数图形的学问反思

时间:2019-05-15 01:30:32下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《数图形的学问反思》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《数图形的学问反思》。

第一篇:数图形的学问反思

四年级数学上册《数图形的学问》教后反思

课堂以故事情境鼹鼠钻洞进行导入,把学生的注意力都集中到老师的身上,鼹鼠的鼹字学生发音并不准确,我对学生进行了正确读音的指导,体现了学科间的整合。紧接着让学生说说你如果是鼹鼠你想怎样钻洞?学生说出了很多种不同的想法,然后直接提问,到底有多少种不同的路可以走呢?请你用喜欢的方把所看到的鼹鼠钻洞的几种路径表示出来,从而自然的引出本课的重点——画图。此环节恰当的处理了直观与抽象的关系,把一个抽象问题借助多媒体形象直观的呈现在了学生的眼前,又充分让学生经历了把直观问题抽象化的过程。新课标一直强调教师在教学时一定要充分发挥学生的主体作用,因此在讲授新知环节,我给足了学生时间,让学生有足够的空间去探索并且发现规律;整个过程非常注重让学生说,当学生在汇报时,我及时板书,把解题的思路直观的呈现给学生,还重视培养学生做题时需按一定的顺序进行,做到有序思考,这样才能不重复、不遗漏。在巩固练习中,我创设了情境-----菜地旅行,将故事进行了延伸,从开始的五个站的车票设计到最后的七个站的车票设计,引导学生列出算式后及时提问:观察这些算式你发现了什么?鼓励学生积极探讨发现规律并总结方法,从而让学生深刻的体会到按一定顺序做题的重要性。数学来源与生活,也应用与生活,在最后一部分我出示了西城高铁的路线图,让学生用今天所学的知识解决生活中的实际问题,为西城高铁设计一共需要多少种单程车票,学生掌握了方法之后,解决问题快速准确。

总的来说,在这节课中,我把基本的理念转化为自己的教学行为,处理好教师讲授与学生自主学习的关系,注重启发学生积极思考,并且发扬了教学民主,当好学生数学活动的组织者、引导者、合作者,激发了学生的学习潜能,鼓励学生大胆的创新与实践,唯一不足是我对西关一小的学生学情估计不够准确,提前准备了线段图,使学生在画图的过程中原始思维受到了限制。

南小巷小学牛海谊

2017.11.29

第二篇:《数图形中的学问》教学反思

《数图形中的学问》教学反思

《数图形中的学问》教学反思1

教材分析:本节课是北师大教材四年级下册36页的内容。这节课主要是让学生在数图形的过程中体会找规律的过程,培养学生认真观察图形特征,有序思考等良好习惯,形成良好的数学思维品质。

学情分析:我班学生课外知识比较丰富,有的学生早已会套用公式来计算图形个数,但对公式是怎么得来的不是很清楚,而且大部分学生还是比较喜欢用数的方法来计算。因此教学中我利用我校电教设施齐全的优势,制作课件,让学生充分体会数的过程及方法,自主参与找规律的过程,最终达到能列式计算出答案为目的。

教学目标:

1、通过数一数,说一说等活动,使学生体会找规律的过程。

2、通过数图形的过程,培养学生总结归纳的能力,培养认真观察、有序思考的良好习惯。

重点目标是教给学生有序观察、寻找规律的基本方法,培养总结归纳、解决问题的能力。

教法与学法:数学课程标准第二学段目标中明确指出:要让学生经历探索给定事物中隐含的规律,使学生的数学思考有条理,并具有一定的归纳能力。因此在四年级下册安排“数图形中的学问”这一学习内容,是帮助学生在自主探索和合作交流的过程中初步理解和掌握一些数学思想和方法的最好体现。

图形计数是研究一个图形中包含基本图形个数的问题。数出某种图形的个数是一类有趣的数学问题。怎样数图形的个数就能做到不重复不遗漏,全部数出来呢?其实最常用的方法就是分类数。通过让学生亲自数一数的活动,经历从简单到复杂图形计数方法的探究,学会按照一定的顺序与规律去数,可以培养学生认真观察、有序思考的思维品质。所以在教学中我主要采用让学生自主探究,在经历多次数较简单的图形地过程中发现规律并总结归纳出方法,得出公式,然后运用所得解决较复杂的问题。在《信息技术与小学数学课堂教学整合》的研究过程中,我深感信息技术的有效运用能提高课堂教学效率,所以在教学中我充分借助多媒体设备的演示,较好地呈现了学生数角的过程和方法,充分调动学生各种感官参与学习活动,激发学习兴趣,并有助于学生归纳、总结数角的方法,使学生的抽象能力得到发展。通过让学生独立思考、同桌交流,碰撞出思维的火花。学生在探究讨论、交流、归纳、总结中,我尽量尊重学生自己的体验,关注他们的学习过程,关注学生数学学习的水平,帮助学生认识了自我,建立信心,使学生获得良好的情感体验。

作为数学老师都知道,数图形的内容非常丰富,变化莫测,这节课所接触的只是其中的一小部分,所以我把重点放在教给学生数的方法上,着重培养学生的数学思维品质。

教学程序:1、激趣引入,揭示课题;2、检查旧知,初步练习;3、探索方法,寻找规律;4、运用发现,总结归纳;5、拓展延伸,体验快乐;6、回顾过程,全课总结。

《数图形中的学问》教学反思2

数学课程标准第二学段目标中明确指出:要让学生经历探索给定事物中隐含的规律,使学生的数学思考有条理,并具有一定的归纳能力。北师大版四年级下册“数图形中的学问”一课中,数图形不是“数”而是图形的计数问题,图形计数是研究一个图形中包含基本图形个数,数出某种图形的个数是一类有趣的数学问题,怎样数图形的个数就能做到不重不漏,全部数出来呢?其实最常用的方法就是分类数。这节课我通过让学生亲自数一数的活动,经历从简单到复杂图形计数方法的过程,体验到数图形的不同方法:随意数、按一定顺序数、分类数、利用总结的方法计算等策略,从中感受按照一定方法计数图形的优点,培养了学生认真观察、有序思考和学会归纳总结的思维品质,促进学生思维能力的发展。

通过这节课,我有以下体会:

一、目标定位要准确,注重计数图形与归纳方法相结合。

“数图形中的学问”一课,教材编排相对简单,仅限于这种单一的线段、角、三角形、长方形的计数。而数学老师都知道,与本课相关的辅导内容却是很多的,如组合的数三角形、长方形、正方形、长方体等等。另外,这种简单的图形计数隐含了一个背景知识“等差数列的求和”这一知识点,四年级除了个别学习奥数的学生知道以外,大部分学生并不了解。因此,在设定目标的时候注重图形的计数与方法的归纳,而没有把重点放在等差数列求和的方法上。当个别学生会用等差数列求和公式和求线段的公式时,我也并没有过多的讲解,而将重点放在了计数图形方法的探究如何列式解决图形个数的问题上。

二、引入设计要简洁有效,解决从生活情境中抽象出数学的现实原型的问题。

新课程理念强调从现实情境中引出数学概念,让学生经历数学抽象的过程,从中感受数学的现实背景,体会到数学来源于生活。是而数图形在现实生活中的原型之一就是“有几种不同的车票”,以前老师为了更体现数图形数生活的`联系,就设计了学生熟知的有几种不同的汽车票的情境,而现实生活是汽车票一般都是“一元通”不管到哪个站都是一元钱或两元钱。所以我设计了“单向的火车票有几种”的情境,因为现实生活中,火车票一般不会是一个价格坐到任何地点。而且我设计的是单项的火车票有几种,避免了求出线段条数后还要乘2的情况,因为两地之间有几种火车票存在方向问题,a地到b地和b地到a地是需要两种不同的票。看似简单的引入,其实是老师精心的设计,使本课的引入简洁有效。

三、认知起点要把握准确,把学生已有的经验与数学的认知紧密结合。

关于如何数角、数三角形、数长方形,有的孩子已经掌握,也懂得按照一定的顺序数,对于稍复杂的图形就不知所以然,这是孩子们学习的起点。正是准确的把握了这个起点,尊重了孩子们已有知识,注重方法的探寻。整节课围绕“你是怎样数的?”和“你是怎么算的?”这一中心问题展开教学。有序地数图形大部分学生都会,因此我在上课开始时就引导学生用自己的方法数出简单图形的个数,当学生说出数线段的两种不同方法后,就引导学生总结出计算图形个数的方法,并立刻加以运用。学生经历由利用已有经验去“数”,到运用自己总结的方法去“算”的过程,在解决问题的过程中,他们获得了积极的情感体验。

《数图形中的学问》教学反思3

《数图形中的学问》是北师大版小学数学四年级上册第七单元一个专题。学生在之前的数学学习中已经体验到用字母或者图形来表示和代替生活中复杂的具体模型。在数图形的过程中,让学生体验有序的数法,养成有序思考的习惯,发展推理能力。在本册书的第二单“线与角”中已经认识了线段,作业中也接触到一些简单的数线段的方法,在之前二三年级的乘法学习中也具备了一定的推理和归纳能力。本节课的学习目标是:结合问题情境,经历把生活中的现实问题抽象成数图形的数学问题,并利用多样化的画图策略解决问题的过程。数图形的过程通过开展让学生亲自数一数的活动,从探索与实践中体会到数图形的不同方法(任意数、按一定顺序数、总结规律数),培养了学生认真观察、仔细分析、有序思考并学会归纳总结的能力。

一、抓住主线具体剖析。

“数图形中的学问”这一课时,书本中展开的内容相对单一,仅限于数线段这一种方法。但是生活中面临的具有问题五花八门,因此我们要注重开发引导学生学会将具体问题转化为抽象的数学方法这一能力。因此在这节课刚开始的时候,我先安排了一个简单的“握手”小游戏:每4人为一小组,小组中的每位同学分别与其他同学握一次手。通过这个游戏旨在让学生感受到生活中的数学问题无处不在,要学会如何用数学的思考方法将它们转化为简单的数学问题。该课时中主要将数线段这一数学方法展开讨论且采用学生普遍能够接受的两种方法进行有序的数,很少有同学能够想到第三种方法,所以在教学中,我会只针对这种方法注重学生会数并且数的不重复,不遗漏即可。整节课围绕“你是怎么数的?”这一中心问题展开探索和研究。在教学中注重方法的探索和规律的总结。

二、问题情境的分析要具体和透彻。

关于如何数线段这一问题,之前第二单元的习题中已有过接触,有的孩子已经掌握,也懂得按照一定的顺序数,但是方法有些单一,也不懂得其中的学问,变换下问题情境,有些同学就不懂得去迁移转化。这节课围绕的是小鼹鼠钻洞这一背景材料,要从中抽象出数线段这一数学模型,并在这个模型的基础上围绕“你是怎样数的?”这一中心问题展开教学。因此问题情境要分析的透彻,解读的要到位。让尽可能多的学生说一说“如果你是小鼹鼠,你会如何钻”。这一步骤没有展开,部分学生会误以为,小鼹鼠走过的路线跨越过了几个洞。并且要说清小鼹鼠是往前走,而不能往后退。这个细节一般只要强调一下学生就不会弄错。但是这一部分并不是该课的重点,因此也不能花费太多的时间去细究。

三、探索环节要深入,板书规范且易于发现方法规律。

学生在数小鼹鼠的路线时,会出现五花八门的答案。有的学生会具体的画出小鼹鼠和地洞,有的学生会利用字母表示洞口,以多组字母组合展开的形式数,有的学生则已经想到了用数线段的方法来数。要让每种学生都说一说自己的想法和结果。引导学生学会从具有到抽象这一数学模型建立的能力与思想方法。学生在讲自己画的内容时,要让学生说清自己所画的内容以及如何思考的。在教学数线段的方法时,按端点来数,大部分同学能够思考得到。板书的时候也要按从不同端点出发画出相应的图形。而课本上的第二种方法(按不同的距离来数),只有少部分同学可以想到。因此这里教师可以边板书边引导,让学生自己发现这是按照不同的距离来数的。并让他们总结出两种方法的相同点和不同点。他们都是按照一定的顺序来数的(有序思考),它的好处是不重复、不遗漏。通过另一个背景材料“小鼹鼠的菜地旅行”,让学生懂得知识迁移,进一步巩固新知识。单程票这一知识大多数学生难以想到,教师可以先解释。并引导学生将该问题情境转化为数线段的数学方法。让学生分别用两种方法来数,教学中紧紧围绕规律,逐层深化,使学生在有效的时间里掌握了个规律,同时数线段的知识得到了深化;最后再根据同一图形的延展提炼归纳出计算这类图形个数的方法,并借助一个过渡练习,学生就轻松地掌握了方法,最后同学掌握了方法后,进行沟通整合,拓展迁移练习。通过数图形的过程,培养学生总结归纳的能力,培养认真贯彻、有序思考的良好习惯。

四、学生探索为主,教师有效引导相结合。

在双减背景下,教师在课堂上应更注重学生。要把更多的时间和精力放在学生的探索和讨论上。同时作为教师我也应充分的相信学生,让学生自己去探索,学生探索过程中可适时地借助多媒体课件,帮助学生建构数图形的方法,这不仅可以增强学生与他人合作的意识,更发挥了学生的主体作用,进一步提高学生的探索能力和创新能力。使学生切实感受到探索与发现并存。

五、不足之处。

本节课中上下来尚且有以下几点不足之处需改进:

1、情景引入环节不够细致和不够透且在无关紧要的点上重复太多以及浪费了太多的时间。应让学生尽可能的多说一下钻洞的方法。让他们在说的过程中自然而然的体会到只要从一个洞进去,另一个洞出来就可以了。而不是后面因为转化为数线段,就理解到一条路线经过了几个点。单程票这个点如果2,3个学生都不能说出,就直接出示其定义,不然整节课在时间把握上便会出现问题。

2、这节课安排的内容有点浅,在教学中忽视了两种方法的有效巩固,对后进生的学生有一定的帮助作用,但对基础较好的同学来说,本节课的梯度设计较浅,本节课是一堂承上启下的一课,因此应进行适度的拓展,开拓同学们的视野,进一步巩固知识迁移的能力。如:“在一个大角里加一条射线,你能快速地数出这个图形中共有多少个角吗?”类似的问题。

3、另外互动性方面还有待进一步的改进,这有赖于教师合理的引导,引导的到位了,层层递进环环相扣,学生就能很好的跟上老师的节奏,上出一堂精彩的好课。

只有认真地上每一节课,才会有很多好的收获。“教然后知困”,教师只有在教学中不断学习。反思,才能发现自身存在的不足,寻求解决不足的方法。一位教师,只有在不断地学习中历练和思考,才会不断地成长。

《数图形中的学问》教学反思4

这一节的内容是通过数简单图形个数的活动,让学生初步体会有序思考的必要性,在数图形的过程中做到不重复不遗漏。我先通过预习让学生寻找数线段的方法,体会有条理数法的多样性,并能运用有序的数法数出给定图形的个数。如何引导学生有序地数角,是本节课的重点,教学时,让学生自主合作探究,小组汇报交流的学习形式,让学生亲历发现、研究、探索问题的全过程,在学生出现的问题中适时引导学生想办法有序的数,进而发现有序数图形的方法,让学生亲自体验到“有序”数学思想产生的过程,尽可能使学生全面参与到自己的认知形成的过程中。在练一练数三角形的练习中,放手学生运用知识迁移的数学思想,运用有序数角的方法,先独立思考,再进行汇报交流,培养学生独立思考的学习能力,给学生创造了表达自己见解的机会。在练习完之后,若能让学生把数三角形和长方形的方法和数角的方法进行比较,更能帮助学生加强知识间大联系,深刻掌握有序数图形的方法,让学生学会全面、有序地思考问题。

总而言之,在上课的过程中,给了我一次学习的过程,在教案设计时,该怎么样把每一个环节落实到位,怎么样说好每一句话,预设好每一个环节。在听取各位教师的评课的过程中,让我有了茅塞顿开的感觉。当然,更重要的是离不开执教者对教材的深入理解。在此,我衷心感谢全组数学教师对我中肯的评价,感谢他们对我的直言不讳,让我在今后的教学中,使我能够在一个轻松和谐的教学氛围中与学生共同去探讨,去发现,去学习。

《数图形中的学问》教学反思5

新课程加强与改善了传统的数学学习内容,在图形的认识、测量,图形与转换等内容中,经常遇到一个复合图形中有多个单一图形的问题,而这就需要用到“数图形”,在执教四年级下册第二单元“数图形中的学问”一课时,一看到课题便引起了我的高度重视,决心从第一个教学环节——备课入手。为上好这一课,课前我先让学生预习,上课一开始先向学生说明在从前我们在做与之类似的题目时,同学们极易出现错误,这节课要求同学们认真听讲,并引用毛主席关于“世界上就怕认真二字……”的名言,阐述了认真的重要性,同时要求学生一定要体会有序思考,按一定顺序数的必要性,课堂上我滔滔不绝的按自己设计的教案进行讲解,比平时上课多说了一些话,学生在课堂上的表现也因受老师情绪的影响表现良好,满以为这堂课我讲的还行,感觉学生听得也很认真,相信收效肯定会不错,在离下课还有不到十分钟时,要求学生完成同步作业中的练习题,在批阅学生作业时,结果把我惊得目瞪口呆,全班41个同学竟有18个同学出现了错误。看完作业,内心就像打翻了五味瓶一样,急躁、痛苦,甚至气愤,恨不得对做错题的同学揍一顿。待情绪稳定以后我进入沉思之中,忽又想起一句名言来:“没有教不会的学生,只有不会教的老师”。看来问题就出现在我自己的身上,一定要从自身的教学方法和教学过程入手查找根源,堵塞漏洞。

下课后,我来到主控室,打开网络查看我曾经收藏的一些优秀论文。阅读时,文中有一段文字使我茅塞顿开,我明白了学习不是由老师把知识简单地传递给学生,而是由学生自己建构知识的过程;学生不是简单被动地接受信息,而是主动地建构知识的意义。这种建构是无法由他人来代替的。就教学方式而言以教师为中心的“灌输式”,学生则是“容器式”的学习方式,这种被动缺少自主探索、独立获取知识的机会,特别是合作学习的机会导致了我这堂课走向失败。

知错就改,深思熟虑后,我打算给11班上这节课时严格按新课标、新思路、新方法去上课:首先创设“谁才是最公正的法官”这一情境,将学生带入教学内容,并激发起学生的浓厚兴趣;二是让学生以小组为单位,在小组内展开比赛,看谁数得又快又准确;三是我借用多媒体设计了移动圆盘的数学游戏,教师只说明游戏规则,其他的都是放手发动学生,让学生通过仔细观察、动手实践、猜想、验证等许多步骤,让学生发现其中的规律。这堂课我要求学生预习是改变了原来学生预习后老师向他们提问的做法,变成他们预习后必须书面向老师提出至少一个“为什么”请老师回答,爱因斯坦说过一句名言“提出一个问题甚至比解决一个问题更重要,一个人只有发现问题才能够提出问题,只有提出问题才能解决问题,只有提出了最有价值的问题,才有可能对自然与社会发展做出重大的贡献……”这一改果然比老师提问学生回答好使得多,原因是这样做创出了平等、民主、和谐的课堂氛围,让每一个学生都投入到知识的探索与研究中来,把学习的主动权还给了学生,让学生从被动地接受转变为主动出击,学生预习后交上来的问题,我都仔细进行了归类整理,并严肃认真地作了回答,学生对我认真回答他们提出的问题,感到很满意,脸上洋溢着幸福的笑容。离下课还有5分钟,我又把同步作业中的练习题让学生做,大部分学生很快就交上了作业,下课时,学生全部把作业交齐了。课后回到办公室,我马上批改作业,全班41个同学只有2个同学出现了错误,其它全部答对,我的心里别提有多高兴了。

我是一个具有7年教龄的教师,上课时总是担心学生学不会,以为自己不去讲就完不成教学任务,时常自觉或不自觉地将课堂变成简单机械的“填鸭式”,这样做只能是好心做坏事,只能违背学生的学习规律,妨碍学生创新能力的发展,影响学生的学习兴趣,使学生对学习感到厌倦。

从前后两节课由于授课方式不同而得到截然不同的两种效果,使我清醒地认识到从被动接受学习到自主发现式学习,从个体独立式学习到小组合作式学习,从传承性学习到创新性学习的改变是多么重要!

让我们为了每一位学生的发展,为达到课程改革目标而共同努力!

《数图形中的学问》教学反思6

四年级下册《数图形中的学问》教学反思二本节课是北师大教材四年级下册36页的内容。这节课主要是让学生在数图形的过程中体会找规律的过程,培养学生认真观察图形特征,有序思考等良好习惯,形成良好的数学思维品质。

我们班学生课外知识比较丰富,有的学生早已会套用公式来计算图形个数,但对公式是怎么得来的不是很清楚,而且大部分学生还是比较喜欢用数的方法来计算。因此教学中我利用班班通资源,制作课件,让学生充分体会数的过程及方法,自主参与找规律的过程,最终达到能列式计算出答案为目的。讲完后回到办公室,我有以下几点反思:

一、课堂引入生活化:

关于如何数角、数三角形、数长方形,有的孩子已经掌握,但不知所以然,这是孩子们学习的起点,正是准确的把握了这个起点,尊重了孩子们已有知识,注重规律的探寻。我以4人打电话作为导入,先是出现问题,导致无法统计打电话的次数,出现矛盾,再让孩子开始想办法有顺序的打电话。

二、注重知识迁移:

在数线段和角时,我是由打电话迁移到数线段数角。整节课我围绕你是怎样数的?这一中心问题展开教学在教学中注意教方法和教规律,我整节课设计由易到难,由单项训练到多项训练,尤其是对数角的设计尤为突出,先借助数的方法数4条射线组成的角,再数6条射线组成的角,教学中紧紧围绕规律,逐层深化,使学生在有效的时间里掌握了个规律,同时数角的知识得到了深化。

三、凸现数形结合思想。

数学教学的最高境界是学生掌握数学思想与方法,本节课我在教学的时,利用迁移的规律,使学生掌握了数角、数三角形、数长方形、数平行四边形的规律,并且在数的过程中注重了数形结合的思想,使学生能将算式与图形一一对应从无序到有序,是一种思维的渐进过程。这节课上,通过让学生自主探究、合作交流等方式,让学生亲历发现、研究、探索问题的全过程,进而发现有序数图形的方法,让学生亲自体验到有序数学思想产生、发展的全过程,体验到成功的喜悦。在一次次思维火花的碰撞之后,学生们想出各种办法数出图形中的个数,不仅增强学生与他人合作的意识,更发挥了学生的主体作用,进一步提高学生的探索能力和创新能力。但在有情境图插入图形中时要注意引导题意的要求。

在小结时,我并不是让学生总结出数角的公式,而是让学生说一说他们在整个学习和实践数角的过程中有哪些感受和发现,让学生表述自己发现的规律和顺序,实际上是让学生总结归纳的过程。通过这一环节,学生对数角过程中的顺序,角个数的变化体会得比较深入。收效良好,达到了预期的效果。

第三篇:《数图形中的学问》教学反思

《数图形中的学问》教学反思

陈志胜

《数图形中的学问》是北师大版小学数学四年级上册第七单元一个专题。主要是在数图形的过程中,让学生体验有序的数法,养成有序思考的习惯。数图形不是“数”而是图形的计数问题,怎样数图形的个数就能做到不重复、不遗漏,全部数出来呢?其实最常用的方法就是分类数。这节课我通过让学生亲自数一数的活动,经历从简单到复杂图形计数方法的过程,体验到数图形的不同方法:随意数、按一定顺序数、分类数、利用总结的方法计算等策略,从中感受按照一定方法计数图形的优点,培养了学生认真观察、有序思考和学会归纳总结的思维品质,促进学生思维能力的发展。通过这节课,我有以下几点体会:

一、学玩结合,把握主线。

“数图形中的学问”一课,教材编排相对简单,仅限于这种单一的线段的计数。文中采用学生普遍能够接受的两种方法进行有序的数,很少有同学能够想到第三种方法,所以在教学中,我只注重学生会数而且数的不重复,不遗漏即可。但是我们知道在三年级学过握手问题,有的孩子已经掌握,但不知所以然,这是孩子们学习的起点,正是准确的把握了这个起点,尊重了孩子们已有知识,注重规律的探寻。因此,在设定目标的时候注重图形的计数与方法的归纳,而没有把重点放在求和的方法上。整节课围绕“你是怎样数的?”这一中心问题展开教学在教学中注意教方法和教规律,我整节课设计由易到难,由单项训练到多项训练,而将重点放在了计数图形方法的探究如何列式解决图形个数的问题上。先借助多媒体中的几何画板工具,让学生从无序中玩,渗透到有序玩。

二、在游戏中抽象数学模型,在模型中学习数学知识原理。

关于如何数线段问题,有的孩子已经掌握,也懂得按照一定的顺序数,但是方法有些单一,不懂得拓展,变换下背景有些同学就不懂得去迁移,尤其是对我们农村小学的孩子,这是孩子们学习的起点。正是准确的把握了这个起点,尊重了孩子们已有知识,注重方法的探寻。整节课围绕不同的背景材料,从中抽象出同一个数学模型吧,并在这个模型的基础上围绕“你是怎样数的?”和“你是怎么算的?”这一中心问题展开教学。

背景材料一:

提取方法一:从A出发数,从B出发数,从C出发数。

提取方法二:一格一格数,两格两格数,三格三格数。

背景材料二:

通过另一个背景材料,让学生懂得知识迁移,进一步巩固新知识

三、教学设计要扎实、深入,板书规范易于发现知识规律。

数图形中确实有很多学问,在教学中注意方法和规律,整节课设计由易到难。在教学数组合线段时,先计算出一层的线段,再数多层的线段,教学中紧紧围绕规律,逐层深化,使学生在有效的时间里掌握了个规律,同时数线段的知识得到了深化;再根据简单的图形提炼出计算这类图形个数的方法,并借助一个过渡练习,学生就轻松地掌握了方法,最后同学掌握了方法后,进行沟通整合,拓展迁移练习。通过数图形的过程,培养学生总结归纳的能力,培养认真贯彻、有序思考的良好习惯。

ABCD3+2+1=64+3+2+1=105+4+3+2+1=156+5+4+3+2+1=21ABCDEABCDEFABCDEFG

四、适度拓展,开拓视野

本节课是一堂承上启下的一课,是在原有学习《搭配中的学问》的基础上,继续学习有序数图形问题,接下来将在六年级《比赛场次》一课继续学习,因此本节课我进行适度的拓展,开拓同学们的视野,进一步巩固知识迁移的能力。

拓展题:数线段你会数了,那更难的图形你会吗?在一个大角里加一条射线,你能快速地数出这个图形中共有多少个角吗?说说你是怎么数的?

五、教师角色定位要准确,做到学生的主动探索与教师的有效引导相结合。

俗话说“亲其师,信其道”,学生喜欢老师,自然就喜欢老师的课堂。上课老师很强的亲和力,自然就拉近了师生之间的距离。同样我也充分的相信学生,让学生自己去探索,学生探索过程中,适时地借助多媒体课件,帮助学生建构数图形的方法,在一次次思维火花的碰撞之后,学生们想出各种办法数出图形中的个数,不仅增强学生与他人合作的意识,更发挥了学生的主体作用,进一步提高学生的探索能力和创新能力。使学生感觉到“有探索就会有发现”!

六、不足之处

本节课中,我安排的内容有点浅,在教学中忽视了两种方法的有效巩固,对基础较差的学生有一定的帮助作用,但对基础较好的同学来说,本节课的梯度方面设计不够好,此外在拓展方面进行了一些不必要甚至说对现阶段的学生来时是毫无意义的,当然整节课在时间把握上也出现了一些问题,主要表现在以下几个方面: ① ② ③ ④ 给学生讨论方面预留的时间不够合理; 互动性方面还有待进一步的改进; 学生在动手操作方面比较少; 对于个别差生“照顾”不到位。

第四篇:数图形的学问教案

数图形的学问

谢宇

教学目标

1、结合问题情境,经历把生活中的现实问题抽象成数图形的数学问题,并用多样化的画图策略解决问题的过程。

2、在数图形的过程中,逐步形成有序思考的良好习惯,发展推理能力。

3、在发现规律的过程中能有条理的表达解决问题的过程和结果,提高学习兴趣。

课前游戏:感受“有序”的必要性。

游戏规则:老师先说一组有序的数字,学生复述,如0123456789,你能把它说出来吗?再说出另一组数字,如2709473685,你还能复述出来吗?为什么第一组数你们能这么快说出来,第二组数字却有困难了呢?

归纳:因为第一组数字我是按从小到大的规律有序说出的,所以你们能不遗漏地复述出来,但是第二组我没有按明显的规律说出来,你们复述的时候就有困难了,看来,有序的说一句话,做一件事是多么的重要。(板书:有序)等 一下你们思考、回答老师的问题时,也要做到有序,能做到吗?

一、引入新课,体验有序的重要性

(一)今天,谢老师给大家带来了一只可爱的小动物――――鼹鼠,我们一起来看,(出示幻灯片)。解读情景图的意思。

读一读这句话,(1)这里有几个洞口?(4个),为了叙述方便,我们把这4个洞口分别用A、B、C、D来表示。(2)什么是任选一个洞口进入,向前走?如果小鼹鼠从A洞口进去,可以从哪个洞口出来?(B、C、D然后往前走)(3):如果你是这只可爱的小鼹鼠,你会怎么走?(让学生在体验中感悟)(4)你们走了这么多条路线,老師也想走走,大家看,我从D洞口进去,可以吗?为什么?

(5)刚才有我同学还想上來走,但是时间关系就不让大家一个一个上来了.你想提出什么数学问题吗?(学生说)最后引出问题:有多少条不同的路线?

(二)展示一长纸条,说明:如果用这张纸条表示弯曲的通道,上面的字母表示各个洞口,你能把这个问题情景画成线段图的形式吗?也就是示意图。请你在练习纸上完成第一小题。

(1)学生先独立画,然后同桌讨论。(教师巡视指导并留意完成情况)

(2)你画的这条线段表示什么?表示通道,上面的字母或图形表示什么?各个洞口。

(三)问题抽象

如果把这条通道看作一条线段,上面的点表示洞口,小鼹鼠有几种走法,其实就是让我们数这里有几条线段,你有什么办法数数出来吗?,请你在练习单上画一画,数一数,并记下来,做到不重复,不遗漏。做完后,同桌间相互交流一下自已的想法。

(1)学生汇报第一种方法。你数出了几条线段?说说你是怎么数的?你先数什么?(线段AB、线段AC、线段AD、有几条?根据

回答板书:3)再数什么?(线段BC、线段BD有几条?根据回答板书:2)然后呢?(线段CD这里有1条,记下来。板书:1)学生在黑板上说,边指边画出路线。

他说得好吗?好在哪里?让学生点评。(说的时候让学生按:他是这样数的,先数、、、、,再数、、、,最后数、、、、的模式说,突出有序)。

(2)教师归纳:在这里,我们是按出发点的不同,先数出从A点出发的AB、AC、AD三条线段,再数从B点出发的BC、BD两条线段,最后数从C点出发的线段CD线段,从而求出一共有6条线段,写算式。(线段和字体颜色的一样)

谁还有不同的方法数出线段的?(留意学生的完成情况)

(3)方法二:你数出了几条线段?你又是怎么数的?你先数什么?(线段AB、线段BC、线段CD有几条?老师板书:3)再数什么?(线段AC、线段BD,有几条?老师板书:2)最后数什么?(线段AD。这里有1条,老师板书:1)所以全起来也有6条线段。并写出算式。

我们先数最短的线段,有AB、BC、CD.一共有3条基本线段,再把相邻的两段拼成比较长的线段,有AC、BD这两条,最后把相邻的3条基本段拼成更长的线段,有AD,所以共有3+2+1=6(条)

(4)归纳:这里,我们按线段的长短来分类,有序的数出了线段的条数。

(三)比较两种数法的异同。

1、“大家来看这两种数法,你认为它们有什么不同点和相同

点?同桌可以讨论一下”

2、学生汇报。不同点:第一种方法是按出发点的不同来数的的。第二种是从根据线段的长短不同来来数的。(还有什么不同点?这里的3、2、1、和这里的3、2、1所表示的是相同的的线段吗?,指算式,不一样。借助多媒体理解3个数分别所表示的线段。)

相同点:算式是一样的,所以数出的线段都是6条;还有呢?(学生可能说不出,可引导:在刚才数线段之前,老师一直强调,数的时候要注意什么?指“有序”一词,对,不管是哪一种方法,我们在数图形的时候根据不同的标准做到有序,知道先数什么,再数什么,最后数什么。)只有这样数才会数得不重复,也不遗漏,这是数图形的基本方法,这也是我们这节课学习的内容。(板书课题)

反馈:你们会用这种方法数图形了吗?现在我们就用这种方法来解决小鼹鼠遇到了下一个问题。

三、菜地旅行,运用有序。

(一)1、解读图中的信息。(1)小鼹鼠菜地旅行的出发点在哪个站?目的地在哪个站?从出发点到目的地一共有几个站?(画出始发站和终点站,用线段连接)小鼹鼠遇到了什么问题呢?读问题。

(2)师直接说出:单程指的是从出发点到目的地的车票.不包括返回时的车票。

2、用我们刚才学的的方法,数一数5个车站要几种单程票?然后同桌交流一个你的想法.3、学生汇报。这里要我们求有几种车票,也就是求这里有几条线段。(1)你是怎样数的?(先说出图中线段和点所表示的意思,边说边画出数的过程)。根据学生的回答,老师板书:4+3+2+1=10,学生评价:你觉得他说得怎么样?好在哪?(突出“有序”)

4、谁还有不同的方法?请你上来数一数。(他说得好吗?好在哪里?

(二)如果有6个汽车站,又需要准备多少种不同的单程车票呢? 6个站,说明这里有6个点了。这次比一比,谁最快?

1、学生独立完成。让学生来说一说,数一数,记一记。(像老师一样)

5、谁还有不同的做法?(预设:学生想不到,如何引导?A:刚才是5个点,有10条线段,现在增加一个点,增加了几条线段?你能把这5条线段在图上表示出来吗?学生上来画,所以可以怎么列式?板书:5+4+3+2+1=15B:学生看书。)

6、归纳:当线段上的点数增加1个时,我们可以再画一次图,重新再数一数,也可以和增加前的线段数联系起来思考。象这里,我们可以在前面5个点的基础列式:5+4+3+2+1=15

(三)如果有7个汽车站,又需要准备多少种不同的单程车票呢? 也就是这条线段上有几个点了?(7个)

1、比一比,谁最快知道答案?说说你是怎样找到答案的?

2、学生汇报反馈。(你是怎样想的?学生说想法,最快的是:6+5+4+3+2+1=21,如果学生没说到,就问还有更快的方法的

吗?请你来说说)

(四)如果有8个汽车站,又需要准备多少种不同的单程车票呢?

学生说,简单说说想法,然后老师板书:7+6+5+4+3+2+1=28

你还能往下说吗?9个点有几条线段?10 个点呢?15个呢 ? 你们这么快就说出来了,发现了什么规律了吗?

(五)引导观察 发现规律

现在请同学们观察学习单上的图和算式,你有什么发现?(引:想车站单程车票的数量和车站的站数之间有没有什么关系?

1、独立思考。2.汇报 3总结。

四、总结全课,回归课题并板书:数图形的学问

五、板书设计:(略)

第五篇:数图形的学问教案

《数图形的学问》教学设计

浔溪乡中心小学

尧慧玲

教学目标:

1、结合问题情境,经历把生活中的现实问题抽象成数图形的数学问题,并用多样化的画图策略解决问题的过程。

2、在数图形的过程中,逐步形成有序思考的良好习惯,发展推理能力。

3、在发现规律的过程中能有条理的表达解决问题的过程和结果,提高学习兴趣。

一、课前游戏:感受“有序”的必要性。

师:上课之前尧老师想与小朋友们玩一个游戏,你们想不想玩? 生:想。

师:游戏规则是我说一组数字你们要把它快速地复述出来,0123456789。生:0123456789。师:2709473685 生:27......师:怎么第一组数那么快就说出来了,第二组数就有困难了? 生:因为第一组是有顺序的、有规律的。

师:哦!看来有序的说一句话、做一件事是多么重要的事情。(板书:有序)等下尧老师让你们回答问题时也做到有序好吗?

二、鼹鼠钻洞

(一)引出课题

师:今天,尧老师给大家带来了一只可爱的小动物――鼹鼠,(出示图片)你知道鼹鼠有什么本领吗? 生:钻洞

师:是的(出示图片)我们再来看看鼹鼠给我们带来了一句话“任选一个洞口进入,向前走,再任选一个洞口钻出来”这里有几个洞口? 生:4个

师:为了表示方便,我们把这4个洞口分别用A、B、C、D来表示。什么是任选一个洞口进入,向前走?如果小鼹鼠从A洞口进去,可以从哪个洞口出来?

生:B、C、D 师:如果你是这只可爱的小鼹鼠,你会怎么走? 生:我会„„

师:有这么多条路线,你能提出一个数学问题吗?

生:有多少条不同的路线?

(二)问题抽象

师:如果把这条通道看作一条线段,上面的点表示洞口,小鼹鼠有几种走法?其实就是让我们数这里有几条线段,你有什么办法数数出来吗?,请你在草稿本上画一画,数一数,并记下来,做到不重复,不遗漏。做完后,同桌间相互交流一下自已的想法。(巡视)生:(动手操作)

师:完成的小朋友请坐端正。尧老师请同学来黑板上说说你的想法。

生:学生汇报第一种方法。你数出了几条线段?说说你是怎么数的?你先数什么?(线段AB、线段AC、线段AD、有几条?根据回答板书:3)再数什么?(线段BC、线段BD有几条?根据回答板书:2)然后呢?(线段CD这里有1条,记下来。板书:1)学生在黑板上说,边指边画出路线。

师:他说得好吗?好在哪里?让学生点评。(说的时候让学生按:他是这样数的,先数、、、、,再数、、、,最后数、、、、的模式说,突出有序)。

师:归纳:在这里,我们是按出发点的不同,先数出从A点出发的AB、AC、AD三条线段,再数从B点出发的BC、BD两条线段,最后数从C点出发的线段CD线段,从而求出一共有6条线段,写算式。谁还有不同的方法数出线段的?(留意学生的完成情况)

生:方法二:你数出了几条线段?你又是怎么数的?你先数什么?(线段AB、线段BC、线段CD有几条?老师板书:3)再数什么?(线段AC、线段BD,有几条?老师板书:2)最后数什么?(线段AD。这里有1条,老师板书:1)所以全起来也有6条线段。并写出算式。

师:我们先数最短的线段,有AB、BC、CD.一共有3条基本线段,再把相邻的两段拼成比较长的线段,有AC、BD这两条,最后把相邻的3条基本段拼成更长的线段,有AD,所以共有3+2+1=6(条)

师:归纳:这里,我们按从线段的长短来数,有序的数出了线段的条数。

(三)比较两种数法的异同。师:两种数法你更喜欢哪一种? 生:因为…….师:无论用哪种方法数我们都要做到有序,这样才会不重复、不遗漏,这就是数图形的基本方法,这也是我们这节课学习的内容。(板书课题)

师:你们会用这种两种方法数图形了吗?现在请我们同学用你喜欢的方法来帮助小鼹鼠解决下一个问题(出示图片)

三、菜地旅行,运用有序。

(一)师:单程需要准备多少种不同的车票。(解读图中的信息)强调单程指的是从出发点到目的地的车票.不包括返回时的车票。小鼹鼠菜地旅行的出发点在哪个站? 生:红薯站

师:目的地又在哪个站? 生:土豆站

师:从出发点到目的地一共有几个站? 生:5站

师:你能按照刚才学的方法画出线段图来,并数出需要几种车票吗?注意把每个车站的名称用字母表示。生:学生动手操作,教师巡视

师:做完的同学请坐端正。老师请人来说一说。(调板)

师:(1)你是怎样数的?(先说出图中线段和点所表示的意思,边说边画出数的过程)。根据学生的回答,老师板书:4+3+2+1=10,学生评价:你觉得他说得怎么样?好在哪?(突出“有序”)师:谁还有不同的方法?请你上来数一数。

(二)师:如果有6个汽车站,又需要准备多少种不同的单程车票呢? 6个站,说明这里有6个点了。这次比一比,谁最快? 生:15种

师:你是怎么做的?刚才是5个点,有10条线段,现在增加一个点,增加了几

条线段?你能把这5条线段在图上表示出来吗?学生上来画,所以可以怎么列式?板书:5+4+3+2+1=15 师:归纳:也就是说当线段上的点数增加1个时,我们可以再画一次图,重新再数一数,也可以和增加前的线段数联系起来思考。像这里,我们可以在前面5个点的基础列式:5+4+3+2+1=15 师:

(三)如果有7个汽车站,又需要准备多少种不同的单程车票呢?也就是这条线段上有几个点了? 生:7个

师:比一比,谁最快知道答案?说说你是怎样找到答案的?

生:学生汇报反馈。(你是怎样想的?学生说想法,最快的是:6+5+4+3+2+1=21,如果学生没说到,就问还有更快的方法的吗?请你来说说)师:

(四)如果有8个汽车站,又需要准备多少种不同的单程车票呢? 生: 7+6+5+4+3+2+1=28

师: 你还能往下说吗?9个点有几条线段?10 个点呢?你们这么快就说出来了,发现了什么规律了吗?

四、引导观察 发现规律

师:(出示小黑板)请同学们观察黑板图和算式,你有什么发现?(引:想车站单程车票的数量和车站的站数之间有没有什么关系? 生:

1、独立思考。2.汇报 3总结。

五、课堂小结 今天你有什么收获?

下载数图形的学问反思word格式文档
下载数图形的学问反思.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    《数图形的学问》教案

    《数图形的学问》教案 教学目标: 、结合问题情境,经历把生活中的现实问题抽象成数图形的数学问题,并利用多样化的画图策略解决问题的过程,发展几何直观。 2、在数图形的过程中,能......

    《数图形的学问》教学设计

    北师大版四年级数学上册 数学好玩 《数图形的学问》 教学内容:北师大版四年级数学上册第93页-94页。 教材分析: 本节教学内容安排了”鼹鼠钻洞”与“菜地旅行”两个教学情境;在......

    数图形的学问教学设计

    《数图形的学问》教学设计 新湖中心小学 刘香阳 〖教材分析〗 “数图形中的学问”是“数学好玩”综合实践活动的最后一节课。主要是让学生在直观形象的情境中,将生活中按顺......

    数图形的学问教学设计与反思(推荐)

    篇一:《数图形中的学问》教学反思 《数图形中的学问》教学反思陈志胜 《数图形中的学问》是北师大版小学数学四年级上册第七单元一个专题。 个数就能做到不重复、不遗漏,全......

    《数图形中的学问》的教学反思[共5篇]

    新课程加强与改善了传统的数学学习内容,在图形的认识、测量,图形与转换等内容中,经常遇到一个复合图形中有多个单一图形的问题,而这就需要用到“数图形”,在执教四年级下册第二单......

    《数图形的学问》教学设计(定稿)

    《数图形的学问》教学设计 芦北小学 林思琪 教学目标: 1、结合问题情境,经历把生活中的现实问题抽象成图形的数学问题,并利用多样化的画图策略解决问题的过程,发展几何直观。 2......

    《数图形中的学问》说课文稿

    1、教材地位及作用《数图形中的学问》是第八册书中第一个专题性活动。在第二单元认识各种图形之后,本课设计了数简单图形个数的活动,使学生初步体会有序思考的必要性,培养学生......

    小学四年级上册数学《数图形的学问》教案

    教学目标: 1、结合问题情境,经历把生活中的现实问题抽象成数图形的数学问题,并利用多样化的画图策略解决问题的过程,发展几何直观。 2、在数图形的过程中,能够逐步形成有序思考......