第一篇:工科类本科数学基础课程教学基本要求范文
工科类本科数学基础课程教学基本要求
数学与统计学教学指导委员会
一、前 言
数学是研究客观世界数量关系和空间形式的科学。随着现代科学技术和数学科学的发展,“数量关系”和“空间形式”具备了更丰富的内涵和更广泛的外延。现代数学内容更加丰富,方法更加综合,应用更加广泛。数学不仅是一种工具,而且是一种思维模式;不仅是一种知识,而且是一种素养;不仅是一种科学,而且是一种文化。能否运用数学观念定量思维是衡量民族科学文化素质的一个重要标志,数学教育在培养高素质科学技术人才中具有其独特的、不可替代的重要作用。
高等学校工科类专业本科生的数学基础课程应包括微积分、线性代数与空间解析几何、概率论与数理统计,它们都是必修的重要基础理论课。通过这些课程的学习,应使学生获得一元函数微积分及其应用、多元函数微积分及其应用、无穷级数与常微分方程、向量代数与空间解析几何、线性代数、概率论与数理统计等方面的基本知识(基本概念、基本理论、基本方法)和基本运算技能,为今后学习各类后继课程和进一步扩大数学知识面奠定必要的连续量、离散量和随机量方面的数学基础。在传授知识的同时,要努力培养学生进行抽象思维和逻辑推理的理性思维能力,综合运用所学的知识分析问题和解决问题的能力以及较强的自主学习能力,逐步培养学生的创新精神和创新能力。
课程的教学基本要求,是工科院校本科生学习本课程都应当达到的合格要求,其中带*号的条目是为某些相关专业选用的,也是对选用专业学生的基本要求。各校根据本校的实际情况,在达到基本要求的基础上,还可以提出一些较高的或特殊的要求。
各门课程的内容按教学要求的不同,都分为两个层次。文中用黑体字排印的内容,应使学生深入领会和掌握,并能熟练运用。其中,概念、理论用“理解”一词表述,方法、运算用“掌握”一词表述。非黑体字排印的内容,也是必不可少的,只是在教学要求上低于前者。其中,概念、理论用“了解”一词表述,方法、运算用“会”或“了解”表述。
基本要求中所列出的各项内容与要求是制订教学计划、教学大纲和编写教材的重要依据,但不涉及课程体系的结构、教学内容的先后安排和编写教材的章节顺序。
二、微积分课程教学基本要求 1.函数、极限、连续
(1)在中学已有函数知识的基础上,加深对函数概念的理解和函数性质(奇偶性、单调性、周期性和有界性)的了解。
(2)理解复合函数的概念,了解反函数的概念。(3)会建立简单实际问题中的函数关系式。(4)理解极限的概念,了解极限的定义(不要求学生做给出求
或的习题)。(5)掌握极限的有理运算法则,会用变量代换求某些简单复合函数的极限。
(6)了解极限的性质(唯一性、有界性、保号性)和两个存在准则(夹逼准则与单调有界准则),会用两个重要极限与求极限。
(7)了解无穷小、无穷大、高阶无穷小和等价无穷小的概念,会用等价无穷小求极限。(8)理解函数在一点连续和在一区间上连续的概念。(9)了解函数间断点的概念,会判别间断点的类型。
(10)了解初等函数的连续性和闭区间上连续函数的介值定理与最大值、最小值定理。2.一元函数微分学及其应用
(1)理解导数的概念及其几何意义(不要求学生做利用导数的定义研究抽象函数可导性的习题),了解函数的可导性与连续性之间的关系。
(2)了解导数作为函数变化率的实际意义,会用导数表达科学技术中一些量的变化率。(3)掌握导数的有理运算法则和复合函数的求导法,掌握基本初等函数的导数公式。
(4)理解微分的概念,了解微分概念中所包含的局部线性化思想,了解微分的有理运算法则和一阶微分形式不变性。
(5)了解高阶导数的概念,掌握初等函数一阶、二阶导数的求法(不要求学生求函数的阶导数的一般表达式)。
(6)会求隐函数和由参数方程所确定的函数的一阶导数以及这两类函数中比较简单的二阶导数,会解一些简单实际问题中的相关变化率问题。
(7)理解罗尔(Rolle)定理和拉格朗日(Lagrange)定理,了解柯西(Cauchy)定理(对三个定理的分析证明不作要求,并且不要求学生掌握构造辅助函数证明相关问题的技巧),会用洛必达(L'Hospital)法则求不定式的极限。
(8)了解泰勒(Taylor)定理以及用多项式逼近函数的思想(对定理的分析证明以及利用泰勒定理证明相关问题不作要求)。
(9)理解函数的极值概念,掌握用导数判断函数的单调性和求极值的方法。会求解较简单的最大值与最小值的应用问题。
(10)会用导数判断函数图形的凹凸性,会求拐点,会描绘一些简单函数的图形(包括水平和铅直渐近线)。
(11)了解曲率和曲率半径的概念,会计算曲率和曲率半径。(12)了解求方程近似解的二分法和切线法的思想。3.一元函数积分法及其应用(1)理解定积分的概念和几何意义(对于利用定积分定义求定积分与求极限不作要求),了解定积分的性质和积分中值定理。
(2)理解原函数与不定积分的概念,理解变上限的积分作为其上限的函数及其求导定理,掌握牛顿-莱布尼茨(Newton-Leibniz)公式。
(3)掌握不定积分的基本公式以及求不定积分、定积分的换元法与分部积分法(淡化特殊积分技巧的训练,对于求有理函数积分的一般方法不作要求,对于一些简单有理函数、三角有理函数和无理函数的积分可作为两类积分法的例题作适当训练)。
(4)掌握科学技术问题中建立定积分表达式的元素法(微元法),会建立某些简单几何量和物理量的积分表达式。
(5)了解两类反常积分及其收敛性的概念,了解
*
函数的概念。
(6)了解定积分的近似计算法(梯形法和抛物线法)的思想。4.多元函数微分学及其应用
(1)理解二元函数的概念,了解多元函数的概念。
(2)了解二元函数的极限与连续性的概念,了解有界闭区域上连续函数的性质。(3)理解二元函数偏导数与全微分的概念,了解全微分存在的必要条件与充分条件。(4)了解一元向量值函数及其导数的概念与计算方法。(5)了解方向导数与梯度的概念及其计算方法。
(6)掌握复合函数一阶偏导数的求法,会求复合函数的二阶偏导数(对于求抽象复合函数的二阶导数,只要求作简单训练)。
(7)会求隐函数(包括由两个方程构成的方程组确定的隐函数)的一阶偏导数(对求二阶偏导数不作要求)。
(8)了解曲线的切线和法平面以及曲面的切平面与法线,并会求出它们的方程。
(9)理解二元函数极值与条件极值的概念,会求二元函数的极值,了解求条件极值的拉格朗日乘数法,会求解一些比较简单的最大值与最小值的应用问题。
5.多元函数积分学及其应用
(1)理解二重积分的概念,了解三重积分的概念,了解重积分的性质。
(2)掌握二重积分的计算方法(直角坐标、极坐标),会计算简单的三重积分(直角坐标、柱面坐标,球面坐标)。
(3)理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系,会计算两类曲线积分(对于空间曲线积分的计算只作简单训练)。*(4)掌握格林(Green)公式,会使用平面线积分与路径无关的条件,了解第二类平面线积分与路径无关的物理意义。
(5)了解两类曲面积分的概念、相互联系及其计算方法。
(6)了解高斯(Gauss)公式,斯托克斯(Stokes)公式(斯托克斯公式的证明以及利用该公式计算空间曲线积分不作要求)。
*(7)了解场的基本概念,了解散度、旋度的概念和某些特殊场(无源场、无旋场与调和场),会
计算散度与旋度。(8)了解科学技术问题中建立重积分与曲线、曲面积分表达式的元素法(微元法),会建立某些简单的几何量和物理量的积分表达式。
6.无穷级数
(1)理解无穷级数收敛、发散以及和的概念,了解无穷级数的基本性质及收敛的必要条件。(2)了解正项级数的比较审敛法以及几何级数与
-级数的敛散性,掌握正项级数的比值审敛法。
(3)了解交错级数的莱布尼茨定理,会估计交错级数的截断误差。了解绝对收敛与条件收敛的概念及二者的关系。
(4)了解函数项级数的收敛域与和函数的概念,掌握简单幂级数收敛区间的求法(区间端点的收敛性不作要求)。了解幂级数在其收敛区间内的一些基本性质(对求幂级数的和函数只要求作简单训练)。
(5)会利用,,与的麦克劳林(Maclaurin)展开式将一些简单的函数展开成幂级数。
(6)了解利用将函数展开为幂级数进行近似计算的思想。
(7)了解用三角函数逼近周期函数的思想,了解函数展开为傅里叶(Fourier)级数的狄利克雷(Dirichlet)条件,会将定义在函数展开为傅里叶正弦或余弦级数。
7.常微分方程
(1)了解微分方程、解、通解、初始条件和特解等概念。(2)掌握变量可分离的方程及一阶线性微分方程的解法。
(3)会解齐次方程,并从中领会用变量代换求解微分方程的的思想。(4)会用降阶法求下列三种类型的高阶方程:(5)理解二阶线性微分方程解的结构。
(6)掌握二阶常系数齐次线性微分方程的解法,了解高阶常系数齐次线性微分方程的解法。。
和
上的函数展开为傅里叶级数,会将定义在上的(7)会求自由项形如解,其中,为实数。的二阶常系数非齐次线性微分方程的特为实系数次多项式,(8)会通过建立微分方程模型,解决一些简单的实际问题。
三、线性代数与空间解析几何课程教学基本要求
说明:在此次修订中,考虑到线性代数与空间解析几何的内在联系,我们将线性代数与空间解析几何作为一门课程,但基本要求的具体内容还是相对独立的,并且不要求所有学校都遵循这一模式。将空间解析几何与线性代数分开授课的学校可根据基本要求中的空间解析几何部分的要求(即几何向量和空间曲线与曲面两章)进行教学。
1.行列式
(1)了解行列式的定义。
(2)掌握行列式的性质和行列式按行(列)展开的方法。(3)会计算简单的阶行列式。2.矩阵
(1)理解矩阵的概念。
(2)了解单位矩阵,数量矩阵,对角矩阵,三角矩阵,对称矩阵以及它们的基本性质。(3)掌握矩阵的线性运算、乘法、转置及其运算规则。
(4)理解逆矩阵的概念。掌握矩阵可逆的充要条件,掌握可逆矩阵的性质。(5)掌握矩阵的初等变换及用矩阵的初等变换求逆矩阵的方法。(6)了解矩阵等价的概念。
(7)理解矩阵秩的概念并掌握其求法。3.几何向量
(1)理解空间直角坐标系,理解向量的概念及其表示。
(2)掌握向量的运算(线性运算、数量积、向量积),了解两个向量垂直、平行的条件。(3)掌握单位向量、方向余弦、向量的坐标表达式以及用坐标表达式进行向量运算的方法。(4)掌握平面的方程和直线的方程及其求法,会利用平面、直线的相互关系解决有关问题。4.维向量与向量空间(1)理解维向量的概念。
(2)理解向量组的线性组合、线性相关、线性无关的概念。(3)掌握向量组线性相关、线性无关的有关性质及判别法。
(4)了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩。(5)了解维向量空间、线性子空间、基底、维数、坐标等概念。
*(6)了解基变换公式和坐标变换公式,会求过渡矩阵。
(7)了解内积的概念,会用施密特(Schmidt)方法将线性无关的向量组标准正交化。(8)了解标准正交基、正交矩阵的概念及它们的性质。(9)了解线性变换的概念及其矩阵表示。5.线性方程组
(1)了解克拉默(Cramer)法则。
(2)理解齐次线性方程组有非零解的充要条件及非齐次线性方程组有解的充要条件。(3)理解齐次线性方程组的基础解系及通解等概念。(4)理解非齐次线性方程组解的结构及通解等概念。(5)掌握用行初等变换求线性方程的组通解的方法。6.矩阵的特征值与特征向量
(1)理解矩阵的特征值与特征向量的概念,会求矩阵的特征值与特征向量。(2)了解相似矩阵的概念和性质。
(3)了解矩阵对角化的充要条件和对角化的方法。(4)会求实对称矩阵的相似对角形矩阵。7.实二次型
(1)掌握二次型及其矩阵表示,了解二次型的秩的概念。(2)了解合同变换和合同矩阵的概念。(3)了解实二次型的标准形式及其求法。
(4)了解惯性定理(对定理的证明不作要求)和实二次型的规范形。(5)了解正定二次型、正定矩阵的概念及它们的判别法。8.空间曲线与曲面
(1)理解二次曲面方程的概念,了解空间曲线方程的概念。
(2)了解常用二次曲面的方程及其图形,了解以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程。
(3)了解空间曲线的参数方程和一般方程。(4)了解曲面的交线在坐标平面上的投影。
*(5)了解二次曲面的分类。
四、概率论与数理统计课程教学基本要求 1.随机事件与概率
(1)了解随机现象与随机试验,了解样本空间的概念,理解随机事件的概念,掌握事件之间的关系与运算。
(2)了解事件频率的概念,理解概率的统计定义。了解概率的古典定义,会计算简单的古典概率。(3)了解概率的公理化定义,理解概率的基本性质,了解概率加法定理。
(4)了解条件概率的概念、概率的乘法定理与全概率公式,会应用贝叶斯(Bayes)公式解决比较简单的问题。
(5)理解事件的独立性概念。
(6)了解伯努利(Bernoulli)概型和二项概率的计算方法。2.随机变量及其分布
(1)理解随机变量的概念,了解分布函数的概念和性质,会计算与随机变量相联系的事件的概率。(2)理解离散型随机变量及其分布律的概念,掌握0-1分布、二项分布和泊松(Poisson)分布。(3)理解连续型随机变量及其概率密度的概念,掌握正态分布,了解均匀分布和指数分布。(4)会根据自变量的概率分布求简单随机变量函数的概率分布。3.多维随机变量及其分布
(1)了解多维随机变量的概念,了解二维随机变量的分布函数。
(2)了解二维离散型随机变量的分布律的概念,理解二维连续型随机变量的概率密度的概念。(3)理解二维随机变量的边缘分布。(4)理解随机变量的独立性概念。
(5)会求两个独立随机变量简单函数的分布(和、极大、极小)。4.随机变量的数字特征
(1)理解随机变量数学期望与方差的概念,掌握它们的性质与计算方法。
(2)了解0-1分布、二项分布、泊松分布、正态分布、均匀分布和指数分布的数学期望与方差。(3)了解矩、协方差、相关系数的概念及其性质,并会计算。5.大数定律和中心极限定理
(1)了解切比雪夫(Чебышев)不等式、切比雪夫大数定律和伯努利大数定律,了解伯努利大数定律与概率的统计定义、参数估计之间的关系。
*(2)了解独立同分布的中心极限定理和棣莫弗(De Moivre)-拉普拉斯(Laplace)中心极限定理。
*(3)了解棣莫弗-拉普拉斯(De Moivre-Laplace)中心极限定理在实际问题中的应用。6.数理统计的基本概念
(1)理解总体、个体、样本和统计量的概念。(2)了解直方图的作法。
(3)理解样本均值、样本方差的概念,掌握根据数据计算样本均值、样本方差的方法。(4)了解分布,分布,分布的定义,并会查表计算分位数。
(5)了解正态总体的常用抽样分布。7.参数估计
(1)理解点估计的概念,了解矩估计法与极大似然估计法。(2)了解无偏性、有效性、一致性等估计量的评判标准。
(3)理解区间估计的概念,会求单个正态总体均值与方差的置信区间,会求两个正态总体均值差与方差比的置信区间。
8.假设检验
(1)理解假设检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误。(2)了解单个正态总体均值和方差的假设检验,了解两个正态总体均值差和方差比的假设检验。
*(3)了解总体分布假设的检验法,会应用该方法进行分布拟合优度检验。
五、建议
(1)在课程的教学过程中,应当积极开展对教学内容与课程体系、教学方法与教学手段的改革,认真总结经验,并将教学改革的成果逐步吸收到教学中来,不断提高教学质量。要不断更新教学内容,逐步实现教学内容的现代化;要加强不同数学分支间的相互结合和相互渗透,进行课程和内容的重组;要突出数学思想方法的教学,加强数学应用能力的培养,淡化运算技巧的训练;要尊重个性,发挥特长,探索现阶段因材施教的新方法、新模式;要不断探索以学生为主体有利于调动学生自主学习积极性的启发式、讨论式、研究式的教学方法;要积极采用现代教育技术,使传统的教学手段与现代教学手段相互结合,取长补短。
(2)各校应根据自身的实际情况,努力创造条件,尽快开设与理论教学相配套的数学实验课,使学生学会使用常用的数学软件,提高他们使用数学软件解决问题的意识和能力,逐步培养他们的数学建模能力。已开设数学实验课的院校,可将基本要求中有关内容的理论教学结合实验课完成。
(3)建议学时:微积分一般不低于160学时,线性代数与空间解析几何一般不低于48学时(其中空间解析几何不低于12学时),概率论与数理统计一般不低于48学时。(4)应保证学生足够的课外学习时间,课内外学时比建议为1:2。习题课是实现教学基本要求的一个重要环节,不应取消。习题课学时应不少于总学时的1/6,以采用小班上课为宜,不宜用大班课代替。
(5)考试不仅是检查教学效果的重要手段,而且对教与学有着重要的导向作用。应积极进行考试改革,使考试的内容和形式不但有利于检查学生对基本知识和技能掌握的情况,而且有利于检测学生素质和能力的高低,逐步建立起科学的人才评判标准和教学质量评价体系。
(6)随着现代科学技术的发展,很多工科类专业对线性代数和随机数学(包括数理统计)的要求越来越高。希望各校在教学过程中不断总结经验,就如何改进和加强这两门课程的教学提出意见和建议。
经济管理类本科数学基础课程教学基本要求
数学与统计学教学指导委员会
一、前 言
数学是研究客观世界数量关系和空间形式的科学。随着现代科学技术和数学科学的发展,“数量关系”和“空间形式”具备了更丰富的内涵和更广泛的外延。现代数学的内容更丰富,方法更综合,应用更广泛。数学不仅是一种工具,而且是一种思维模式;不仅是一种知识,而且是一种素养;不仅是一种科学,而且是一种文化,能否运用数学观念定量思维是衡量民族科学文化素质的一个重要标志。数学教育在培养高素质经济和管理人才中越来越显示出其独特的、不可替代的重要作用。
高等学校经济类和管理类专业本科生的数学基础课程应包括微积分、线性代数与空间解析几何、概率论与数理统计,它们都是必修的重要基础理论课。在学习过程中,要将数学知识与其经济应用有机结合。通过这些课程的学习,应使学生获得一元函数微积分及其应用、多元函数微积分及其应用、无穷级数、常微分方程与差分方程、向量代数与空间解析几何、线性代数、概率论与数理统计等方面的基本概念、基本理论、基本方法和运算技能,为今后学习各类后继课程和进一步扩大数学知识面奠定必要的连续量、离散量和随机量方面的数学基础。在传授知识的同时,要注意培养学生进行抽象思维和逻辑推理的理性思维能力,综合运用所学的知识分析问题和解决问题的能力以及较强的自主学习能力,逐步培养学生的探索精神和创新能力。
课程的教学基本要求,是经济类和管理类专业本科生学习本课程都应当达到的合格要求,其中带*号的条目是为某些相关专业选用的,也是对选用专业学生的基本要求。各校各专业根据本校本专业的实际情况,在达到基本要求的基础上,还可以提出一些较高的或特殊的要求。
各门课程的内容按教学要求的不同,都分为两个层次。文中用黑体字排印的内容,应使学生深入领会和掌握,并能熟练运用。其中,概念、理论用“理解”一词表述,方法、运算用“掌握”一词表述。非黑体字排印的内容,也是必不可少的,只是在教学要求上低于前者。其中,概念、理论用“了解”一词表述,方法、运算用“会”或“了解”表述。基本要求中所列出的各项内容与要求是制订教学计划、教学大纲和编写教材的重要依据,但不涉及课程体系的结构、教学内容的先后安排和编写教材的章节顺序。
二、微积分课程教学基本要求 1.函数、极限、连续
(1)在中学已有的基础上, 加深对函数概念的理解和对函数基本性态(奇偶性、周期性、单调性、有界性)的了解。
(2)理解复合函数的概念;了解反函数的概念,理解初等函数的概念。(3)会建立简单的经济问题的函数关系式;了解经济学中常用的一些函数。(4)理解数列极限和函数极限的概念。
(5)了解无穷大、无穷小、高阶无穷小和等价无穷小的概念;会用等价无穷小求极限。(6)掌握极限的四则运算法则,会用变量代换求某些简单复合函数的极限。
(7)了解极限存在的两个准则(夹逼准则和单调有界准则);了解两个重要极限与,并会用它们求一些相关的极限。
(8)理解函数连续的概念;了解函数间断点的概念, 会判断间断点的类型。
(9)了解初等函数的连续性和闭区间上连续函数的性质(最大值、最小值定理和有界性定理、零点定理和介值定理)。
2.一元函数微分学
(1)理解导数的概念及其几何意义和经济意义(含边际与弹性的概念),了解函数的可导性与连续性之间的关系。
(2)掌握基本初等函数的求导公式;掌握导数的四则运算法则和复合函数求导法则;了解反函数的求导法则;掌握隐函数的求导方法。
(3)了解高阶导数的概念,掌握初等函数的一阶、二阶导数的求法。了解几个常见的函数(e, sin
xx, cos x, ln(1+x))的n阶导数的一般表达式。
(4)理解微分的概念,了解微分概念中包含的局部线性化思想,了解微分的四则运算法则和一阶微分的形式不变性。
(5)理解罗尔(Rolle)定理、拉格朗日(Lagrange)定理及柯西(Cauchy)中值定理,会用洛必达(L’Hospital)法则求不定式的极限。
(6)了解泰勒(Taylor)定理及用多项式逼近函数的思想(对定理的证明及利用泰勒定理证明相关问题不作要求)。(7)理解函数的极值概念,掌握利用导数判断函数的单调性和求极值的方法。会求解经济管理问题中的最大值与最小值的应用问题。
(8)会用导数判断函数图形的凹凸性,会求拐点会描绘一些简单函数的图形(包括水平和铅直渐近线)。
3.一元函数积分学
(1)理解原函数与不定积分的概念;掌握不定积分的性质;了解原函数存在定理。(2)掌握不定积分的基本公式;掌握不定积分的换元积分法和分部积分法。(3)理解定积分的概念及几何意义;了解定积分的基本性质和积分中值定理。
(4)理解变上限的积分作为其上限的函数及其求导定理;掌握牛顿(Newton)—莱布尼茨(Leibniz)公式。
(5)掌握定积分的换元法与分部积分法。
(6)掌握实际问题中建立定积分表达式的元素法(微元法),会建立某些简单的几何问题及经济问题的定积分表达式。
(7)了解两类反常积分及其收敛性的概念;了解4.无穷级数
(1)理解无穷级数收敛、发散以及收敛级数和的概念;了解无穷级数的基本性质及收敛的必要条件。
(2)了解正项级数的比较审敛法,掌握几何级数与p-级数的敛散性结果;掌握正项级数的比值审敛法。
(3)了解交错级数的莱布尼茨定理;了解绝对收敛与条件收敛的概念及二者的关系。
(4)掌握简单幂级数收敛区间的求法(区间端点的收敛性不作要求);了解幂级数在其收敛区间内的一些基本性质,会求一些简单的幂级数的和函数。
(5)会用,,与的麦克劳林(Maclaurin)展开式将一些简单函数的概念。的函数展开成幂级数。
(6)了解一些无穷级数在经济中的应用。5.向量代数与空间解析几何
(1)理解空间直角坐标系的有关概念,会求空间两点间的距离;理解向量的概念及其表示。(2)掌握向量的运算(线性运算、数量积、向量积),了解两个向量垂直、平等的条件。(3)掌握平面的方程和直线的方程及其求法。(4)了解曲面方程及空间曲线方程的概念;了解常用二次曲面的方程及其图形;了解空间曲线的参数方程和一般方程;了解空间曲线在坐标面上的投影。
6.多元函数微积分学
(1)理解二元函数的概念及几何意义;了解多元函数的概念。
(2)了解二元函数的极限与连续的概念;了解有界闭区域上二元连续函数的性质。
(3)理解二元函数偏导数与全微分的概念;了解全微分存在的必要条件与充分条件。掌握求偏导数和全微分的方法。
(4)掌握复合函数一阶偏导数的求法,会求复合函数的二阶偏导(对抽象复合函数的二阶偏导数,只作简单训练)。
(5)会求由一个方程确定的隐函数的一阶偏导数。
(6)理解二元函数极值与条件极值概念;会求二元函数的极值;会用拉格朗日乘数法求条件极值;会求解比较简单的最大值和最小值问题。
(7)理解二重积分的概念及几何意义;了解二重积分性质;掌握二重积分的计算方法(直角坐标,极坐标);会计算无界域上的较简单的反常二重积分。
*(8)了解三重积分的概念及计算。
(9)会用多元函数的微积分知识解决一些简单的经济问题。7.微分方程与差分方程
(1)了解微分方程与差分方程的一些基本概念。
(2)掌握一些基本的一阶微分方程(可分离变量方程、齐次方程及一阶线性方程)的求解方法。
(3)掌握一阶常系数齐次线性差分方程的求解方法;掌握简单的一阶常系数非齐次线性差分方程的求解方法。
(4)会用降阶法求下列三种类型的高阶方程:
= f(x),=f(x, y),= f(y,)。
(5)了解二阶线性微分方程和差分方程解的结构;会求解二阶常系数的齐次线性微分方程和差分方程;会求解一些简单的二阶常系数的非齐次线性微分方程和差分方程。
(6)会通过建立微分方程和差分方程模型,解决一些简单的经济问题。
三、线性代数课程教学基本要求 1.行列式
(1)了解行列式的概念, 掌握行列式的基本性质。(2)会应用行列式的定义、性质和有关定理计算行列式。(3)了解克拉默法则。2.n维向量
(1)理解n维向量的概念,理解向量的线性组合和线性表示的概念。掌握向量的加法和数乘运算。(2)理解向量组的线性相关和线性无关的定义;会判断向量组的线性相关性或线性无关性。(3)理解向量组的极大线性无关组和向量组的秩的概念;会求向量组的极大线性无关组和秩。3.矩 阵
(1)理解矩阵的概念。
(2)了解单位矩阵、对角矩阵、三角矩阵、对称矩阵、反对称矩阵以及它们的性质。
(3)掌握矩阵的加法、数乘、乘法、转置以及它们的运算规律;了解方阵的幂、方阵乘积的行列式的性质。
(4)理解逆矩阵的概念;掌握矩阵可逆的充分必要条件;了解伴随矩阵与逆矩阵的关系;掌握逆矩阵的性质。
(5)掌握矩阵的初等变换;了解初等矩阵的性质和矩阵等价的概念。(6)了解矩阵秩的概念;了解向量组的秩与矩阵的秩之间的关系。(7)掌握用初等变换求矩阵的秩和求逆矩阵的方法。4.线性方程组
(1)理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件。(2)理解齐次线性方程组的基础解系和通解的概念。(3)理解非齐次线性方程组解的结构及通解的概念。(4)掌握用初等变换求线性方程组通解的方法。5.向量空间
(1)了解n维向量空间、线性子空间、基底、维数、坐标等概念;了解向量在不同基底下的坐标变换。
(2)了解向量内积的定义;掌握线性无关向量组的正交化方法。(3)了解正交矩阵的定义及主要性质。6.矩阵的特征值与特征向量
(1)了解矩阵特征值、特征向量等概念及有关性质。会求矩阵特征值和特征向量。(2)了解相似矩阵的概念。
(3)掌握将实对称矩阵化为对角阵的方法。
*(4)了解向量和矩阵序列极限的概念;了解矩阵级数的收敛性及收敛条件。(5)了解投入产出数学模型。*7.二次型
(1)了解二次型的概念;会用矩阵形式表示二次型。
(2)了解合同变换和合同矩阵的概念;了解二次型的秩的概念;了解二次型的标准形、规范形等概念;了解惯性定理的条件和结论;会用正交变换和配方法化二次型为标准形。
(3)理解正定(负定)二次型、正定(负定)矩阵的概念;掌握正定矩阵的基本性质;了解二次型在求极值问题中的应用。
四、概率论与数理统计课程教学基本要求 1.随机事件与概率
(1)了解随机现象与随机试验,了解样本空间的概念,理解随机事件的概念,掌握事件之间的关系与运算。
(2)了解事件频率的概念、了解概率的统计定义。了解概率的古典定义,会计算简单的古典概率。(3)了解概率的公理化定义,理解概率的基本性质,理解概率加法定理。
(4)了解条件概率的概念。理解概率的乘法定理。了解全概率公式,理解贝叶斯(Bayes)公式,并会应用贝叶斯公式解决较简单问题。
(5)理解事件的独立性概念。了解伯努利(Bernoulli)概型和二项概率的计算方法。2.随机变量及其分布
(1)理解随机变量的概念,了解分布函数的概念和性质,会计算与随机变量相联系的事件的概率。(2)理解离散型随机变量及其分布律的概念,掌握0-1分布、二项分布和泊松(Poisson)分布。(3)理解连续型随机变量及其概率密度的概念,掌握正态分布、均匀分布和指数分布。(4)会根据自变量的概率分布求其简单随机变量函数的概率分布。3.多维随机变量及其分布
(1)了解多维随机变量的概念,理解二维随机变量的分布函数的概念。
(2)理解二维离散型随机变量的分布律的概念,理解二维连续型随机变量的概率密度的概念。(3)理解二维离散型随机变量的边缘分布律,理解二维连续型随机变量的边缘概率密度。(4)理解随机变量的独立性概念。
(5)会求两个独立随机变量简单函数的分布(和、极大、极小),了解有限个正态分布的线性组合仍是正态分布的概念。
4.随机变量的数字特征
(1)理解随机变量数学期望与方差的概念,掌握它们的性质与计算。会求随机变量函数的数学期望。(2)掌握0-1分布、二项分布、泊松分布、正态分布、均匀分布和指数分布的数学期望与方差。(3)了解矩、协方差、相关系数的概念及其性质,并会计算。(4)了解随机变量的数字特征在经济中的应用。5.大数定律和中心极限定理
(1)了解切比雪夫(Чебйыев)不等式,切比雪夫大数定律和伯努利大数定律,了解伯努利大数定律与概率的统计定义、参数估计之间的关系。
(2)了解棣莫弗-拉普拉斯(De Moivre-Laplace)中心极限定理,并会运用该定理近似计算有关事件的概率。
(3)了解独立同分布的中心极限定理。6.数理统计的基本概念
(1)理解总体、个体、样本和统计量的概念。(2)了解直方图的作法。
(3)理解样本均值、样本方差的概念,掌握根据数据计算样本均值、样本方差的方法。(4)了解分布,分布,分布的定义,并会查表计算分位数。
(5)了解正态总体的常用抽样分布。
(6)了解经验分布函数的概念和性质,会根据样本值求经验分布函数。7.参数估计
(1)理解点估计的概念,掌握矩估计法与极大似然估计法。(2)了解估计量的评判标准(无偏性、有效性、一致性)。
(3)理解区间估计的概念,会求单个正态总体均值与方差的置信区间,会求两个正态总体均值差与方差比的置信区间。
8.假设检验
(1)理解假设检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误。(2)了解单个正态总体均值与方差的假设检验,了解两个正态总体均值差与方差比的假设检验。
*(3)了解总体分布假设的9.回归分析
检验法,会应用该方法进行分布拟合优度检验。
*(1)了解回归分析的含义。
(2)会用最小二乘法求回归系数;了解可线性化为一元线性回归的基本类型。(3)会作简单预测。**
五、建 议
(1)随着社会的发展,经济管理领域对数学的要求越来越高,经济管理类专业数学具有越来越强烈的应用背景。学校和教师在经济管理类数学课程的教学中应努力联系本专业的实际,以提高学生学习数学的兴趣和应用数学知识解决本专业实际问题的意识和能力。要努力收集数学在经济管理中鲜活的应用案例,引入教学和教材。在引入数学知识时也应提倡从解决经济管理领域中的适当的实际问题入手,通过建立数学模型解决这些实际问题的过程来引入数学的概念、思想和方法。在教学实践中不断改革创新,逐步形成适应现代社会发展中经济管理实际的数学教学内容体系。
(2)各校应根据自身的实际情况,努力创造条件,以适当的形式开设与理论教学相配套的数学建模和数学实验课,或在现有数学课程教学中适当安排数学建模和数学实验的内容,培养学生建立数学模型并借助于数学软件解决经济和管理问题的能力。
(3)积极进行教学方法与教学手段的改革,不断探索以学生为主体有利于调动学生自主学习积极性的启发式、讨论式、研究式的教学方法。要积极采用现代教育技术手段,使传统的教学手段与现代教学手段相互结合,取长补短。
(4)为达到本课程教学基本要求,需要有相应的教学课时。建议微积分、线性代数、概率论与数理统计各部分的学时分别不低于144、36和54。
(5)希望各校在教学过程中不断总结经验,就如何改进和加强经济类数学课程的教学提出意见和建议。
医科类本科数学基础课程教学基本要求
数学与统计学教学指导委员会
一、前 言
数学是研究客观世界数量关系和空间形式的科学。它不仅是一种工具,而且是一种思维模式;不仅是一种知识,而且是一种素养;不仅是一种科学,而且是一种文化。数学教育在高素质科技人才包括医科人才的培养中具有不可替代的重要作用。
高等学校医科类专业本科生的数学基础课程应包括微积分、概率论和线性代数的一些基本内容。通过该课程的学习,应使学生获得微积分、概率论和线性代数的主要基本知识(基本概念、理论和方法)以及基本运算技能,了解它们在医学中的一些应用,为今后学习相关后继课程和科学知识打下必要的数学基础。同时应培养学生进行抽象思维和逻辑推理的能力,尤其是综合应用所学知识来分析和解决实际问题的能力。
本课程教学基本要求是高等学校医科类本科生学习数学基础课程都应当达到的合格要求,其中线性代数部分,目前可以为某些学校医科专业选用。各校还可以根据本校的具体情况,在基本要求的基础上,提出一些更高的或特殊的要求。本课程的学习内容按教学要求的不同,都分为两个层次。文中用黑体字排印的内容,应使学生深入领会和掌握,并能熟练运用,其中,概念、理论用“理解”一词表述;方法、运算用“掌握”一词表述。非黑体字排印的内容,也是必不可少的,只是在教学要求上低于前者,其中,理论用“了解”一词表述;方法、运算用“会”或“了解”表述。
课程基本要求所列出的各内容与要求是制订教学计划、教学大纲和编写教材的重要依据,但不涉及课程体系的结构、教材和教学内容的次序安排。
二、课程教学基本要求
微积分部分
1.函数、极限、连续
(1)理解函数的概念,了解函数的表示法(包括分段表示),了解复合函数、分段函数、初等函数的定义,掌握函数复合与分解的方法。
(2)理解极限(包括单侧极限)的描述性定义,掌握极限的四则运算法则。(3)了解无穷小量的概念,了解无穷小与无穷大的关系,掌握无穷小量的性质。
(4)了解两个重要极限((性质计算函数的极限。),会利用两个重要极限和无穷小量的(5)理解连续与间断的概念,了解闭区间上连续函数的性质。2.导数与微分
(1)理解导数、微分的概念及它们之间的关系,了解函数连续与可导的关系,理解导数、微分的几何意义。
(2)掌握导数的四则运算和复合运算法则,掌握基本初等函数的导数公式,会运用它们计算初等函数、隐函数的导数。
(3)了解微分运算法则,会计算初等函数的微分,了解微分的一些简单应用。(4)了解高阶导数的概念,会求初等函数的二阶导数。(5)了解罗尔(Rolle)定理和拉格朗日(Lagrange)定理。
(6)会求函数的极值,会判断函数的增减性与函数图形的凹凸性,会求函数图形的拐点,会描绘简单医学数学模型的图形,会解较简单的最大值与最小值的应用问题。
(7)会用洛必达(3.不定积分
(1)理解原函数与不定积分的概念,了解不定积分的性质。Hospital)法则求极限。(2)掌握不定积分基本公式与运算法则。(3)掌握换元积分法与分部积分法。4.定积分
(1)理解定积分的概念和几何意义,了解定积分的基本性质,了解积分中值定理。(2)掌握牛顿-莱布尼茨(Newton-Leibniz)公式,会求简单的变上限积分的导数。(3)掌握定积分的换元积分法和分部积分法。(4)会计算平面图形面积和旋转体体积。
(5)了解反常积分收敛与发散的概念,会计算一些简单的反常积分。5.常微分方程
(1)了解微分方程、解、通解、初始条件和特解等概念。
(2)会识别变量可分离方程、齐次方程、线性方程、伯努利(Bernoulli)方程。(3)掌握变量可分离方程和一阶线性方程的解法。(4)了解、、三类高阶方程的降阶法。
(5)了解二阶线性微分方程解的结构。
(6)掌握二阶常系数齐次线性微分方程的解法,了解简单的二阶常系数非齐次线性微分方程的解法。
(7)会用微分方程解决一些简单的医学上的应用问题。6.多元函数微积分
(1)理解二元函数的概念,了解多元函数的概念,了解空间直角坐标系和简单的空间曲面。(2)了解二元函数的极限、连续性等概念。
(3)了解偏导数、全导数、全微分之间的区别与联系,会求二阶偏导数。(4)了解多元函数极值的概念,会求二元函数的极值和解简单的条件极值问题。(5)了解最小二乘法。
(6)了解二重积分的概念、几何意义和性质。(7)会用直角坐标和极坐标计算简单的二重积分。
概率论部分
1.随机事件与概率
(1)了解样本空间的概念,理解随机事件的概念,掌握事件之间的关系与运算。(2)了解事件频率的概念,理解概率的统计定义。(3)了解概率的古典定义,会计算简单古典概型的概率。(4)掌握概率的基本性质以及概率加法定理。
(5)了解条件概率的概念,掌握概率的乘法定理、全概率公式和贝叶斯(Bayes)公式。(6)了解事件的独立性概念,掌握伯努利(Bernoulli)概型及其计算方法。2.随机变量及其分布
(1)理解随机变量的概念,了解离散型随机变量及分布律(分布列)的概念和性质,了解连续型随机变量及概率密度的概念和性质。
(2)了解分布函数的概念和性质,会利用概率分布计算有关事件的概率。(3)掌握二项分布、泊松(Poisson)分布与正态分布,了解均匀分布与指数分布。(4)会求简单随机变量函数的概率分布。3.随机变量的数字特征
(1)了解随机变量的数学期望与方差的概念和性质,了解变异系数的概念。(2)会计算简单随机变量函数的数学期望。
(3)掌握二项分布、泊松分布与正态分布的数学期望及方差,了解均匀分布、指数分布的数学期望及方差。
4.大数定律和中心极限定理
(1)了解切比雪夫(Чебйыев)大数定律和伯努利大数定律;(2)了解独立同分布的中心极限定理。
线性代数部分
1.了解行列式的归纳定义和性质
2.掌握二、三阶行列式的计算,会计算最简单的n阶行列式 3.理解矩阵概念,了解单位矩阵、对角矩阵和上(下)三角矩阵的概念 4.掌握矩阵的线性运算、乘法、转置及其运算规律
5.了解逆矩阵的概念和逆矩阵存在的条件, 掌握矩阵求逆的方法 6.掌握矩阵的初等变换
7.了解矩阵的秩的概念,会求矩阵的秩
8.了解n维向量的概念,了解向量组线性相关与线性无关的概念及一些有关的重要结论 9.了解向量组的最大无关组与向量组的秩的概念,并会求向量组的最大无关组和秩
10.了解克拉黙(Cramer)法则;会用克拉默法则判别线性方程组的解的情况和求二、三元线性方程组的解
11.理解齐次线性方程组有非零解的充要条件及非齐次线性方程组有解的充要条件 12.了解齐次线性方程组的基础解系及其通解的概念,了解非齐次线性方程组的解的结构及通解的概念
13.掌握用行初等变换求线性方程组通解的方法
14.了解矩阵的特征值与特征向量的概念,会求三阶方阵的特征值与特征向量
三、建 议
(1)鉴于目前各高等学校医科类专业数学基础课的教学现状存在较大差异,因此本课程基本要求将线性代数部分作为可以选修的内容。但各校应根据自身实际情况,努力尽早将这部分纳入课程必修的内容。
(2)介绍医学问题的数学模型,了解数学在医学中的应用,是医科类数学基础课程的教学中必须强调和重视的。数学实验是让学生学习运用数学知识、结合计算机和数学软件来解决实际问题的实践教学环节,有利于培养学生的综合应用能力和创新意识。在有条件的学校,医科专业应积极结合数学理论教学,进行数学实验课程教学的探索和尝试。
(3)为达到本课程基本要求,课程的教学内容需要相应的教学学时:建议微积分、概率论和线性代数各部分的学时分别为54、18和18;另外应保证学生有足够的课外学习时间,建议课内外学时比例为1:2。
第二篇:经济管理类本科数学基础课程教学基本要求重点
经济管理类本科数学基础课程教学基本要求
一、前言
数学是研究客观世界数量关系和空间形式的科学。随着现代科学技术和数学科学的发展,“数量关系”和“空间形式”具备了更丰富的内涵和更广泛的外延。现代数学的内容更丰富,方法更综合,应用更广泛。数学不仅是一种思维模式:不仅是一种知识,而且是一种素养:不仅是一种科学,而且是一种文化,能否应用数学观念定量思维是衡量民族科学文化素质的一个重要标志。数学教育在培养高素质经济和管理人才中越来越显示出其独特的、不可代替的重要作用。
高等学校经济类和管理类专业本科生的数学基础课程应包括微积分、线性代数与空间解析几何、概率论与树立统计,它们都是必修的重要基础理论课。在学习过程中,要将数学知识与其经济应用有机结合。通过这些课程的学习,应使学生获得一元函数微积分及应用、多元函数微积分及其应用、无穷级数、常微分方程与差分方程、向量代数与空间解析几何、线性代数、概率论与数理统计等方面的基本概念、基本理论、基本方法和运算技能,为今后学习各类后继课程和进一步扩大数学知识面奠定必要的连续量、离散量和随机量方面的数学基础。在传授知识的同时,要注意培养学生进行抽象思维和逻辑推理的理性思维能力,综合御用所学知识分析问题的能力以及较强的自主学习能力,逐步培养学生的探索精神和创新能力。
课程的教学基本要求,是经济类和管理类专业本科生学习本课程都应当达到的合格要求,其中带*的条目是为某些相关专业选用的,也是对选用专业学生的基本要求。各校各专业根据本校本专业的实际情况,在达到基本要求的基础上,还可以提出一些较高的或特殊的要求。
各门课程的内容按教学要求的不同都分为两个层次。文中用黑体字排印的内容,应使学生深入领会和掌握并能熟练应用。其中,概念,理论用“理解”一词表达,方法、运算用“掌握”一词表达。非黑体字排印的内容,也是必不可少的,知识在教学要求上低于前者。其中,概念、理论用“了解”一词表达,方法、运算用“会”或“了解”表达。
基本要求中所列出的各项内容与要求是制定教学计划、教学大纲和编写教材的重要依据,但不涉及课程体系的结构、教学内容的先后安排和编写教材的章节顺序。
二、微积分课程教学基本要求
1。函数、极限、连续
(1)在中学已有的基础上,加深对函数概念的理解和对函数基本性态(奇偶性、周期性、单调性、有界性)的了解
(2)理解复合函数的概念;了解反函数的概念,理解初等函数的概念。(3)会建立简单经济问题中的函数关系式;掌握常见的经济函数。(4)了解数列极限和函数极限及性质。
(5)了解无穷大、无穷小的有关概念及性质;了解无穷小的比较法,会用等价无穷小求极限。(6)掌握极限的四则运算法则,会用变量带换求某些简单复合函数的极限
1(7)了解极限的性质存在的两个准则(夹逼准则与单调有界准则),了解两个重要极限lim1exx与limxsinx1,并会用它们求一些相关的极限。
x0x(8)理解函数的连续性的概念;了解函数间断点的概念,会判断间断点的类型。
(9)了解初等函数的连续性和闭区间上连续函数的性质(最大值、最小值定理和有界性定理、零点定理和介值定理)。2。一元函数微分学
(1)理解导数的概念及其几何意义和经济意义(含边际与弹性的概念),了解函数的可导性与连续性之间的关系。
(2)掌握基本初等函数的求导公式;掌握导数的四则运算法则和复合函数求导法则;了解反函数的求导法则;掌握隐函数的求导方法。
(3)了解高阶导数的概念,掌握初等函数的一阶、二阶导数的求法。了解几个常见的函数(e,sinx,xcosx,ln(1x))的n阶导数的一般表达式。
(4)理解微分的概念,了解微分概念中包含的局部线性化思想,了解微分的四则运算法则和一阶微分的形式不变性。
(5)了解罗热(Rolle)定理、拉格朗日(Lagrange)定理及柯西(Cauchy)中值定理,会用洛必达(L′Hospital)法则求不定式的极限。
(6)了解泰勒(Taylor)定理及用多项式逼迫函数的思想(对定理的证明及利用泰勒定理证明相关问题不作要求)。
(7)理解函数的极值概念,掌握利用导数判断函数的单调性和求极值的方法。会求解经济管理问题中的最大值与最小值的应用问题。
(8)会用导数判断函数图形的凹凸性,会求拐点会描绘一些简单函数的图形(包括水平和铅直渐近线)。3。一元函数积分学
(1)理解原函数与不定积分的概念;掌握不定积分的性质;了解原函数存在的定理。(2)掌握不定积分的基本公式;掌握不定积分的换元积分法和分部积分法。(3)理解定积分的概念及几何意义;了解定积分的基本性质和积分中值定理。
(4)理解变上限的积分作为其上限的函数及其求导定理;掌握牛顿(Newton)—莱布尼茨(Leibniz)公式。
(5)掌握定积分的换元法与分部积分法。
(6)掌握实际问题中建立定积分表达式的元素法(微元法),会建立某些简单的几何问题及经济问题的定积分表达式。
(7)了解两类反常积分及其收敛性的概念;了解G—函数的概念。4。无穷级数
(1)理解无穷级数收敛、发散以及收敛级数和的概念;了解无穷级数的基本性质及收敛的必要条件。(2)了解正项级数的比较审敛法,掌握几何级数与p-级数的敛散性结果;掌握正项级数的比值审敛法。
(3)了解交错级数的莱布尼茨定理;了解绝对收敛与条件收敛的概念及二者的关系。
(4)会求简单幂级数的收敛半径、收敛区间及收敛域(对收敛域的求法不作过多要求);了解幂级数在其收敛域(或收敛区间)内的一些基本性质,会求一些见大的幂级数的和函数。
(5)会用e,sinx,cosx,ln(1x)与(1x)的麦克劳林(Maclaurin)展开式将一些简单的函数展开成幂级数。
(6)了解一些无穷级数在经济中的应用。5。向量代数与空间解析几何
(1)理解空间直角坐标系的有关概念,会求空间两点间的距离;理解向量的概念及其表示。(2)掌握向量的运算(线性运算、数量积、向量积),了解两个向垂直、平等的条件。x(3)掌握平面的方程和直线的方程及其求法。
(4)了解曲面方程及空间曲线方程的概念;了解常用二次曲面的方程及其图形;了解空间曲线的参数方程和一般方程;了解空间曲线在坐标面上的投影。6。多元函数微积分学
(1)理解二元函数的概念及几何意义;了解多元函数的概念。
(2)了解二元函数的极限与连续的概念;了解有界闭区域上二元连续函数的性质。
(3)理解二元函数偏导数与全微分的概念;了解全微分存在的必要条件与充分条件。掌握求偏导数和全微分的方法。
(4)掌握复合函数一阶偏导数的求法,会求复合函数的二阶偏导(对抽象复合函数的二阶偏导数,只作简单训练)。
(5)会求由一个方程确定的隐函数的一阶偏导数。
(6)理解二元函数极值与条件极值概念;会求二元函数的极值;会用拉格朗日乘数法求条件极值;会求解比较简单的最大值和最小值问题。
(7)理解二重积分的概念及几何意义;了解二重积分性质;掌握二重积分的计算方法(直角坐标,极坐标);会计算无界域上的较简单的反常二重积分。
(8)了解三重积分的概念及计算。
(9)会用多元函数的微积分知识解决一些简单的经济问题。7。微分方程与差分方程
(1)了解微分方程与差分方程的一些基本概念。
(2)掌握一些基本的一阶微分方程(可分离变量方程、齐次方程及一阶线性方程)的求解方法。(3)掌握一阶常系数齐次线性差分方程的求解方法;掌握简单的一阶常系数非齐次线性差分方程的求解方法。
n(4)会用降阶法求下列三种类型的高阶方程:y(n)f(x),y'f(x,y),yf(y,y')。
(5)了解二阶线性微分方程和差分方程解的结构;会求解二阶系数的齐次线性微分方程和差分方程;会求解一些简单的二阶常系数的非齐次线性微分方程和差分方程。
(6)会通过建立微分方程和差分方程模型,解决一些简单的经济问题。
三、线性代数课程教学基本要求
1。行列式
(1)了解行列式的概念,掌握行列式的基本性质。(2)会应用行列式的定义、性质和有关定理计算行列式。(3)掌握克莱姆法则。2。n维向量
(1)理解n维向量的概念,理解向量的线性组合和线性表示的概念。掌握响亮的加法和数乘运算。(2)理解向量组的线性相关和线性无关的定义;会判断向量组的线性相关性或线性无关性。(3)理解向量组的极大线性无关组和向量组的秩的概念;会求向量组的极大线性无关组和秩。3。矩阵
(1)理解矩阵的概念
(2)了解单位矩阵、对角矩阵、三角矩阵、对称矩阵、反对称矩阵以及它们的性质。
(3)掌握矩阵的加法、数乘、乘法、转置以及它们的运算规律;了解方阵的幂、方阵乘积的行列式的性质。
(4)理解逆矩阵的概念;掌握逆矩阵的性质以及矩阵可逆的充分必要条件;理解伴随矩阵概念;会用伴随矩阵求矩阵的逆。
(5)掌握矩阵的初等变换;了解初等矩阵的性质和矩阵等价的概念。(6)了解矩阵秩的概念;了解向量组的秩与矩阵的秩之间的关系。(7)掌握用初等变换求矩阵的秩和求逆矩阵的方法。4。线性方程组
(1)理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件。(2)理解齐次线性方程组的基础解系和通解的概念。(3)理解非齐次线性方程组解的结构及通解的概念。(4)掌握用初等变换求线性方程组通解的方法。5。向量空间
(1)了解向量空间的概念;了解Rn的基底、子空间及其维数的概念;了解向量在不同基底下的坐标变换。
(2)了解向量内积的定义;理解线性无关向量组的正交化方法。(3)了解正交矩阵的定义;了解正交矩阵主要性质。6。矩阵的特征值与特征向量
(1)了解矩阵特征值、特征向量等概念及有关性质。掌握求二阶矩阵特征值和特征向量的方法。(2)了解相似矩阵的概念。
(3)掌握将实际对称矩阵化为对角阵的方法。
(4)了解向量和矩阵序列极限的概念;了解矩阵级数的收敛性及收敛条件。(5)了解投入产出数学模型。7。二次型
(1)了解二次型的概念;会用矩阵形式表示二次型。
(2)了解合同变换和合同矩阵的概念;了解二次型的秩的概念;了解二次型的标准形、规范形等概念;了解惯性定理的条件和结论;会用正交变换和配方法化二次型为标准形。
(3)理解正定(负定)二次型、正定(负定)矩阵的概念及在求极值问题中的应用;掌握正定矩阵的基本性质。
四、概率论与数理统计课程教学基本要求
1。随机事件与概率
(1)了解随机现象,了解样本空间的概念,理解随机事件的概念,掌握事件之间的关系与运算。(2)了解事件频率的概念,了解概率的统计定义。了解概率的古典定义,会计算简单的古典概率。(3)理解概率的公理化定义和概率的基本性质,了解概率加法定理。
(4)了解条件概率的概念。理解概率的乘法定理。了解全概率公式,理解贝叶斯(Bayes)公式,并会用贝叶斯公式解决较简单的问题。
(5)了解事件的独立性概念。了解伯努利(Bernoulli)概型和二项概率的计算方法。2。随机变量及其分布
(1)理解随机变量的概念,了解分布函数的概念和性质,会计算与随机变量相联系的事件的概率。(2)理解离散型随机变量及其分布的概念,掌握0-1分布、二项分布和泊松(Poisson)分布。(3)理解连续型随机变量及其密度函数的概念,掌握正态分布,了解均匀分布和指数分布。(4)会根据自变量的概率分布求简单随机变量函数的概率分布。3。多维随机变量及其分布
(1)理解多维随机变量的概念,了解二维随机变量的联合分布函数的概念。
(2)理解二维离散型随机变量的联合分布律的概念,理解二维连续型随机变量的联合密度函数的概念。(3)理解二维离散随机变量的边缘分布,理解二维连续型随机变量的边缘概率密度。(4)理解随机变量的独立性概念。
(5)会求两个独立随机变量简单函数的分布(和、差、商、极大、极小),了解有限个正态分布的线性组合仍是正态分布的概念 4。随机变量的数字特征
(1)理解随机变量数学期望与方差的概念,掌握它们的性质与计算方法。理解随机变量函数的数学期望。
(2)了解0-1分布、二项分布、泊松分布、正态分布、均匀分布和指数分布的数学期望与方差。(3)了解矩、协方差、相关系数的概念及其性质,并会计算。(4)了解随机变量的数字特征在经济中的应用。5。大数定律和中心极限定理
(1)了解切比雪夫(чебышев)不等式、切比雪夫大数定律和贝努利大数定律,了解贝努利大数定律与概率的统计定义、参数估计之间的关系。
(2)掌握棣莫弗-拉普拉斯(De Moivre-Laplace)中心极限定理,并会运用该定理近似计算有关事件的概率。
(3)了解独立同分布的中心极限定理。6。数理统计的基本概念
(1)理解总体、个体、样本和统计量的概念。(2)了解直方图的作法。
(3)理解样本均值、样本方差的概念,掌握根据数据计算样本均值、样本方差。(4)了解2分布,t分布,F分布的定义,并会查表计算分位数。
(5)了解正态总体的某些常用抽样分布,如正态总体样本产生的标准正态分布、2分布、t分布,F分布等。
(6)了解经验分布函数的概念和性质,会根据样本值求经验分布函数。7。参数估计
(1)理解点估计的概念,了解矩估计法与极大似然估计法。(2)了解估计量的评价标准(无偏性、有效性、一致性)。
(3)理解区间估计的概念,会求单个正态总体均值与方差的置信区间,会求两个正态总体均值差与方差比的置信区间。8。假设检验
(1)理解假设检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误。(2)了解单个和两个正态总体均值与方差的假设检验。
(3)了解总体分布假设的检验法,会应用该方法进行分布拟合优度检验。
29。回归分析
(1)了解回归分析的含义。(2)会用最小二乘法求回归系数;了解可线性化为一元线性回归的基本类型。(3)会作简单预测。
五、建议
(1)随着社会的发展,经济管理领域对数学的要求越来越高,经济管理类专业数学具有越来越强烈的应用背景。学校和教师在经济管理类数学课程的教学中应努力联系本专业的实际,以提高学生学习数学的兴趣和应用数学知识解决本专业实际问题的意识和能力。要努力收集数学在经济管理中鲜活的应用案例,引入教学和教材。在引入数学知识时也应提倡从解决经济管理领域中的适当的实际问题入手,通过建立数学模型解决这些实际问题的过程来引入数学的概念、思想和方法。在教学实践中不断改革创新```````````````````(2)各校应根据自身的实际情况,努力创造条件,以适当的形式开设与理论教学相配套的数学建模和数学实验课,或在现有数学课程教学中适当安排数学建模和数学实验的内容,培养学生建立数学模型并借助于数学软件解决经济和管理问题的能力。
(3)积极进行教学方法于教学手段的改革,不断探索以学生为主体有利于调动学生自主学习积极性的启发式、讨论式、研究式的教学方法。要积极采用现代教育技术手段,使传统的教学手段与现代教学手段相互结合,取长补短。
(4)希望各校在教学过程中不断总结经验,就如何改进和加强经济类数学课程的教学提出意见和建议。
第三篇:机械设计基础课程教学基本要求
机械设计基础课程教学基本要求
(机械类专业适用)
课程性质与任务
一、课程设置说明
本课程是机械类专业的专业基础课。该课程在高等专科和高等职业教育专科层次人才培养过程中起着重要的作用。它是学生在已有数学、力学、机械制图等基础理论的条件下,学会运用基本理论分析常用机械传动装置的运动和动力特性,掌握一般机械传动机构的分析和设计的基本方法。为后继专业课的学习打下一个良好的基础。
二、课程性质
机械设计基础是高职高专机械类各专业必修的一门主干专业基础课。
三、课程任务
通过本课程的学习,使学生掌握常用机构及通用零、部件设计的基本理论和基本方法并为学习专业理论知识打下基础。
1.使学生了解常用机构及通用零、部件的工作原理、类型、特点及应用等基本知识。2.使学生掌握常用机构的基本理论及设计方法;掌握通用零、部件的失效形式、设计准则及设计方法。
3.使学生具备机械设计实验和设计简单机械及传动装置的基本技能。
教学基本要求
一、机械设计基础概论
了解机械设计的研究对象和基本要求;机械设计的方法和机械零件设计的步骤;机械设计的标准化、系列化及通用化。
理解机械零件的工作能力和设计准则。
二、平面机构的结构分析
了解机构的组成;运动副的概念及分类。掌握平面机构运动简图的绘制及自由度的计算。
三、平面连杆机构
了解平面四杆机构的基本形式及其演化;机构的加速度分析。理解机构的速度分析;移动副和转动副中的摩擦;自锁、效率的概念。掌握平面四杆机构的运动特点、曲柄存在的条件。会用图解法设计平面四杆机构并进行运动分析。
四、凸轮机构
了解凸轮机构的分类及其应用。
掌握从动件的常用运动规律;凸轮机构基本尺寸的确定。会用图解法、解析法设计盘形凸轮轮廓曲线。
五、间歇运动机构
了解不完全齿轮机构和凸轮式间歇运动机构的原理和用途。理解棘轮机构、槽轮机构的用途及其运动分析。
六、螺纹联接与螺旋传动
了解螺纹和螺纹联接的主要参数、类型、特点及应用;提高螺栓联接强度的措施;滑动螺旋传动;滚动螺旋传动。
理解螺纹联接的预紧和防松 掌握单个螺栓联接的强度计算。
会进行螺栓组联接的结构设计和受力分析。
七、带传动
了解带传动的工作原理;V带和带轮结构;带传动的安装及维护;同步带传动。掌握带传动的工作能力分析;失效形式及设计准则。会设计普通V带传动。
八、链传动
了解滚子链的结构、标准和链轮结构;链传动的布置、张紧与润滑 理解链传动的运动特性 会设计滚子链传动
九、齿轮传动
了解齿轮传动的特点和基本类型;渐开线齿轮的齿廓;渐开线齿轮的加工方法;变位齿轮传动的特点及其应用;常用齿轮材料及其热处理方法;齿轮传动的精度及其选择;齿轮结构设计;齿轮传动的润滑及效率
理解渐开线直齿圆柱齿轮的啮合传动;标准齿轮不发生根切的最少齿数;斜齿圆柱齿轮传动;直齿圆锥齿轮传动。
掌握齿轮啮合基本定律;渐开线标准直齿圆柱齿轮、斜齿圆柱齿轮、直齿圆锥齿轮的主要参数及几何尺寸计算;齿轮正确啮合条件及连续传动条件;齿轮的失效形式及设计准则;齿轮传动的受力分析。
会进行齿轮传动的强度计算;标准齿轮传动的设计。
十、蜗杆传动
了解蜗杆传动的类型、特点及应用;蜗杆传动的精度等级、材料与结构、润滑;蜗杆传动的安装和维护。
理解蜗杆传动的主要参数;蜗杆传动的效率;热平衡计算。
掌握蜗杆传动的几何尺寸计算;失效形式及设计准则;蜗杆传动的受力分析 会进行蜗杆传动的强度计算。
十一、齿轮系
了解齿轮系的分类及应用。其它新型齿轮传动装置;减速器。掌握定轴齿轮系、行星齿轮系传动比的计算,并判断从动轮的转向。会识别实际机械中的齿轮系。
十二、轴与轴毂联接
了解轴的类型、作用、材料及其选择;键联接的类型及其选择。掌握轴的结构设计及强度计算;键联接的设计计算。
十三、轴承
了解轴承的功用与类型;滚动轴承的组成、类型、特点、代号;滑动轴承的材料、润滑剂、润滑方法及结构。
理解滚动轴承工作情况分析。
掌握滚动轴承的类型选择、寿命计算;轴承组合结构设计。
十四、其他常用零部件
了解联轴器、离合器的分类、特点及应用场合;弹簧的功用。掌握联轴器的选择计算。
十五、机械的平衡与调速
了解机械速度波动的类型及调节方法;机械平衡的目的和分类;回转件的动平衡。会计算刚性回转件的平衡问题。
十六、课程设计
设计题目:减速器设计
力求包括本课程所学的大部分零、部件。采用单级或双级齿轮减速器。工作量为装配图一张(0号),零件图两张(2号),说明书一份。课程设计单独考核、评定成绩。时间为两周。
课程实施说明
一、建议机械类专业本课程理论教学时数为80~100学时,各校可根据本校教学需要对相关内容进行取舍。
二、通用零、部件的讲授和平面机构的讲授,建议采用实践课,安排在陈列室中进行,使学生增强感性知识。
三、机械设计课程是一门实践性较强的课程,应尽量采用模型、教具、CAI课件等教学手段进行教学。
四、在进行课程设计前,应安排一次减速器拆装实验。
第四篇:机械设计基础课程教学基本要求(模版)
机械设计基础课程教学基本要求
(多学时)
一、课程性质和任务
机械设计基础是一门培养学生具有一定机械设计能力的技术基础课。本课程在教学内容方面应着重基本知识、基本理论和基本方法,在培养实践能力方面应着重设计技能的基本训练。
本课程的主要任务是培养学生:
1.掌握机构的结构原理、运动特性和机械动力学的基本知识,初步具有分析和设计基本机构的能力,并对机械运动方案的确定有所了解。
2.掌握通用机械零件的工作原理、特点、选用和设计计算的基本知识,并初步具有设计简单的机械及普通机械传动装置的能力。
3.具有运用标准、规范、图册等有关技术资料的能力。4.能通过实验来验证理论,并巩固和加深对理论的理解。
二、教学内容和要求
1.教学基本内容
机械设计基础的主要内容,机械设计的一般原则和程序。
平面机构的结构分析,平面连杆机构,凸轮机构,齿轮机构,轮系,其它常用机构。
机械运动方案的选择。机械调速,刚性回转件平衡。
机械零件的工作能力和计算准则,机械零件常用材料选择原则。机械零件工艺性、标准化。
联接件设计:螺纹联接,键、花键联接等。
传动件设计:带传动,链传动,齿轮传动,蜗杆传动,螺旋传动等。
轴系零部件设计:轴,滑动轴承,滚动轴承,联轴器,离合器等。其它零部件设计:弹簧,减速器等。2.教学基本要求
(1)要求掌握的基本知识 机械设计的一般知识。
机构和机械零件的主要类型、性能、特点、应用。机械零件的常用材料、标准。结构工艺性。
摩擦、磨损、润滑和密封的一般知识。(2)要求掌握的基本理论和方法 机构的组成、工作原理和运动特性。机械动力学的基本原理,防振、减振的途径。
机械零件的工作原理、受力分析、应力状态、失效形式等。机械零件的设计计算准则:强度,刚度,耐磨性,寿命,热平衡等。
简化计算,当量法,试算法等。
改善载荷和应力分布不均匀的方法,提高零件疲劳强度的措施,改善摩擦学性能的途径。
(3)要求掌握的基本技能
绘制机构简图,零部件的设计计算及其工作图的绘制,查阅技术资料,编写技术文件等。
三、习题课、课外习题、设计作业
根据教学需要,适当安排习题课、课外习题和设计作业。
每个学生要完成1~2个设计作业。每个作业的份量一般为装配图1张,设计计算说明书1份。
学生必须独立、按时完成课外习题和设计作业。习题和作业完成情况应作为评定课程成绩的一部分。
四、课程设计
设计能力的培养要求包括下列内客:能根据设计任务拟定总体方案,按机器工作状况分析、计算作用在零件上的力,合理选择材料,计算和确定零件的主要尺寸,考虑制造、使用和维修等问题,进行结构设计,绘制机器的装配图和零件图等。
设计题目为机械传动装置、简单的机械或机构设计。设计工作量的最低要求应相当于单级圆柱齿轮减速器为主体的机械传动装置。设计完成后,每个学生应完成:部件装配图1张,零件工作图1张,设计说明书1份。
课程设计完成后,每个学生应进行答辩,成绩应单独记分。
五、实 验
1~○4本课程要求开设实验3~4个,共4~6学时。实验内容在下列○ 3 5~○7项中各选1~2项:①平面机构运动简图测绘;②渐开线齿廓和○范成和齿轮参数测定;③回转体平衡;④机械传动效率测定;⑤带传动实验;⑥滑动轴承性能实验;⑦传动装置或简单的机械装拆和结构分析等。
实验成绩应作为课程成绩的一部分。
六、几点说明
1.本基本要求适用于对机械原理、机械设计有一定要求,但课程时数有限的一类专业,例如热加工工艺类专业和动力运行类专业。
2.各校要处理好本课程与有关先修课程如:画法几何及机械制图、工程材料及机械制造基础、金工实习、理论力学、材料力学等课程的衔接和配合。
3、本基本要求所列内容应通过讲课、习题课、课外习题、设计作业、课程设计、实验等教学环节进行教学。各校也可根据具体情况灵活安排各环节和学时比例,但应注意相互配合,力求符合学生认识规律。
4、各校应根据具体条件,注意结合教学过程培养学生应用计算机的能力,以提高教学质量和水平。
5、习题内容要多样化,习题中应含有结构和工艺性方面的内容。习题作业要能起到巩固理论、掌握计算方法和技巧,加强结构和工艺性方面的训练,提高分析问题、解决问题的能力、熟悉标准、规范等的作用。
习题课应按小班进行,每次内容要有所侧重。
6、设计作业和课程设计都是培养学生设计能力的重要环节。设计作业的题目要灵活多样。教师要加强指导和考核,注意培养和发挥学生的独立工作能力和创新精神。
7、实验要严格要求。同一实验台上同时操作的人数不宜过多,以保证学生都能动手操作。实验后,每个学生要写出实验报告。
8、本课程教学环节较多,实践性较强,教学中应教育学生树立正确的设计思想,培养良好的工作作风和工作方法。
第五篇:机械设计基础课程教学基本要求
机械设计基础课程教学基本要求(机械类、机电类专业适用)
课程性质与任务
一、课程设置说明
本课程是机械类、机电类专业的专业基础课。它是学生在已有数学、力学、机械制图等基础理论的条件下,学会运用基本理论分析常用机械传动装置的运动和动力特性,掌握一般机械传动机构的分析和设计的基本方法。为后继专业课的学习打下一个良好的基础。
二、课程性质
机械设计基础是机械类、机电类各专业必修的一门主干专业基础课。
三、课程任务
通过本课程的学习,使学生掌握常用机构及通用零、部件设计的基本理论和基本方法并为学习专业理论知识打下基础。
1.使学生了解常用机构及通用零、部件的工作原理、类型、特点及应用等基本知识。2.使学生掌握常用机构的基本理论及设计方法;掌握通用零、部件的失效形式、设计准则及设计方法。
3.使学生具备机械设计实验和设计简单机械及传动装置的基本技能。
教学基本要求
一、机械设计基础概论
了解机械设计的研究对象和基本要求;机械设计的方法和机械零件设计的步骤;机械设计的标准化、系列化及通用化。
理解机械零件的工作能力和设计准则。
二、平面机构的结构分析
了解机构的组成;运动副的概念及分类。掌握平面机构运动简图的绘制及自由度的计算。
三、平面连杆机构
了解平面四杆机构的基本形式及其演化;机构的加速度分析。理解机构的速度分析;移动副和转动副中的摩擦;自锁、效率的概念。掌握平面四杆机构的运动特点、曲柄存在的条件。会用图解法设计平面四杆机构并进行运动分析。
四、凸轮机构
了解凸轮机构的分类及其应用。
掌握从动件的常用运动规律;凸轮机构基本尺寸的确定。会用图解法、解析法设计盘形凸轮轮廓曲线。
五、间歇运动机构
了解不完全齿轮机构和凸轮式间歇运动机构的原理和用途。理解棘轮机构、槽轮机构的用途及其运动分析。
六、螺纹联接与螺旋传动
了解螺纹和螺纹联接的主要参数、类型、特点及应用;提高螺栓联接强度的措施;滑动螺旋传动;滚动螺旋传动。
理解螺纹联接的预紧和防松 掌握单个螺栓联接的强度计算。
会进行螺栓组联接的结构设计和受力分析。
七、带传动
了解带传动的工作原理;V带和带轮结构;带传动的安装及维护;同步带传动。掌握带传动的工作能力分析;失效形式及设计准则。会设计普通V带传动。
八、链传动
了解滚子链的结构、标准和链轮结构;链传动的布置、张紧与润滑 理解链传动的运动特性 会设计滚子链传动
九、齿轮传动
了解齿轮传动的特点和基本类型;渐开线齿轮的齿廓;渐开线齿轮的加工方法;变位齿轮传动的特点及其应用;常用齿轮材料及其热处理方法;齿轮传动的精度及其选择;齿轮结构设计;齿轮传动的润滑及效率
理解渐开线直齿圆柱齿轮的啮合传动;标准齿轮不发生根切的最少齿数;斜齿圆柱齿轮传动;直齿圆锥齿轮传动。
掌握齿轮啮合基本定律;渐开线标准直齿圆柱齿轮、斜齿圆柱齿轮、直齿圆锥齿轮的主要参数及几何尺寸计算;齿轮正确啮合条件及连续传动条件;齿轮的失效形式及设计准则;齿轮传动的受力分析。
会进行齿轮传动的强度计算;标准齿轮传动的设计。
十、蜗杆传动
了解蜗杆传动的类型、特点及应用;蜗杆传动的精度等级、材料与结构、润滑;蜗杆传动的安装和维护。
理解蜗杆传动的主要参数;蜗杆传动的效率;热平衡计算。
掌握蜗杆传动的几何尺寸计算;失效形式及设计准则;蜗杆传动的受力分析 会进行蜗杆传动的强度计算。
十一、齿轮系
了解齿轮系的分类及应用。其它新型齿轮传动装置;减速器。掌握定轴齿轮系、行星齿轮系传动比的计算,并判断从动轮的转向。会识别实际机械中的齿轮系。
十二、轴与轴毂联接
了解轴的类型、作用、材料及其选择;键联接的类型及其选择。掌握轴的结构设计及强度计算;键联接的设计计算。
十三、轴承
了解轴承的功用与类型;滚动轴承的组成、类型、特点、代号;滑动轴承的材料、润滑剂、润滑方法及结构。
理解滚动轴承工作情况分析。
掌握滚动轴承的类型选择、寿命计算;轴承组合结构设计。
十四、其他常用零部件
了解联轴器、离合器的分类、特点及应用场合;弹簧的功用。掌握联轴器的选择计算。
十五、机械的平衡与调速
了解机械速度波动的类型及调节方法;机械平衡的目的和分类;回转件的动平衡。会计算刚性回转件的平衡问题。
十六、课程设计
设计题目:减速器设计
力求包括本课程所学的大部分零、部件。采用单级或双级齿轮减速器。工作量为装配图一张(0号),零件图两张(2号),说明书一份。课程设计单独考核、评定成绩。时间为两周。
课程实施说明
一、建议机械类专业本课程理论教学时数为70~100学时,各校可根据本校教学需要对相关内容进行取舍。
二、通用零、部件的讲授和平面机构的讲授,建议采用实践课,安排在陈列室中进行,使学生增强感性知识。
三、机械设计课程是一门实践性较强的课程,应尽量采用模型、教具、CAI课件等教学手段进行教学。
四、在进行课程设计前,应安排一次减速器拆装实验。