第一篇:数学思想
“数学思想”比一般的“数学概念”具有更高的概括抽象水平,后者比前者更具体、更丰富,而前者比后者更本质、更深刻。“数学思想”是与其相应的“数学方法”的精神实质与理论基础,“数学方法”则是实施有关的“数学思想”的技术与操作程式中。中学数学用到的各种数学方法,都体现着一定的数学思想。数学思想属于科学思想,但科学思想未必就是数学思想。有的数学思想(例如“一分为二”的思想和“转化”思想)和逻辑思想(例如完全归纳的思想)由于其在数学中的运用而被“数学化”了,也可以称之为数学思想。
基本数学思想包括:符号与变元表示的思想,集合思想,对应思想,公理化与结构思想,数形结合思想,化归思想,函数与方程的思想,整体思想,极限思想,抽样统计思想等。当我们按照空间形式和数量关系将研究对象进行分类时,把分类思想也看作基本数学思想。基本数学思想有两大基石——符号与变元表示的思想和集合思想,又有两大支柱——对应思想和公理化结构思想。基本数学思想及其衍生的其他数学思想,形成了一个结构性很强的体系。
数学中渗透着基本数学思想,它们是基础知识的灵魂,如果能使它们落实到我们学习和应用数学中去,那么我们得到的将会很多,需要我们不断的探索实践,使数学思想潜移默化的渗透到教学中去。高中数学基本数学思想
1.转化与化归思想:是把那些待解决或难解决的问题化归到已有知识范围内可解问题的一种重要的基本数学思想.这种化归应是等价转化,即要求转化过程中的前因后果应是充分必要的,这样才能保证转化后所得结果仍为原题的结果.高中数学中新知识的学习过程,就是一个在已有知识和新概念的基础上进行化归的过程.因此,化归思想在数学中无处不在.化归思想在解题教学中的的运用可概括为:化未知为已知,化难为易,化繁为简.从而达到知识迁移使问题获得解决.但若化归不当也可能使问题的解决陷入困境.例证
2.逻辑划分思想(即分类与整合思想):是当数学对象的本质属性在局部上有不同点而又不便化归为单一本质属性的问题解决时,而根据其不同点选择适当的划分标准分类求解,并综合得出答案的一种基本数学思想.但要注意按划分标准所分各类间应满足互相排斥,不重复,不遗漏,最简洁的要求.在解题教学中常用的划分标准有:按定义划分;按公式或定理的适用范围划分;按运算法则的适用条件范围划分;按函数性质划分;按图形的位置和形状的变化划分;按结论可能出现的不同情况划分等.需说明的是: 有些问题既可用分类思想求解又可运用化归思想或数形结合思想等将其转化到一个新的知识环境中去考虑,而避免分类求解.运用分类思想的关键是寻找引起分类的原因和找准划分标准.例证
3.函数与方程思想(即联系思想或运动变化的思想):就是用运动和变化的观点去分析研究具体问题中的数量关系,抽象其数量特征,建立函数关系式,利用函数或方程有关知识解决问题的一种重要的基本数学思想.4.数形结合思想:将数学问题中抽象的数量关系表现为一定的几何图形的性质(或位置关系);或者把几何图形的性质(或位置关系)抽象为适当的数量关系,使抽象思维与形象思维结合起来,实现抽象的数量关系与直观的具体形象的联系和转化,从而使隐蔽的条件明朗化,是化难为易,探索解题思维途径的重要的基本数学思想.5.整体思想:处理数学问题的着眼点或在整体或在局部.它是从整体角度出发,分析条件与目标之间的结构关系,对应关系,相互联系及变化规律,从而找出最优解题途径的重要的数学思想.它是控制论,信息论,系统论中“整体—部分—整体”原则在数学中的体现.在解题中,为了便于掌握和运用整体思想,可将这一思想概括为:记住已知(用过哪些条件?还有哪些条件未用上?如何创造机会把未用上的条件用上?),想着目标(向着目标步步推理,必要时可利用图形标示出已知和求证);看联系,抓变化,或化归;或数形转换,寻求解答.一般来说,整体范围看得越大,解法可能越好.在整体思想指导下,解题技巧只需记住已知,想着目标, 步步正确推理就够了.中学数学中还有一些数学思想,如: 集合的思想;补集思想;归纳与递推思想;对称思想;逆反思想;类比思想;参变数思想
有限与无限的思想; 特殊与一般的思想。
它们大多是本文所述基本数学思想在一定知识环境中的具体体现.所以在中学数学中,只要掌握数学基础知识,把握代数,三角,立体几何,解析几何的每部分的知识点及联系,掌握几个常用的基本数学思想和将它们统一起来的整体思想,就定能找到解题途径.提高数学解题能力.数学解题中转化与化归思想的应用
数学活动的实质就是思维的转化过程,在解题中,要不断改变解题方向,从不同角度,不同的侧面去探讨问题的解法,寻求最佳方法,在转化过程中,应遵循三个原则:
1、熟悉化原则,即将陌生的问题转化为熟悉的问题;
2、简单化原则,即将复杂问题转化为简单问题;
3、直观化原则,即将抽象总是具体化。
策略一:正向向逆向转化
一个命题的题设和结论是因果关系的辨证统一,解题时,如果从下面入手思维受阻,不妨从它的正面出发,逆向思维,往往会另有捷径。策略二:局部向整体的转化
从局部入手,按部就班地分析问题,是常用思维方法,但对较复杂的数学问题却需要从总体上去把握事物,不纠缠细节,从系统中去分析问题,不单打独斗。
策略三:未知向已知转化
又称类比转化,它是一种培养知识迁移能力的重要学习方法,解题中,若能抓住题目中已知关键信息,锁定相似性,巧妙进行类比转换,答案就会应运而生。
在数学课上如何培养数学方法和数学思想
小学数学虽然编排得直观、简易、浅显的数学知识。但在这些数学知识中,蕴涵着许多与高等数学相通的数学方法和数学思想。数学学习的好与坏,不在于学会多少数学知识,做了多少习题。我认为重要的是要有数学方法和数学思想。因为题是永远做不完的,是无限的。一道题稍有变化,就成了另一道题,而数学方法是有限的。真正学会一种方法,比做过几十道题、上百道题还要重要。而我们的学生往往缺乏的就是数学方法、数学思想。
在数学课上如何培养数学方法和数学思想
小学数学虽然编排得直观、简易、浅显的数学知识。但在这些数学知识中,蕴涵着许多与高等数学相通的数学方法和数学思想。
数学学习的好与坏,不在于学会多少数学知识,做了多少习题。我认为重要的是要有数学方法和数学思想。因为题是永远做不完的,是无限的。一道题稍有变化,就成了另一道题,而数学方法是有限的。真正学会一种方法,比做过几十道题、上百道题还要重要。而我们的学生往往缺乏的就是数学方法、数学思想。
在实际中有两种学生,一种是遇到稍有难度的时题,不知从哪儿下手,坐在那干想,半天也想不出办法,即没有办法,没招儿。另一种学生是头脑中有用不完的方法,各种方法都试一试,最后解出难题。这两种孩子中,第一种学生不可能在学习数学中找到成功的体验,找到快乐;而第二种学生才是学习数学的真正尖子,才有发展潜力。
所谓数学方法,是解决数学问题的策略和程序。(即解决具体问题所采用的形式、途径和手段),它是学习数学知识,运用数学知识解决实际问题的具体行为(操作技能)。所谓数学思想,是对数学知识、方法、规律的本质认识,是比数学方法更抽象、更概括、更本质的认识。所以数学思想是数学的灵魂,是数学方法的理论基础。数学知识、数学思想、数学方法这三者是相互联系、相互依存、相互交融的统一体。
数学方法从哪儿来的?我想教师应该把数学方法、数学思想的培养贯穿于日常的教学始终。教会学生学会方法比多做几道题强的多。教师应如何做呢?
1、数学课上要让学生在学会数学知识的同时,学会数学方法。
数学方法比数学知识更重要,但数学方法、数学思想不是空洞地讲,而是借助数学知识使学生理解这种方法,不能就知识论知识。数学知识是数学思想、方法的“载体”,有人认为复杂的知识中蕴涵着数学方法,其实不然。从一年极开始,在以阶段呈现数学知识和技能的同时,都蕴涵着纵向的数学思想和方法。比如9+3=12,9+1+2=12(可以把9和1相加凑十),当学生掌握了这种“凑十法”,就可以迁移到8加几,7加几,甚至于几百几加几。再比如讲“圆面积公式”时,除了要让学生理解公式为什么是S=πr2外,还要向学生渗透化曲为直,化未知为已知的划归思想和转换思想。此外,还可以让学生闭着眼睛去想象,当圆平均分成100份、1000份、十亿份……时,拼成的 图形是越来越接近长方形。当
份数是无穷大的时候,就是一个标准的长方形,从而渗透极限思想。
2、通过习题提炼解题方法。
在练习课上,有些老师处理练习题过于简单:讲出解法就算完成任务。我认为这只是完成一半,教师应发散学生的思维,从多个角度突出不同方法,然后把方法归类。通过这道题,要让学生学会某种解题方法。所以在处理练习题时,建议老师们在备课时就要想好通过这个知识让学生学会什么法。
3、教学生会问。质疑环节我相信每个老师课上都有,但质疑的质量则不同。要让学生敢问的同时,还要会问、善问,还要问得深、问得妙。教师可以提出一些引导性的问题,如:“你是怎样想到这个问题的?”,一方面帮助提问者梳理一下自己的思路,使他(她)能够自觉地上升到理性的层次。自觉地把握自己的思维,另一方面让其他同学借鉴。
4、注重方法的指导。
以口算为例,开始老埋怨学生口算差,练的少。后来我觉察到练的少是一方面,但不是主要原因。主要原因是方法不简便。经过几次口算方法的指导,学生的方法灵活了,正确率提高了,速度变快了。再比如检验:学生检验没养成自觉的习惯,而且有错查不出来。后来看出主要的问题是方法单一。我给学生归纳出检验的几种方法,让学说明白哪种题适合用什么方,法检验。
总之,在教学过程中要渗透方法指导,这样学生才能真正受益。教给学生用就知识解决新问题,学生就会自己学习一些新知识。学会质疑问题,学生就会自己独立扫清学习路上的拦路石,学会多种验算方法,学生就会见验证自己的发现。
第二篇:数学思想
一.数学思想方法总论
高中数学一线牵,代数几何两珠连;三个基本记心间,四种能力非等闲.常规五法天天练,策略六项时时变,精研数学七思想,诱思导学乐无边.一线:函数一条主线(贯穿教材始终)二珠:代数、几何珠联璧合(注重知识交汇)三基:方法(熟)知识(牢)技能(巧)四能力:概念运算(准确)、逻辑推理(严谨)、空间想象(丰富)、分解问题(灵活)
五法:换元法、配方法、待定系数法、分析法、归纳法.六策略:以简驭繁,正难则反,以退为进,化异为同,移花接木,以静思动.七思想:函数方程最重要,分类整合常用到,数形结合千般好,化归转化离不了;有限自将无限描,或然终被必然表,特殊一般多辨证,知识交汇步步高.二.数学知识方法分论:集合与逻辑
集合逻辑互表里,子交并补归全集.对错难知开语句,是非分明即命题;纵横交错原否逆,充分必要四关系.真非假时假非真,或真且假运算奇.函数与数列
数列函数子母胎,等差等比自成排.数列求和几多法?通项递推思路开;变量分离无好坏,函数复合有内外.同增异减定单调,区间挖隐最值来.三角函数
三角定义比值生,弧度互化实数融;同角三类善诱导,和差倍半巧变通.第一:函数与方程思想
(1)函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其他内容时,起着重要作用
(2)方程思想是解决各类计算问题的基本思想,是运算能力的基础
高考把函数与方程思想作为七种重要思想方法重点来考查
第二:数形结合思想:
(1)数学研究的对象是数量关系和空间形式,即数与形两个方面
(2)在一维空间,实数与数轴上的点建立一一对应关系
在二维空间,实数对与坐标平面上的点建立一一对应关系
数形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化
第三:分类与整合思想
(1)分类是自然科学乃至社会科学研究中的基本逻辑方法
(2)从具体出发,选取适当的分类标准(3)划分只是手段,分类研究才是目的(4)有分有合,先分后合,是分类整合思想的本质属性
(5)含字母参数数学问题进行分类与整合的研究,重点考查学生思维严谨性与周密性
第四:化归与转化思想
(1)将复杂问题化归为简单问题,将较难问题化为较易问题,将未解决问题化归为已解决问题
解前若能三平衡,解后便有一脉承;角值计算大化小,弦切相逢异化同.方程与不等式
函数方程不等根,常使参数范围生;一正二定三相等,均值定理最值成.参数不定比大小,两式不同三法证;等与不等无绝对,变量分离方有恒.解析几何
联立方程解交点,设而不求巧判别;韦达定理表弦长,斜率转化过中点.选参建模求轨迹,曲线对称找距离;动点相关归定义,动中求静助解析.立体几何
多点共线两面交,多线共面一法巧;空间三垂优弦大,球面两点劣弧小.线线关系线面找,面面成角线线表;等积转化连射影,能割善补架通桥.排列与组合分步则乘分类加,欲邻需捆欲隔插;有序则排无序组,正难则反排除它.元素重复连乘法,特元特位你先拿;平均分组阶乘除,多元少位我当家.二项式定理
二项乘方知多少,万里源头通项找;展开三定项指系,组合系数杨辉角.整除证明底变妙,二项求和特值巧;两端对称谁最大?主峰一览众山小.概率与统计
概率统计同根生,随机发生等可能;互斥事件一枝秀,相互独立同时争.样本总体抽样审,独立重复二项分;随机变量分布列,期望方差论伪真.(2)灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法(3)高考重视常用变换方法:一般与特殊的转化、繁与简的转化、构造转化、命题的等价转化第五: 特殊与一般思想
(1)通过对个例认识与研究,形成对事物的认识(2)由浅入深,由现象到本质、由局部到整体、由实践到理论
(3)由特殊到一般,再由一般到特殊的反复认识过程
(4)构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程
(5)高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向
第六:有限与无限的思想:
(1)把对无限的研究转化为对有限的研究,是解决无限问题的必经之路
(2)积累的解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向
(3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是先进行有限次分割,再求和求极限,是典型的有限与无限数学思想的应用(4)随着高中课程改革,对新增内容考查深入,必将加强对有限与无限的考查
第七:或然与必然的思想:
(1)随机现象两个最基本的特征,一是结果的随机性,二是频率的稳定性
(2)偶然中找必然,再用必然规律解决偶然(3)等可能性事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验、随机事件的分布列、数学期望是考查的重点
第三篇:数学思想
对数学教学中渗透方法思想、转化思想、数形结合思想、分类讨
论思想等的认识与感受
数学学科也可以称之为一门方法学科,这种方法是一种逻辑,一种规律。要想学好数学,就得掌握数学思想方法。如运算律、运算法则、方程的解法、方程组的解法、不等式的解法、待定系数法确定函数解折式等等,都是解决具体问题的方法步骤。教师在教学的过程中,要善于引导学生归结总结,要使每一位学生都能掌握数学的基本思想方法,这也是新课标的“四基”要求之一。
数学问题解决离不开转化的思想,转化就是把未知的问题转化为已知的问题,用已有的知识和方法来解决新问题。转化的过程也就是问题解决的过程。如一元一次方程的解法:去分母、去括号、移项、合并同类项、化系数为1,最终求得未知数的值,每一步骤都是一个转化的过程;消元法解二元一次方程组,就是把二元的转化为一元的;因式分解法一元二次方程,就是把二次的转化为一次的。教学中要善与培养学生的转化思想,让他们对问题进行观察、分析、联想、合作交流等思维活动,把新问题转化为已知问题,从而提高解决问题的能力。
数形结合思想是数学的一个基本思想,是解决数学问题的重要思想武器。形是事物的外表,数是事物的灵魂,形具有具体性,数具有抽象性,只有把数与形相结合往往就能探索出解决问题的途径。如数轴就是典型的数形结合的例子,把抽象的数用有形的点来表示,用尺规作图的方法就可以在数轴上找到等无理数对应的点,感受到的绝对值所表示的线段长度。有时把代数问题转化为几何问题,几何问题转化为代数问题,都是数形结合思想的体现,如已知三角形三边的长度,求内切圆的切点到相邻顶点的距离,就可以用列三元一次方程组来解决;利用函数图象来研究函数的性质等等。数形结合思想贯穿于整个数学学习之中。
分类讨论思想又是一个重要的数学思想,它能指导学生分析问题周到、严密。一个数的绝对值在什么情况下等于它本身,在什么情况下等于它的相反数;一元二次方程根的判别式值的范围对应根的情况;经过三点作圆;直线与圆的位置关系;圆与圆的位置关系等等都涉及到分类讨论的思想。教学中要引导学生分析,当一个问题结果不能确定时,就应想到分类讨论。
上述几种思想它们是有机的统一,而不是分裂开的,在同一个问题解决的过程中往往要涉及到多种思想来指导,教学中教师要有意识地挖掘数学思想,要时常提出这些思想概念,使学生得到认识,渗透到学生意识之中,培养学生的数学素养,提高学生分析、解决问题的能力。
第四篇:数学教育思想
数 学 教 育 论
院系:数学科学学院 班级:数学与应用数学一班姓名:胡亚丽 学号:130414009
数学教育思想
我国的中学数学教育向来令人关注。数学教育的研究不能离开它的对象——数学的特有规律,进入20世纪以来,数学发展的突飞猛进,迫使当代社会的数学教育必须充分考虑到现代数学的特点。为此,弗赖登塔尔从数学发展的历史出发,深入研究了数学的悠久传统,以及现代数学形成的背景,提出了现代数学的转折点,是否应该以现代实数理论的诞生和约当的臵换群的产生作为标志;或者是另一种看法,那是以著名的布尔巴基理论的出现,作为一个新时期的开端。对于我国传统的数学教育有很多可贵的地方,一方面学生的基础扎实、计算准确、思维严谨得到了国际数学教育界的普遍认可,在中学生国际数学奥林匹克竞赛中出风头的往往是中国学生;但另一方面,在世界范围内的高新科技领域很少听到来自中国的声音,特别是反映一个国家的创新能力和科技实力的诺贝尔奖以及反映数学研究水平的菲尔兹奖在中国本土还无人获得,这种现象必然引起中国数学教育界的认真总结和反思。数学从它的诞生之日起就与思维结下了不解之缘,数学的存在和发展都要依靠思维;数学又是思维的工具,敏锐的思维能力和科学的思维方式常常要借助数学显示其美感和力量。数学教育是培养学生思维能力的重要途径,具有抽象性、简约性、形式化、逻辑性和优美性的特征,其意义在于生成思想、涵养文化、孕育创造;数学教育为创新思维的培养奠定了良好的基础,创新思维的培养又促进了数学和数学教育的发展。
在国际数学教育领域,中国学生的数学教育测试(IAEP, TIMSS, PISA)成绩十分优异,但是中国学生的数学学习给人的深刻印象是重记忆、善模仿、多练习、会考试,缺乏创新思维能力,这就出现了所谓的数学学习的“中国学习者悖论”。表现在数学教育思想上认识模糊,数学教育的价值迷失,认为数学教育是数学解题的训练,是一种形式化的学习,是一种分数上的竞争优势;在具体的数学教育教学过程中强调数学知识要点的传授,不重视数学知识的形成和探究过程,忽视学生数学情感的培养。数学课程的选择性匮乏、数学课堂主体性的丧失和数学教育功利性的评价是导致了创新思维缺失的直接原因。
数学课程作为学生学习数学的重要载体,对学生数学知识的积累和创新思维的发展起到奠基的作用。数学课程具有基础性、过程性、发展性和创新性等功能,在数学教育中要充分挖掘这些功能,并对数学课程资源进行开发和整合。数学课程具有极大的开放性和选择性,应从数学课程内容的选择、数学课程顺序的安排和数学知识的呈现方式三个方面去合理设计。发现、提出、分析和解决数学问题能力是学生学习数学的核心能力,对学生创新思维的培养具有重要的意义,因而数学教学应具有创生性和过程性,培养学生的数学问题意识。数学教学离不开数学教师,教师要关注学生的数学思考,促进数学理解和鼓励学生的求异思维。基于创新思维培养的数学教育评价在理念上要注意培养学生的数学情感,培育学生的数学能力,涵养学生的数学智慧;评价方式应具有多元性、多样性和人文性;数学教育的基本价值追求就是要促进学生的创新思维发展。
在相对这段时间里,我们分别进行了对不同小学数学课堂的调研,这些中学都有其独特教学理念及教学方法。在偃师邙岭三中我们看到的是自主性、合作性的学习方式,对学生们按照前期考试成绩的高低进行1、2、3、4、5、6分组,课堂采用小班教学,形成良性循环的学习模式。在洛阳实验中学中,我们体验到的是另一种课堂教育模式---反转课堂。此教育模式是根据最早的杜郎口教育模式引荐进来的,此种模式是变学生为主导,学生来讲从而代替老师授课,实现学生是课堂的主导,让学生能更好的掌握知识,运用知识。并且,实验中学还将其改进研发出自己独特教学模式。运用现在的网络功能,采用微课教学与练习,使学生提前预习,练习,给了学生很大的便利。尽管现在的数学教育还存在相当大的问题,但是,任何问题都有其解决方法。
我们的数学教育不仅仅是学生的转变,更多的应该是教师的教学反思。教师专业发展是教育发展乃至整个社会发展的一个重要课题。近年来,教学反思作为教师自我完善、自主发展的一种方式,是促进教师专业成长的重要而有效的途径,已经成为当前教师教育改革的一个重要方向,受到世界各国的广泛关注。同时,新课程改革是一场声势浩大的革命,其倡导的教育理念和价值对我国教育民主化和现代化进程都有着毋庸臵疑的积极意义。改革学校现有的课堂教学模式,转变教师的教育教学理念,改变学生的学习方式势在必行。新课程要求教师成为一名反思型教师。数学教学反思的研究提出教师反思其过程为“发现问题→提出问题→分析判断→提出假设→验证假设、解决问题”五个阶段。其途径为写教学反思总结、写教后记、对话反思、课堂实录观察与分析、行动研究等。教学反思的研究,让我们对教学反思有了新的认识,教师进行教学反思一方面对其专业成长有很大作用,既能增强教师专业发展的主体意识和能力,还能促进教师对教学概念和知识的重构,并且提高教师的实践探索能力。另一方面,教学反思可以调动学生学习数学的积极性和主动性,从而提高学生数学学习的态度、兴趣和能力。总之,教学反思对教学效果产生了积极的影响
随着新一轮课程改革的不断推进,当今数学教师遇到很多的挑战。提高教师自身的专业素质,改善教学行为,努力提高教学效果是教师们面临的巨大挑战。
第五篇:高三数学思想
高三数学思想
第一:函数与方程思想
(1)函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其他内容时,起着重要作用
(2)方程思想是解决各类计算问题的基本思想,是运算能力的基础
高考把函数与方程思想作为七种重要思想方法重点来考查
第二:数形结合思想
(1)数学研究的对象是数量关系和空间形式,即数与形两个方面
(2)在一维空间,实数与数轴上的点建立一一对应关系
在二维空间,实数对与坐标平面上的点建立一一对应关系
数形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化
第三:分类与整合思想
(1)分类是自然科学乃至社会科学研究中的基本逻辑方法
(2)从具体出发,选取适当的分类标准
(3)划分只是手段,分类研究才是目的(4)有分有合,先分后合,是分类整合思想的本质属性
(5)含字母参数数学问题进行分类与整合的研究,重点考查学生思维严谨性与周密性 第四:化归与转化思想
(1)将复杂问题化归为简单问题,将较难问题化为较易问题,将未解决问题化归为已解决问题
(2)灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法
(3)高考重视常用变换方法:一般与特殊的转化、繁与简的转化、构造转化、命题的等价转化
第五: 特殊与一般思想
(1)通过对个例认识与研究,形成对事物的认识
(2)由浅入深,由现象到本质、由局部到整体、由实践到理论
(3)由特殊到一般,再由一般到特殊的反复认识过程
(4)构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程
(5)高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向
第六:有限与无限的思想
(1)把对无限的研究转化为对有限的研究,是解决无限问题的必经之路
(2)积累的解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向
(3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是先进行有限次分割,再求和求极限,是典型的有限与无限数学思想的应用
(4)随着高中课程改革,对新增内容考查深入,必将加强对有限与无限的考查
第七:或然与必然的思想
(1)随机现象两个最基本的特征,一是结果的随机性,二是频率的稳定性
(2)偶然中找必然,再用必然规律解决偶然
(3)等可能性事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验、随机事件的分布列、数学期望是考查的重点