证明线面垂直的三步法[合集5篇]

时间:2019-05-15 07:59:11下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《证明线面垂直的三步法》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《证明线面垂直的三步法》。

第一篇:证明线面垂直的三步法

证明线面垂直的万能法则

王霖普

方法1

一条线垂直于平面内的两条直线

(构建等腰三角形高,勾股定理,三角形组相似产生互余角,或三角函数值证明相似,求出三角形中两角的三角函数值,若不是特殊值可能用到诱导公式,致使令一角为90度

方法2

三垂线定理

(1)与上面的法则配合使用

(2)射影定理继而构建三垂线定理

(3)由线面角,面面角诱导线面垂直

看边角关系就是看是否构成直角或等腰的情况

第二篇:证明线面垂直的专项练习

线面垂直

1:(本小题满分13分)(09广东 文)

某高速公路收费站入口处的安全标识墩如图4所示。墩的上半部分是正四棱锥PEFGH,下半部分是长方体ABCDEFGH。图

5、图6分别是该标识墩的正(主)视图和俯视图。

(1)请画出该安全标识墩的侧(左)视图;

(3)证明:直线BD平面PEG.w.w.w..s.5.u.c.o.m(2)求该安全标识墩的体积;(64000)

2、(09广东 理数)如图6,已知正方体ABCDA1B1C1D1的棱长为2,点E是正方形BCC1B1的中心,点F、G分别是棱C1D1,AA1的中点.设点E1,G1分别是点E、G在平面

DCC1D1内的正投影.

(1)求以E为顶点,以四边形FGAE在平面DCC1D1内的正投影为底面边

界的棱锥的体积;

(2)证明:直线FG1平面FEE1;

(3)求异面直线E1G1与EA所成角的正弦值()

33、.(11广东 理)如图5,在椎体PABCD中,ABCD是边长为1的棱形,且DAB

600,PAPDPB2,E,F分别是BC,PC的中点,(1)证明:AD平面DEF

(2)求二面角PADB的余弦值。(

21)7

14.(11湖南 文 12分)在圆锥PO

中,已知POO的直径AB2,点C在AB上,且CAB=30,D为AC的中点.(Ⅰ)证明:AC平面POD;

(Ⅱ)求直线 OC平面PAC所成角的正弦值.()

35.(11北京 理)

如图,四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD是菱形,AB=2,BAD60(1)求证:BD平面PAC

(2)PA=AB,求PB与AC所成的角的余弦值。

(3)当平面PBC与平面PDC垂直时,求PA 的长(PA

6)

6.(本小题满分12分)(11褔建 文)

如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB。(I)求证:CE⊥平面PAD;

(11)若PA=AB=1,AD=3,∠CDA=45°,(12)求四棱锥P-ABCD的体积(7.(本小题满分12分)(11天津 文)

如图,在五面体ABCDEF中,四边形ADEF是正方形,FA⊥平面ABCD,BC∥AD,CD=1,AD=,∠BAD=∠CDA=45°.(Ⅰ)求异面直线CE与AF所成角的余弦值;(Ⅱ)证明CD⊥平面ABF;(Ⅲ)求二面角B-EF-A的正切值。

5)6

线面垂直

8、如图,四棱锥P的底面是边长为1的正方形,PACD,PA1,PD

(Ⅰ)求证:PA平面ABCD;

(Ⅱ)求四棱锥PABCD的体积.(Ⅲ)求直线PB与底面ABCD所成角的大小.9、已知三棱锥P—ABC中,PC底面ABC,AB=BC,D、F分别

为AC、PC的中点,DEAP于E。(1)求证:AP平面BDE;

(2)求证:平面BDE平面BDF;

(3)若AE:EP=1:2,求截面BEF分三棱锥P—ABC所成上、下两部分的体积比。

10、四棱锥P-ABCD中,底面ABCD是正方形,边长为a,PD=a,_ A

_C

_D

PA=PC=2a,(1)求证:PD⊥平面ABCD;(2)求证,直线PB与AC垂直;(3)求二面角A-PB-D的大小.11.如图,已知两个正四棱锥PABCD与QABCD的高分别为1和2,AB4.

P

(1)证明PQ平面ABCD;(2)求异面直线AQ与PB所成的角;(3)求点P到平面QAD的距离.12.(2012年广东理 13分)

Q

如图5所示,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点 E在线段PC上,PC⊥平面BDE。

(1)证明:BD⊥平面PAC;

(2)若PA=1,AD=2,求二面角B-PC-A的正切值;(tan3)

13.(2012

江西理12分)

在三棱柱ABC-A1B1C1中,已知AB=AC=AA1BC=4,在A1在底面ABC的投影是线段BC的中点O。

(1)证明在侧棱AA1上存在一点E,使得OE⊥平面BB1C1C,并求出AE的长;

(2)求平面A1B1C与平面BB1C1C夹角的余弦值。

14.如图,四棱锥P-ABCD中,底面ABCD为菱形,PA底面ABCD,AC=22,PA=2,E是PC上的一点,2PE=EC。

(I)证明PC平面BED;

(II)设二面角A-PB-C为90°,求PD与平面PBC所成角的大小

15.(本小题满分13分)(11广东 文)

图5所示的几何体是将高为2,底面半径为1的直圆柱沿过轴的平面切开后,将其中一半沿切面向右水平平移后得到的.A,A′,B,B′分别为

'

CD,C'D',DE,D'E'的中点,O1,O1',O2,O2分别为

CD,C'D',DE,D'E'的中点.(1)证明:O1,A,O2,B四点共面;

''

(2)设G为A A′中点,延长AO1到H′,使得O1HAO1.证明:BO2平面HBG

'

'

'

'

'

''

'

'

'

18(本小题满分4分)(13广东 理)

如图5,在等腰直角三角形ABC中,∠A =900BC=6,D,E分别是AC,AB上的点,CD=BE=

误!未找到引用源。,O为BC的中点.将△ADE沿DE折起,得到如图6所示的四棱椎A’-BCDE,其中A’O=?3

1)

证明:A’O⊥平面BCDE;

(2)求二面角A’-CD-B的平面角的余弦值.(

第三篇:线线、线面平行垂直的证明

空间线面、面面平行垂直的证明

12.在正方体ABCD-A1B1C1D1中,E、F分别为AB、BC的中点,(Ⅰ)求证:EF//面A1C1B。(Ⅱ)B1D⊥面A1C1B。

D'

3.如图,在正方形ABCDA'B'C'D',A'(1)求证:A'B//平面ACD';

(2)求证:平面ACD'平面DD'B。

A

4.如图,已知△ABC是正三角形,EA、CD都垂直于平面ABC,且EA=AB=2a,DC=a,F是BE的中点,求证:(1)FD∥平面ABC;(2)AF⊥平面EDB.C'

C

B

5.如图,在正方体ABCDA1B1C1D1中,O是AC和BD的交点.求证:(Ⅰ)OC1∥平面AB1D1;(Ⅱ)平面ACC1平面AB1D1.

DA

C1

C

(5题图)

6.如图,长方体ABCDA1B1C1D1中,ABAD1,AA12,点P为

DD1的中点。

(1)求三棱锥DPAC的体积;(2)求证:直线BD1∥平面PAC;(3)求证:直线PB1平面PAC.C1

D1

B1

A1

P

DC

B

A

7.如图,在四棱锥PABCD,底面ABCD是正方形,侧棱

PD底面ABCD,PDDC,E是PC的中点,作EFPB于点F。

(1)证明:PA//平面EDB;(2)证明:DEBC

(3)证明:PB平面EFD。

8.ABCDA1B1C1D1是长方体,底面ABCD是边长为1的正方形,侧棱

A

AA12,E是侧棱BB1的中点.(Ⅰ)求证:AE平面A1D1E;

(Ⅱ)求三棱锥AC1D1E的体积.

第四篇:专题线面垂直

专题九: 线面垂直的证明

题型一:共面垂直(实际上是平面内的两条直线的垂直)例1:如图在正方体ABCDA1BC11D1中,O为底面ABCD的中心,E为CC1中点,求证:AOOE

1题型二:线面垂直证明(利用线面垂直的判断定理)

例2:在正方体ABCDAO为底面ABCD的中心,E为CC1,1BC11D1中,平面BDE 求证:AO1

题型三:异面垂直(利用线面垂直的性质来证明,高考中的意图)例3.在正四面体ABCD中,求证ACBD

P N D C A M B 练:如图,PA平面ABCD,ABCD是矩形,M、N分别是AB、PC的中点,求证:MNAB

题型四:面面垂直的证明(本质上是证明线面垂直)

例4.已知PA垂直于正方形ABCD所在平面,连接PB、PC、PD、AC、BD,则下列垂直关系中正确的序号

是.①平面PAB平面PBC ②平面PAB平面PAD ③平面PAB平面PCD

例5.如图,AB是圆O的直径,C是圆周上一点,PA平面ABC.若AE⊥PC,E为垂足,F是PB上任意一点,求证:平面AEF⊥平面PBC.

第五篇:线面垂直高考题

高考真题演练:

(2012天津文数).(本小题满分13分)

如图,在四棱锥P-ABCD中,底面ABCD是矩形,AD⊥PD,BC=1,PD=CD=2.(I)求异面直线PA与BC所成角的正切值;

(II)证明平面PDC⊥平面ABCD;

(III)求直线PB与平面ABCD所成角的正弦值。

(2012天津理数)(本小题满分13分)P如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.(Ⅰ)证明PC⊥AD;

(Ⅱ)求二面角A-PC-D的正弦值;

(Ⅲ)设E为棱PA上的点,满足异面

直线BE与CD所成的角为30°,求AE的长.C

D

(2010年安徽)如图,在多面体ABCDEF中,四边形ABCD是正方形,EF//AB,EF⊥FB,AB=2EF,BFC90,BF=FC,H为BC的中点.(I)求证:FH//平面EDB;

(II)求证:AC⊥平面EDB;

(III)求二面角B—DE—C的大小.(2012上海理数)如图,在四棱锥P-ABCD中,底面ABCD

是矩形,PA⊥底面ABCD,E是PC的中点.已知AB=2,AD=22,PA=2.求:

E

(1)三角形PCD的面积;(6分)(2)异面直线BC与AE所成的角的大小.(6分)

B

(2012山东)在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,FC⊥平面ABCD,AE⊥BD,CB=CD=CF。(Ⅰ)求证:BD⊥平面AED;

(Ⅱ)求二面角F-BD-C的余弦值。

(2012年北京)如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分别是AC,AB上的点,且DE∥BC,DE=2,将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,(I)求证:A1C⊥平面BCDE;

(II)若M是A1D的中点,求CM与平面A1BE所成角的大小;

(III)线段BC上是否存在点P,使平面A1DP与平面A1BE垂直?说明理由

(2012辽宁)如图,直三棱柱ABCABC,BAC90,[来源:学科网]

///

ABACAA/,点M,N分别为A/B和B/C/的中点。

(Ⅰ)证明:MN∥平面AACC;

(Ⅱ)若二面角AMNC为直二面角,求的值。

(2012江苏)如图,在直三棱柱ABCA1B1C1中,A1B1ACCC1E分别是棱BC,11,D,上的点(点D 不同于点C),且ADDE,F为B1C1的中点. A1求证:(1)平面ADE平面BCC1B1;

(2)直线A1F//平面ADE.

(2012湖南),在四棱锥P-ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中点。(Ⅰ)证明:CD⊥平面PAE;

(Ⅱ)若直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等,求四棱锥P-ABCD的体积。

B A

D

/

/

/

C1

E

(2012湖北),∠ACB=45°,BC=3,过动点A作AD⊥BC,垂足D在线段BC上且异于点B,连接AB,沿AD将△ABD折起,使∠BDC=90°(如图2所示),(1)当BD的长为多少时,三棱锥A-BCD的体积最大;

(2)当三棱锥A-BCD的体积最大时,设点E,M分别为棱BC,AC的中点,试在棱CD上确定一点N,使得EN⊥BM,并求EN与平面BMN所成角的大小

(2012广东),在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点 E在线段PC上,PC⊥平面BDE。

(1)证明:BD⊥平面PAC;

(2)若PH=1,AD=2,求二面角B-PC-A的正切值;

(2012年福建)在长方体ABCD-A1B1C1D1中AA1=AD=1,E为CD中点。(Ⅰ)求证:B1E⊥AD1;

(Ⅱ)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的行;若存在,求AP的长;若不存在,说明理由。(Ⅲ)若二面角A-B1EA1的大小为30°,求AB的长。

(2012大纲全国卷)如图,四棱锥P-ABCD中,底面ABCD为菱形,PA⊥底面ABCD,PA=2,E是PC上的一点,PE=2EC.(Ⅰ)证明:PC⊥平面BED;

(Ⅱ)设二面角A-PB-C为90°,求PD与平面PBC所成角的大小。

(2012安徽)平面图形ABB1AC11C如图4所示,其中BB1C1C是矩形,BC2,BB1

4,ABAC,A1B1A1C1BC和B1C1折叠,使ABC

与A1B1C1所在平面都与平面BB1C1C垂直,再分别连接AA1,BA1,CA1,得到如图2所示的空间图形,对此空间图形解答下列问题。

(Ⅰ)证明:AA1BC;(Ⅱ)求AA1的长;(Ⅲ)求二面角ABCA1的余弦值。

下载证明线面垂直的三步法[合集5篇]word格式文档
下载证明线面垂直的三步法[合集5篇].doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    线面垂直教案

    2012第一轮复习数学教案线面垂直、面面垂直教学目标:掌握线面垂直、面面垂直的证明方法,并能熟练解决相应问题. (一) 主要知识及主要方法:【思考与分析】要证明线面垂直,我们可以......

    线面垂直练习题

    例1如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于同一个平面.解:已知a∥b,a⊥α.求证:b⊥α.变式训练已知点P为平面ABC外一点,PA⊥BC,PC⊥AB,求证:PB⊥AC.例2如图9,在......

    线面垂直教案

    课题:直线与平面垂直 授课教师:伍良云 【教学目标】知识与技能 1、掌握直线与平面垂直的定义及判定定理. 2、使学生掌握判定直线与平面垂直的方法. 过程与方法 培养学生的......

    线面垂直的判定定理的证明过程

    线面垂直的判定定理的证明过程证明:已知直线L1 L22相交于O点且都与直线L垂直,L3是L1 L2所在平面内任意1条不与L1 L2重合或平行的直线(重合或平行直接可得它与L1平行) 不妨假设L3......

    线面垂直测试题1

    戴氏教育簇桥校区线面垂直测试题授课老师:唐老师1如图1,在正方体ABCDA1B1C1D1中,M为CC1 的中点,AC交BD于点O,求证:A1O平面MBD.证明:连结MO,A1M,∵DB⊥A1A,DB⊥AC,A1AACA,∴DB⊥平面A1ACC......

    线面垂直教学设计

    教案课题:直线与平面垂直的判定(一)【教学目标】知识与技能目标:通过本节课的学习,使学生理解直线与平面垂直的定义和判定定理,并能对它们进行简单的应用;过程与方法目标:通过对定义......

    证明空间线面平行与垂直(5篇范文)

    证明空间平行与垂直 知识梳理一、直线与平面平行1.判定方法(1)定义法:直线与平面无公共点。(2)判定定理: aba//ba////(3)其他方法:a//aa//2.性质定理:a a//bb二、平面与平面平行1.判......

    线面垂直的证明中的找线技巧

    线面垂直的证明中的找线技巧通过计算,运用勾股定理寻求线线垂直M为CC1 的中点,AC交BD于点O,求证:1如图1,在正方体ABCDA1BC11D1中,AO平面MBD. 1A1M,∵DB⊥A1A,DB⊥AC,A1AACA,∴DB⊥平面A......