,只添加高活性菌粉,这一难题就迎刃而解了。
3、菌粉生物稳定性好,运输方便,耐贮藏
高活性菌粉因为是干燥粉剂,所以菌粉芽孢活力高、含量稳定;用量少,包装小,易于运输;在一定条件下可长时间保存。
4、生产灵活机动,使用方便快捷
微生物菌剂是活的微生物,它的生产工艺严格,受季节和厂房设备等条件的限制较多,生产对市场的配合性差。高活性菌粉的添加不受季节、厂房、设备的限制;尤其是可随市场需求进行生产,这样就减少了产品库存和资金占压,降低了生产风险和市场风险。
5、适应市场变化,产品的多样性强
添加高活性菌粉可随时根据市场情况,设计产品配方,作成系列肥料,促进市场销售;例如:可稀释做成微生物接种剂、造粒做成生物有机复混肥、混合做成生物有机肥等,还可根据不同作物进行配比做成专用肥。同时多样化肥料的推出,加强了企业产品的更新换代能力,延长了产品的市场生命周期,增大了企业在市场的竞争力。
四、微生物肥料的作用与效果
微生物肥料是一种有机的生物活体,是继有机肥、化肥、微量元素肥之后的又一种新型肥料。微生物肥料可以说是无公害农业和有机农业生产的理想肥料,在农业可持续发展中有着广阔开发应用前景。
高活性菌粉富含的有效、活性的胶质芽孢杆菌,它可在土壤中繁殖生长,并产生有机酸、荚膜多糖等代谢产物,破坏硅铝酸盐的晶格结构、难溶性磷化合物等,分解释放出可溶的磷钾元素及钙、硫、镁、铁、锌、钼、锰等中微量元素,既增进了土壤肥力,又为作物提供了可吸收利用的营养元素,同时产生赤霉素、细胞激动素、微生物酶、细菌多糖等生理活性物质,促进作物营养吸收和生长代谢。经多年多种作物田间应用实验证实,它能增加土壤速效磷含量90.5-110.8%、增加速效钾的含量20-35%。亩施用1公斤微生物菌剂(含有效菌2亿/克)增产效果与亩施15-20公斤过磷酸钙、亩施
7.5-10公斤硫酸钾增产效果相当。一次施用,全生育期有效。
有效菌在土壤中生长代谢,产生多种的激素类物质、生物酶、氨基多糖类物质和蛋白质、氨基酸类物质,促进作物生长发育,诱导作物增强抗性,增强抗寒、抗旱、抗病和抗逆能力,改善产品品质。
有效菌给土壤补入大量有益微生物,在作物根部形成有益菌群,有效抑制土壤有害和致病微生物的繁殖,显著减少多种土传病害的发生,如小麦的白粉病、棉花立枯病、黄枯萎病等。从而减少部分农药的使用,减轻农药污染。
微生物菌剂施入土壤后,植物根部(主要为根毛、根尖)分泌物有益于胶质芽孢杆菌的生长繁殖,胶质芽孢杆菌又可为植物根部生长提供良好的营养,实现 “菌随根长、根随菌壮”;植物吸收地下养分主要靠根毛根尖,植物根毛根尖周围生长着优势胶质芽孢杆菌,在随时随地不断的从土壤中为作物分解提供适量的(过量离子强度会抑制菌的生长)磷、钾、钙、硫、镁、铁、锌、钼、硼等营养元素,营养平衡可预防和改善作物的生理性缺素病变。
如果树应用微生物菌剂后,小叶、黄叶、早期落叶现象明显减少;树势壮而不旺、果面干净、甜度提高,果品品质显著提高。可以说生物肥料的应用以最低廉的成本和最简便的方式体现了种植业生态施肥、平衡施肥和精准施肥。
微生物菌剂施入土壤后,在其代谢过程中还产生赤霉素、吲哚乙酸、细胞分裂素、黄腐酸、氨基多糖等多种生理活性物质和蛋白质氨基酸类物质,可同比增加作物叶绿素含量16-18%,显著增强作物光合作用,促进作物根系发达和生长健壮,增强作物抗寒、抗旱、抗病和抗逆能力,提高作物产量并改善产品品质。
胶质芽孢杆菌微生物菌剂施入土壤后,增加了土壤中的有益微生物和有机质,可抑制有害微生物的生长繁殖,显著减少和减轻作物土传病害和重茬病害的发生,如果蔬霜霉病、灰霉病、白粉病、疫病和线虫。暨可减少部分农药的使用,减轻农药污染,减轻农民负担。
微生物菌剂在多种土壤和作物上均有明显增产效果。大田作物如小麦、水稻、玉米、大豆、棉花等大田作物平均亩增产率10%以上,花生、马铃薯、红薯、山药等作物增产20-30%,黄瓜、西瓜、甜瓜、丝瓜、西红柿、洋葱、大蒜、茄子、辣椒、油菜、白菜、花揶菜、菠菜、韭菜、芹菜、荔枝、脐橙、龙眼、芒果、菠萝、香蕉、苹果、梨、桃、烟叶、枸杞、葡萄等瓜果菜类增产率20-50%,此外,对园林、花卉、中草药等植物应用效果良好。
微生物菌剂肥效持久,对人畜无毒无害,既能减少化肥用量、提高化肥利用率、降低农业生产成本,达到增产增收、改善产品品质的目的,又能减少环境污染、保持生态平衡、改良土壤、减轻病害,是无公害农业生产和有机农业生产的理想肥料。
河北省生物工程技术公司是目前国内同行业中首家开发高含量胶质芽孢杆菌菌粉并大规模生产的企业。公司拥有微生物菌肥、生物有机复混肥制造等方面的多项专有技术。我公司的核心产品生产设备及工艺的先进、管理和检验的严格,产品质量国内一流。
工业化高含量胶质芽孢杆菌菌粉的研制成功,不仅使各企业进入生物肥料行业的门坎大大降低,省去生物菌肥厂的高额建厂投资和技术工艺的苛刻要求,而且具有储运、性状稳定、成本低、使用方便简捷易掌握、工业化水平高等诸多优势,为有意进入生物肥料生产或在其产品中增添生物肥料功效的企业,提供了一条捷径。河北省生物工程技术公司可提供全套检测方法和配套工艺。
热忱欢迎广大有意从事生物肥料生产经营的企业来访洽谈,并希望与您长期合作、双赢发展。
联系人;许经理
电话:0312-2239591
河北省生物工程技术公司
第五篇:水稻肥料利用率及测土配方施肥技术
水稻肥料利用率及测土配方施肥技术
China’s foreign Trade·下半月 2012年04期
近年来由于种种原因,生态环境受到破坏,特别是化肥施用结构不合理,重施氮肥轻施磷钾肥,重大量元素轻微量元素,重无机肥料轻有机肥料,另外氮肥过量施用,利用率偏低。测土配方施肥是农业增收、农民增效的有效途径,是缓解化肥资源供需矛盾的客观需求。
1.水稻肥料利用率的途径
1.1提倡全层施肥
目前,水稻生产上大面积采用化肥表施的施肥方法,肥料的利用率普遍不高。据估测,氮肥利用率只有30%~50%,磷肥当季的利用率不足25%,钾肥的利用率亦仅30%~60%。肥料利用率低的主要原因是:铵态氮的表施,硝化作用的损失,氮、钾肥的流失,某些氮素化肥的分解挥发,磷肥的土壤固定等。试验表明,全层深施肥土壤中的铵态氮一直保持较高水平,而表施则因上述原因急骤减少,碳酸氢铵表施氮的利用率为31.3%,而全层深施则达到39.8%~55.5%,深施比表施氮素利用率提高了8.5%~24.2%。全层深施肥增产的主要原因是减少肥料损失,供肥稳而久,水稻的根系深扎活力增强,因此提倡在春季旋板田或秋翻春季以旋代耙时,将有机肥、硅肥、硫酸镁锌等底铺肥料一次全层施入。
1.2提倡有机肥与无机肥相结合水稻增产靠增施化学肥料来支撑,长期大量地使用化学肥料,不但破坏了土壤结构,不利于土壤肥力的提高,而且会因为土壤吸收不了渗透到地下,污染了水源。提高水稻产量必
须先提高土壤肥力,最好的途径就是增施有机肥,有机肥料和无机肥料相结合。有机肥料中含有大量的有机质,能改良土壤,增强土壤的通透性,促进水稻根系发育,还能提供水稻生长所需的全价营养,并通过微生物的分解产生激素,增加其抗性。产生的有机酸,可增加磷肥的有效性。微生物活动耗氮减少氮的损失,同时产生大量二氧化碳,为水稻光合作用提供重要原料。有机肥料肥效缓慢,肥劲长久,虽然能在水稻生育期内持续不断地供应养分,但养分释放的少而慢,需用速效的化学肥料作为补充和调节。有机肥在水稻翻地或旋地前施入。一般施优质腐熟的农家肥15.0~22.5 t/hm2,而以秸秆等为主要原料的有机肥不能超过7 500 kg/hm2,以防施用量过大或未腐熟的有机肥,使微生物大量活动,前期与水稻生长争氮,后期因分解有机质产生的硫化氢等有害物质,影响水稻根系的发育。
1.3提水稻栽培管理水平和肥料利用率
大力推行秋翻地,春季以旋代耙,以改善土壤结构,熟化土壤,提高土壤肥力。试验表明,秋翻地春季以旋代耙比春季旋板田增产8%~10%,落粒稻减少50.3%。选择株型好、分蘖力强、根系发达、吸肥力强的品种,节省肥料又高产。旱育壮秧,秧苗素质好,发根力强,抗黑根病能力强,吸水吸肥能力强。防止一次施肥量过大,肥料浓度高伤根,施肥后注意保水,防止肥料流失。保证抽穗前后通风透光好,底叶不早衰,维持根系的活力。适时晾田、晒田,促进根系下扎。推广节水栽培技术,以浅湿管理为主,后期实行干干湿湿的管水方法。消灭草荒,防止杂草与水稻争肥。安全用药,防止药害抑制水稻生长。加强病虫防治,防止水稻早衰。
2.测土配方施肥技术
2.1测土配方施肥技术的主要内容
2.1.1测土
测土是测土配方施肥的前提,通过对土壤养分分析测定,较准确地掌握土壤养分状况及供肥性能,为配方施肥提供科学依据;大许镇农技中心分成3组到各村以6.67hm2为核心采取土样500多个进行测定,以确定各村土地的土壤养分含量,便于因地制宜的施肥。
2.1.2配方
配方是施肥的关键,在测土的基础上,根据土壤特性、栽培习惯、作物的需肥规律、生产水平和气候等条件,结合上年的产量水平,确定目标产量,再根据肥料的效应,提出氮、磷、钾的最适用量和最佳比例。
2.1.3配肥
按照配方要求选择优质单质肥料或专用肥、复合肥、有机无机复混肥等肥料品种进行科学搭配;施肥是按照确定的配方,合理安排基肥、追肥比例,确定施用时间和方法,以发挥肥料的最大增产作用。
2.1.4制定施肥模式
根据土壤类型、作物的生育特性和需肥规律,制定相应的模式。水稻测土配方施肥要掌握以土定产、以产定肥、因缺补缺、有机无机相结合、大量与微量元素相结合、用地养地相结合、氮磷钾平衡施用的原则。有机无机相结合是指土壤肥力是决定作物产量高低的基础,土壤有机质含量是土壤肥力最重要的指标之一,增施有机肥料可有效的增加土壤有机质,有机肥和化肥的氮素比例具体视不同土壤作物及有机肥资源而定。用地养地相结合是指要使作物土壤肥料形成能量良性循环,必须坚持用地养地相结合,投入和产出相平衡,也就是说没
有高能量的物质投入就没有高能量的物质的产生,只有坚持增施有机肥,氮、磷、钾和微肥合理配施的原则,才能促进农业可持续发展,确保高产优质。
2.2水稻配方施肥技术
2.2.1确定水稻合理施肥量
水稻需肥量为每100kg稻谷需吸收氮素2.0~2.4kg,五氧化二磷0.9~1.4kg,氧化钾
2.5~2.9kg。综合考虑土壤供应能力、肥料利用效率以及生产水平等因素,在土壤养分中等的情况下,施用肥料中氮、磷、钾配比应为1∶0.5∶0.9左右。
2.2.2施足基肥
基肥以有机肥为主,化肥为辅。有机肥属完全肥料,含有各种养分,除氮、磷、钾外,还有钠、镁、硫、钙及各种微量元素。施用有机肥,可改善土壤通气性能,提高保肥保水性能,促进稻株稳健生长,从而有利于水稻获得高产优质。农家肥一定要腐熟。
2.2.3控制氮肥
水稻适量施用氮肥可促进稻株发棵生长,但过量施用,不仅会造成无效分蘖增多、变青、倒伏、病虫害加剧,而且导致空秕粒多,结实率下降,影响水稻产量。
2.2.4适当补充中微量元素
中量元素硅、钙、镁、硫均具有增强稻株抗逆性、改善植株抗病能力、促进水稻生长的作用,实践表明,缺硫土壤施用硫肥、缺硅土壤施用硅肥均有显著的增产效果。微量元素如锌、硼等,能改善水稻根部氧的供应,增强稻株的抗逆性,提高植株抗病能力,促进后期根
系发育,延长叶片功能期,防止早衰;能加速花的发育,增加花粉数量,促进花粒萌发,有利于提高水稻成穗率;还能促进穗大粒多,提高结实率和籽粒的充实度,从而增加稻谷产量。
2.3高产水稻施肥参考模式
重视施用磷钾肥
磷钾肥是水稻生长发育不宜缺少的元素,可增强植株体内活动力,促进养分合成与运转,加强光合作用,延长叶的功能期,使谷粒充实饱满,提高产量。磷肥以基肥为宜,钾肥以追施较好。
(作者单位:黑龙江省嘉荫县农业技术推广中心)