八年级数学上册分式通分与约分练习题

时间:2019-05-15 01:04:23下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《八年级数学上册分式通分与约分练习题》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《八年级数学上册分式通分与约分练习题》。

第一篇:八年级数学上册分式通分与约分练习题

测试卷

班级:

姓名:

一、选择题:

1、下列式子:22x1amn,,1, 3x3abab中是分式的有()个

A、5

B、4

C、3

D、2

2、下列等式从左到右的变形正确的是()

bb1A、

aa1

bb2B、2aa C、abab2b

D、bbmaam

3、下列分式中是最简分式的是()

4A、2a

m21B、m

1C、2m

1D、m1 1m5、计算(3m22n3)()的结果是()2n3mnn2n2nA、B、

C、D、

3m3m3m3m6、计算xy的结果是(xyxy)

D、xy xyA、1

B、0

C、xy xym27、化简mn的结果是(mnmA、n)

D、nm

m2B、

mn

n2C、mn

二、当x取何值时,下列分式的值为零?

2x3①

3x5

x24 ②

x2 ③

x2 2x3x

1三、约分:

8abc⑴24a2b2c3 324abcxyab ⑵

xyab

⑶ab

3224abc32a3b2c4 ⑹23⑷ ⑸

16abc24abd

四、通分

23x4x3 x6x22111,x2,22

x2x1x3x2

第二篇:约分与通分教案

【知识要点精讲一】

把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。分子、分母是互质数的分数,叫做最简分数。

约分的方法是用分子和分母的公约数(1除外)去除分数的分子和分母;通常要除到得出最简分数为止。【重点难点点拨】

本节知识的重点是掌握约分的方法。约分的方法分逐次约分法和一次约分法。如果一下能看出分子、分母的最大公约数,用最大公约数一次约分比较简便。另外,要注意判断约分的结果是否是最简分数。【典型例题示解】

例1: 把化为最简分数。

分析:42和72都是偶数,必有公约数2,它们的数字之和都是3的倍数,必有公约数3。它们有公约数2×3=6。可以逐次约分,为了简便,也可以一次性约分。解:==(用公约数6,一次性约分)【解题技巧传经】

约分时尽量用分子和分母的较大的公约数去约,最好能用它们的最大公约数一次约完,这样可以节省时间,提高计算能力和计算效率。【课堂练习】

一、填空。

(1)约分是根据分数的()进行的。

(2)()的分数,叫做是简分数。(3)分母是5的所有真分数是()。

(4)一个分数是,分子增加10,要使分数的大小不变,分母应增加()。

二、把下面各分数约分,是假分数的化成带分数。

三、先约分,再把原分数按从小到大排列起来。

【知识要点精讲二】

把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。

通分的一般方法是:先求出原来几个分母的最小公倍数,然后把各分数分别化成用这个最小公倍数作分母的分数。

带分数通分时,整数部分不变,只把分数部分通分,但整数部分不能丢掉。【重点难点点拨】

本节知识的重难点是掌握通分的方法。通分时应注意:首先找出各分数分母的最小公倍数作公分母,然后看每个分数的分母变成公分母时各扩大了几倍,分子也应扩大相应的倍数。【典型例题示解】

例2: 比较、和的大小。

分析:比较几个分数的大小的方法是通分。用2、3、5的最小公倍数30作公分母。

解:

因为,所以

【解题技巧传经】

通分是对两个或两个以上的分数而言。带分数通分,整数部分不变,只把分数部分通分,但整数部分不能丢掉。

无论是两个或两个以上的分数通分,可以用分母大的数翻番寻找最小公倍数作公分母,如:、和的公分母用15×2=30,再用30×2=60,、和的公分母是60。

【课堂练习】

一、填空。

(1)把异分母分数分别化成()的同分母分数,叫做通分。(2)通分是根据()进行的。

(3)通分时选用的公分母一般应该是原来几个分母的()。

二、把下面各组中的分数通分。(1)和

(2)、和

(3)、和

三、把下面各组中的数先通分,然后按从大到小的顺序排列。(1)、和

(2)、和

【课后作业】

一、填空

1、()的分数,叫做最简分数.

2、一个最简分数,它的分子和分母的积是24,这个分数是()或()

3、分母是8的所有最简真分数的和是().

4、一个最简分数,把它的分子扩大3倍,分母缩小2倍,是它的分数单位是()。

5、的分子、分母的最大公因数是(),约成最简分数是()。

6、通分时选用的公分母一般是原来几个分母的()。

7、把单位“1”平均分成10份,其中的7份就是(),它的分数单位是()。

,原分数是(),8、的分数单位是(),它有()个这样的分数单位. 的分数单位是(),它有()个这样的分数单位.

9、把4米的绳子平均分成5段,每段占全长的(),每段的长是()米。10、9个 组成的分数是(),它比1(),是()分数。

二、判断(对的打“√”,错的打“×”)

1、分子、分母都是偶数的分数,一定不是最简分数。

()

2、分子、分母都是奇数的分数,一定是最简分数。

()

3、约分时,每个分数越约越小;通分时,每个分数的值越来越大。()

4、异分母分数不容易直接比较大小,是因为它们的分母不同,分数单位不统一的缘故。

()

5、约分是每个分数单独进行的,通分是在几个分数中进行的。

()

6、带分数通分时,要先化成假分数。

()

三、选择题

1、分子和分母都是合数的分数,()最简分数。

①一定是

②一定不是

③不一定是

2、分母是5的所有最简真分数的和是()。①

2②

1④

3、两个分数通分后的新分母是原来两个分母的乘积.原来的两个分母一定()。

①都是质数

③是相邻的自然数

③是互质数

4、小于 而大于 的分数()。

①有1个

②有2个

③有无数个

5、通分的作用在于使()。

①分母统一,规格相同,不容易写错。

②分母统一,分数单位相同,便于比较和计算。

③分子和分母有公因数,便于约分。

6、分母分别是15和20,比较它们的最简真分数的个数的结果为()。

①分母是15的最简真分数的个数多。

②分母是20的最简真分数的个数多。

③它们的最简真分数的个数一样多。

7、把 化成分数部分是最简真分数的带分数的方法应该是()。

①先约简再化成带分数。

②先化成带分数再把分数部分约简。

③都可以,结果一样。

8、一个最简真分数,分子与分母的和是15,这样的分数一共有()。

①1个

②2个

③3个

④4个

四、把下列各分数约分.

五、把下面各组中的分数通分.

六、把下列假分数化成整数或带分数。

七、把下面各组中的分数从小到大排列.

八、把 的分子、分母加上同一个数以后,正好可以约成,这个加上去的数是多少?

九、三个学生的跳远成绩分别是:甲是第三名?

十、小明与小刚参加800米赛跑,小明用时

【思维发散训练】

1. 有一个分数,分母加2等于,分母减3等于,求这个分数。分,小刚用时

分,谁跑得快?

米,乙

米,丙

米。谁是第一名?谁2.将、、、、这五个分数按照从小到大的顺序排列起来。

3.某分数的分母减去2,分子加上3,所得的新分数的分子与分母的差是36,约分后得

4.一个分数,分子与分母的和是80,约分后得,原来这个分数是多少?,原来这个分数是多少?

第三篇:小学数学五年级下册 约分和通分练习题

日期:2016 年 10 月 30 日 用时: ____ 得分: ____

一、填空。

1.(和只有)的分数,叫做最简分数。

2.一个最简分数,它的分子和分母的积是24,这个分数是(()/()、()/()、()/())。(从小到大顺序填写)

3.分母是8的所有最简真分数的和是()/()。

4.一个最简分数,把它的分子扩大3倍,分母缩小2倍,是9/2,原分数是()/(),它的分数单位。

5.24/30的分子、分母的最大公约数是(),约成最简分数是()/()。

6.通分时选用的公分母一般是原来几个分母的()。

二、判断。(对的打√,错的打×)

1.分子、分母都是偶数的分数,一定不是最简分数。(√×)

2.分子、分母都是奇数的分数,一定是最简分数。(√×)

3.约分时,每个分数越约越小;通分时,每个分数的值越来越大。(√×)

4.异分母分数不容易直接比较大小,是因为它们的分母不同,分数单位不统一的缘故。(√×)

5.约分是每个分数单独进行的,通分是在几个分数中进行的。(√×)

三、选择题。

1.分子和分母都是合数的分数,()最简分数。

①一定是

②一定不是

③不一定是

2.分母是5的所有最简真分数的和是()。

①2 ②1/2 ③1 ④1/4 3.两个分数通分后的新分母是原来两个分母的乘积。原来的两个分母一定()。

①都是质数

③是相邻的自然数

③是互质数

4.小于7/11而大于7/13的分数()。

①有1个

②有2个

③有无数个

5.通分的作用在于使()。

②分母统一,分数单位相同,便于比较和计算

②分母统一,分数单位相同,便于比较和计算

③分子和分母有公约数,便于约分

6.分母分别是15和20,比较它们的最简真分数的个数的结果为()。

①分母是15的最简真分数的个数多

②分母是20的最简真分数的个数多

③它们的最简真分数的个数一样多

7.把化成分数部分是最简真分数的带分数的方法应该是()。

②先化成带分数再把分数部分约简

②先化成带分数再把分数部分约简

③都可以,结果一样

8.一个最简真分数,分子与分母的和是15,这样的分数一共有()。

①1个

②2个

③3个

④4个

交 卷

第四篇:《通分与约分》教学反思

《通分与约分》教学反思

本周进行了《通分与约分》的教学,这一部分的知识是在学习了分数的基本性质的基础上进行教学的,同时又为后面的分数加减法奠定了基础,因此这一部分的知识非常重要。但这部分的知识学生理解起来又比较困难,因为里面有许多概念,比如公倍数、最小公倍数、互质数、公因数、最大公因数、最简分数等,和上册的知识都有紧密的联系。我根据以往的教学经验,再结合我们班学生的特点精心设计教学方案,减慢了教学进度,让学生充分理解概念。还创设情境举一些生活中的实例,让学生用所学知识解决问题,加深对知识的理解。

尽管我做了这么多的努力,但是学生的作业还是出现了许多问题,如:在约分时不能约成最简(例如约分

1919=),通分时不用最5757小公倍数做公分母,对一些简单的数不能很快的找出最大公因数与最小公倍数等,令我很失望,很灰心。课后究其原因,我觉得与学生的口算能力有很大的关系,也与学生的数感有一定的关系,这都是我事先没想到的。我让学生背了一些一百以内的乘法算式,如:17×3=51,13×7=91,14×3=42,13×4=52,13×3=39,19×3=57等,提高学生的口算能力和速度,这样约分时也会更快更准了。

在教学中我们要允许学生犯错,因为只有从学生的错误中我们才能看到自己的不足,才能改正自己的缺点,才能使我们的教学更完美。

第五篇:八年级数学《分式》(分式运算_分式方程)练习题

《分式》训练题一.解答题(共10小题)1.化简:(1)

(2)

(3)

(4)

2.计算; ①

3.先化简:;若结果等于,求出相应x的值.

4.如果,试求k的值.

5.(2011•咸宁)解方程

6.(2010•岳阳)解方程:

7.(2010•苏州)解方程:

8.(2011•苏州)已知|a﹣1|+

9.(2009•宁波)如图,点A,B在数轴上,它们所对应的数分别是﹣4,求x的值.

10.(2010•钦州)某中学积极响应“钦州园林生活十年计划”的号召,组织团员植树300棵.实际参加植树的团员人数是原计划的1.5倍,这样,实际人均植树棵数比原计划的少2棵,求原计划参加植树的团员有多少人?,且点A、B到原点的距离相等,=0,求方裎+bx=1的解.

. ﹣

=1.

©2010-2012 菁优网

答案与评分标准

一.解答题(共10小题)1.化简:(1)

(2)

(3)

(4).

考点:分式的混合运算;约分;通分;最简分式;最简公分母;分式的乘除法;分式的加减法。专题:计算题。分析:(1)变形后根据同分母的分式相加减法则,分母不变,分子相加减,最后化成最简分式即可;(2)根据乘法的分配律展开后,先算乘法,再合并同类项即可;

(3)先根据异分母的分式相加减法则算括号里面的,再把除法变成乘法,进行约分即可;(4)先把除法变成乘法,进行约分,再进行加法运算即可. 解答:解:(1)原式=﹣

=

=

=

=﹣ ;

(2)原式=3(x+2)﹣=3x+6﹣x =2x+6;

(3)原式=[== ; ••(x+2)

]•

©2010-2012 菁优网

(4)原式=•

+

===+

=1.

点评:本题主要考查对分式的混合运算,约分,通分,最简分母,分式的加、减、乘、除运算等知识点的理解和掌握,能综合运用这些性质进行计算是解此题的关键.

2.计算; ①②

考点:分式的混合运算。专题:计算题。

分析:①首先进行乘方计算,然后把除法转化为乘法计算,最后进行乘法运算即可; ②运用乘法的分配律和完全平方公式先去括号,再算除法. 解答:解:①

=•(﹣)

==﹣②•(﹣;)

2=[﹣x﹣1+1﹣x﹣1+x+2]÷(x﹣1)

2=(x﹣1)÷(x﹣1)=x﹣1.

点评:考查了分式的乘除法,解决乘法、除法、乘方的混合运算,容易出现的是符号的错误,在计算过程中要首先确定符号.同时考查了分式的混合运算,分式的混合运算,一般按常规运算顺序,但有时应先根据题目的特点,运用乘法的运算律进行灵活运算.

3.先化简:

;若结果等于,求出相应x的值.

考点:分式的混合运算;解分式方程。专题:计算题。

分析:首先将所给的式子化简,然后根据代数式的结果列出关于x的方程,求出x的值.

©2010-2012 菁优网

解答:解:原式=

2=;

由 =,得:x=2,解得x=±.

点评:本题考查了实数的运算及分式的化简计算.在分式化简过程中,首先要弄清楚运算顺序,先去括号,再进行分式的乘除.

4.如果,试求k的值.

考点:分式的混合运算。专题:计算题。

分析:根据已知条件得a=(b+c+d)k①,b=(a+c+d)k②,c=(a+b+d)k③,d=(a+b+c)k④,将①②③④相加,分a+b+c+d=0与不等于0两种情况讨论,所以k有两个解. 解答:解:∵,∴a=(b+c+d)k,① b=(a+c+d)k,② c=(a+b+d)k,③ d=(a+b+c)k,④

∴①+②+③+④得,a+b+c+d=k(3a+3b+3c+3d),当a+b+c+d=0时,∴b+c+d=﹣a,∵a=(b+c+d)k,∴a=﹣ak ∴k=﹣1,当a+b+c+d≠0时,∴两边同时除以a+b+c+d得,3k=1,∴k=.

故答案为:k=﹣1或.

点评:本题考查了分式的混合运算,以及分式的基本性质,比较简单要熟练掌握.

5.(2011•咸宁)解方程

考点:解分式方程。专题:方程思想。

分析:观察可得最简公分母是(x+1)(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解. 解答:解:两边同时乘以(x+1)(x﹣2),得x(x﹣2)﹣(x+1)(x﹣2)=3.(3分)解这个方程,得x=﹣1.(7分)检验:x=﹣1时(x+1)(x﹣2)=0,x=﹣1不是原分式方程的解,∴原分式方程无解.(8分)点评:考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.

6.(2010•岳阳)解方程: ﹣=1.

©2010-2012 菁优网

考点:解分式方程。专题:计算题。

分析:观察可得最简公分母是(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解. 解答:解:去分母,得4﹣x=x﹣2

(4分)解得:x=3

(5分)检验:把x=3代入(x﹣2)=1≠0.

∴x=3是原方程的解.

(6分)点评:本题考查解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.

7.(2010•苏州)解方程:

考点:换元法解分式方程;解一元二次方程-因式分解法。专题:换元法。

分析:方程的两个分式具备平方关系,设程.先求t,再求x. 解答:解:令=t,则原方程可化为t﹣t﹣2=0,2=t,则原方程化为t﹣t﹣2=0.用换元法转化为关于t的一元二次方

2解得,t1=2,t2=﹣1,当t=2时,当t=﹣1时,=2,解得x1=﹣1,=﹣1,解得x2=,经检验,x1=﹣1,x2=是原方程的解.

点评:换元法是解分式方程的常用方法之一,它能够把一些分式方程化繁为简,化难为易,对此应注意总结能用换元法求解的分式方程的特点,寻找解题技巧.

8.(2011•苏州)已知|a﹣1|+=0,求方裎+bx=1的解.

考点:解分式方程;非负数的性质:绝对值;非负数的性质:算术平方根。专题:综合题;方程思想。

分析:首先根据非负数的性质,可求出a、b的值,然后再代入方程求解即可. 解答:解:∵|a﹣1|+=0,∴a﹣1=0,a=1;b+2=0,b=﹣2. ∴﹣2x=1,得2x+x﹣1=0,解得x1=﹣1,x2=.

经检验:x1=﹣1,x2=是原方程的解. ∴原方程的解为:x1=﹣1,x2=.

点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.同时考查了解分式方程,注意解分式方程一定注意要验根.

2©2010-2012 菁优网

9.(2009•宁波)如图,点A,B在数轴上,它们所对应的数分别是﹣4,求x的值.

考点:解分式方程;绝对值。专题:图表型。

分析:A到原点的距离为|﹣4|=4,那么B到原点的距离为4,就可以转换为分式方程求解. 解答:解:由题意得,解得经检验∴x的值为,是原方程的解,. =|﹣4|,且点A、B到原点的距离相等,点评:(1)到原点的距离实际是绝对值.正数的绝对值是它本身,负数的绝对值是它的相反数;(2)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.

10.(2010•钦州)某中学积极响应“钦州园林生活十年计划”的号召,组织团员植树300棵.实际参加植树的团员人数是原计划的1.5倍,这样,实际人均植树棵数比原计划的少2棵,求原计划参加植树的团员有多少人? 考点:分式方程的应用。专题:应用题。

分析:设原计划参加植树的团员有x人,则实际参加植树的团员有1.5x人,人均植树棵树=树﹣实际人均植树棵树=2,列分式方程求解,结果要检验. 解答:解:设原计划参加植树的团员有x人,根据题意,得,用原人均植树棵解这个方程,得x=50,经检验,x=50是原方程的根,答:原计划参加植树的团员有50人.

点评:找到合适的等量关系是解决问题的关键.利用分式方程解应用题时,一般题目中会有两个相等关系,这时要根据题目所要解决的问题,选择其中的一个相等关系作为列方程的依据,而另一个则用来设未知数.

©2010-2012 菁优网

下载八年级数学上册分式通分与约分练习题word格式文档
下载八年级数学上册分式通分与约分练习题.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    人教版六年级数学总复习约分和通分练习题(一)

    约分通分练习题 1.把下面各数约分. 483016366420 = = = = = = 726524543245 12184138218 27 20 65 32 8 12、把下列小数化成最简分数。 0.75=4.8=1.25= 3.把下列每组数通分......

    八年级下册分式与分式方程练习题

    分式与分式方程练习题 1、 化简下列分式 -2ac24-a2x2-162x1-(1)(2)(3) (4) 222x-4x-2a-2a14abc2x+8 2、 计算 5x-5y9xy22a2b5xy(-2xb)(1) (2) (3) xy15x23x2yx2-y2 a2-b2a-bca11- (6)-(4)2(5) abbc......

    小学五年级数学上册《约分练习题》教案5篇

    小学五年级数学上册《约分练习题》教案 一计算。(22分)直接写出得数。(4分) 264+-×÷70= 2050-÷+7÷÷3%= 2下面的题怎样简便就怎样算(12分) 812-11÷7-×÷8+×÷62-65×-(-)]÷ 3求未知......

    八年级数学上册《分式方程》练习题

    《分式方程》练习题 一、选择题 1.解方程84x22的结果是( ) 2xB.x2 C.x4 D.无解 A.x2 2.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且......

    2017春八年级数学下册16.1.2分式的基本性质约分教案

    16.1.2 分式的基本性质(约分) 教学目标:掌握分式的基本性质,掌握分式约分方法,熟练进行约分,并了解最简分式的意义. 教学重点:分式约分方法 教学难点:分子、分母是多项式的分式约分......

    八年级数学分式专题培优

    分式提高训练 1、学完分式运算后,老师出了一道题“化简:x32x” x2x24(x3)(x2)x2x2x6x2x2822小明的做法是:原式; x24x4x24x4小亮的做法是:原式(x3)(x2)(2x)x2x62xx24; 小芳的做法是......

    初中数学 9.3《分式的乘除法》约分教案

    第4课 9.3分式的乘除法(1约分) 教学目标 1.使学生明确分式的约分概念和理论依据,掌握约分方法; 2.通过与分数的约分作比较,学习分式的约分,渗透“类比”的思想方法. 教学重点和难点......

    八年级上册数学一次函数基础性练习题

    八年级上册数学一次函数基础性练习题 一次函数基础训练1 姓名: 日期: 1、在函数① y=2x ②y=-3x+1 ③y正比例函数有_____________。 2、函数yx2中, x是自变量, y是x的函数, 一次......