第一篇:谈转化思想在圆柱体积计算教学中的渗透[最终版]
谈转化思想在圆柱体积计算教学中的渗透
如果数学思想是数学的灵魂,那么转化思想就是数学思想的核心和精髓,是数学思想的灵魂。在“图形与几何”领域知识的教学中,学生不断使用转化策略探究图形面积的计算公式,逐步领悟了这一思想方法,达到一定的自主应用的水平。本文,笔者将通过“圆柱的体积”这一教学内容,让学生在应用转化方法的过程中进一步感受和深化“转化”这一核心思想。
一、在经验再现中,体会转化思想的价值
对学生进行转化思想方法的渗透教学,必然要在他们的学习过程中不断体会转化这一思想方法的价值。学习“圆柱的体积”时,学生是有经验的,即平面图形的面积计算公式推导、不规则物体的体积计算等。笔者在课的开始环节呈现渗透转化思想的数学小故事让学生回忆转化思想,能够为新知学习作准备,更重要的是体会到转化思想的价值。
【教学环节1】
1.呈现数学小故事,引入转化思想。
学生通过阅读故事内容,在笔者的引导下体会转化思想在其中起到的关键作用。
2.回忆旧知。
师:关于转化我们是有经验的,你们还记得吗?
基于学生的学习经验,通过数学小故事巧妙引入转化思想;通过问题唤醒学生对转化思想的回忆,在他们的脑海中再次集中呈现这许多应用转化思想解决问题的实例,学生再一次感受转化思想在图形面积计算公式探究及体积计算中的价值所在。
二、在生活情境中,感受转化思想的灵活性
在本课的新知探究环节,笔者创设用转化思想解决实际问题的情境,?学生在运用该思想解决问题的过程中体会不同方法的特点,在灵活选择解决方案的过程中深化对转化思想的认知,感受转化思想的灵活性。
【教学环节2】
师:请用转化思想求生活中圆柱体的体积。
课件呈现:求一杯水、一块橡皮泥、一个大立柱这些圆柱形物体的的体积。
学生独立思考、小组交流后汇报。
生 :把圆柱形的橡皮泥捏成长方体或正方体,用长方体或正方体的体积计算方法测量并计算。
生 :把圆柱形的橡皮泥投入长方体或正方体的容器中淹没,测量容器中升高那一部分水的体积,就是橡皮泥的体积。
生 :我可以先用橡皮泥转化成长方体,推导出圆柱体积计算的方法,再用计算的方法求出圆柱的体积。
师:同样是圆柱形的橡皮泥,同样是转化成长方体或正方体,前两位同学用了不同的方法,都达到了求出橡皮泥体积的目的。生 把橡皮泥转化成长方体的目的有所不同。
师:你的目的是找到求圆柱体积的方法。能和同学们分享你的想法吗?你为什么不像他们那样直接用长方体和正方体的计算方法求出体积?
生 :因为生活中的圆柱形物体大小不一,材质也各不相同,如果都用转化的方法去求体积十分麻烦,如果有了圆柱体体积计算的方法,就可以直接运用公式,测量一两个数据进行计算就可以了。所以我使用转化的目的是找到圆柱体积计算的方法。
师:橡皮泥怎样转化成长方体?也用刚才同学介绍的方法吗?
生 :要想推导出圆柱体积计算的方法,转化时要注意找到转化前后的长方体和圆柱体各部分的联系。
这一环节,笔者借助求生活中三种不同的圆柱体体积的问题,让学生在解决现实问题的过程中调动的经验,展示多样的转化方法。学生在现实情境中充分感受到转化方法的多样性和灵活性。虽然同样使用转化的方法,但转化的目的各不相同。学生操作的等体积变形的转化,圆柱的底面积与高都发生了改变,这样的转化对推导圆柱体积计算没有帮助,而切割法在等体积变形的基础上,底面半径和高在转化后的长方体中得以保留。这样的转化是需要周全的考虑的――圆柱的体积与什么有关?转化时要寻找圆柱的底面半径、高,与转化后长方体长、宽、高之间有什么样的关系?这些问题,学生在转化思想的已有经验(平面图形面积计算公式推导)的基础上,通过相互交流逐步明晰。在各种转化方法的对比中,在不同思维的相互碰撞中,学生对转化思想的认知得以深化,运用时的灵活性得以提升。
三、在实际运用中,感悟转化思想的策略性
在学生已有的学习经验中,利用转化思想来探究计算的方法――把小数乘除法转化成整数乘除法,分数除法转化成分数乘法。用转化思想推导图形的面积计算公式――把平行四边形转化成长方形、三角形、梯形转化成平行四边形,圆形转化成近似长方形。转化思想的渗透是层层推进的,每一次的运用都让学生深切地感受到转化是探求这些新知的重要策略。
【教学环节3】
1.小组合作探究:应用转化思想推导圆柱体积的计算公式,填写探究表(图1)。
2.汇报展示圆柱体积计算公式的推导过程。
(1)演示:转化成什么?怎样转化?
(2)推导:转化后的图形与转化前的有什么联系?推导出圆柱体积计算的公式。
3.质疑:怎么想到用这种方法把圆柱体转化成长方体?
笔者放手让学生应用转化思想,再一次经历“转化图形→寻找联系→推导公式”的过程,自主探究圆柱体积计算的方法,深化其对转化思想的认识,培养自主探究的能力,体验自主学习的快乐。这是学生对转化思想策略性的重要体验。
四、在回顾反思中,提升转化思想的魅力
学到圆柱体积计算,学生对转化思想方法的认识和运用已积累了一定的经验。在这些学习经验的基础上,引领学生回顾相关知识探究的过程与方法,反思中激发学生的联想,转化方法的应用价值将会在学生的大脑中得到进一步的延伸和拓展。
【教学环境4】
1.观察:看一看已学过的三种立体图形和它们的体积计算公式,你有什么发现?
2.猜想:根据这些发现,你会产生什么样的联想?
3.验证:这些联想有道理吗?
在完成圆柱体积的计算方法探究后,笔者创设能够让学生大胆猜想、自主探究的机会,把之前学过的图形转化信息串联起来,在学生的脑海里有意识地沟通、联系,形成三角形、梯形等平面图形最终都可以转化成长方形,圆柱、三棱柱等直柱体最终都可以转化成长方体的认识。在知识和方法储备充分的情况下进行拓展和延伸,让学生对转化思想的魅力又有了进一步的感受,促使学生做学习的有心人。
作为教师,跳出这一课,我们应该看到学生的学习过程是一个从简单到复杂,从少到多,由浅到深的转化过程。在这个过程中的成功与失败、变化与发展都是学生不断自我体验、自我实现的过程。作为学生学习的组织者和引导者,教师在这个过程中,要让学生主动参与,从自身知识基础与经验出发,把新知转化成旧知,建立新旧知识的内在联系,促进新知识结构的建立,从而培养学生的转化意识,增强他们运用转化思想解决新问题的信心和能力。
(作者单位:福建省福清市渔溪中心小学责任编辑:王彬)
第二篇:从《平行四边形的面积计算》谈转化思想在小学数学中的应用
从《平行四边形的面积计算》谈转化思想在数学教学中的应用
仙佛学校:徐开容
继教编号:o04232041 11月17日我有幸参加了泸县进修校组织的数学教研活动,这次教研中我参与设计并教学《平行四边形的面积计算》,《平行四边形面积的计算》是西师版五年级上册第五单元的教学内容,这个单元的教学内容有平行四边形、三角形、梯形的面积计算。它是在学生认识了这些图形,掌握了长方形面积的计算方法之后安排的,是整个小学阶段平面图形面积计算的一个重点,也是整个小学阶段中能较明显体现教学数学方法的一个章节。教学这个单元,一般是把将要学习的图形转化成已经学会的图形,在引导学生比较之后得出将要学习图形的面积计算方法。随着教学的步步深入,转化思想从原先的陌生到最后的熟悉,越发显得重要。
平行四边形面积公式是以长方形的面积和平行四边形的底和高为基础,运用迁移和同化理论,使平行四边形面积的计算公式这一新知识,纳入到原有的认知中。另外平行四边形面积公式这一内容学习得如何,直接与学习三角形和梯形的面积公式有着直接的关系。课上我引导学生运用转化思想,在数方格法的基础上,用割补法,平移法把平行四边形转化成为长方形,并分析长方形面积与平行四边形面积的关系,再从长方形的面积计算公式推出平行四边形的面积计算公式,然后通过实例验证,使学生理解平行四边形面积计算公式的推导过程,在理解的基础上掌握公式。学生掌握了这种推导方法,也为后面学习三角形、梯形的面积公式的推导做了准备。本节课重点在剪拼转化,验证猜想活动环节。动手操作是学生学习循序渐进的探索过程。由于前面在数格子时用到割补法来求面积,教师这时顺水推舟,让学生动手操作,将两个图形重叠发现,想办法将平行四边形转化为长方形,之后汇报。剪法可能有好多种,这时及时抛给学生问题“为什么要沿高剪开?”学生思考,再引导比较两个图形,“拼出的长方形与原平行四边形比较什么变了,什么没变?”“拼成的长方形的长与原平行四边形的底有什么联系,长方形的宽与原平行四边形的高有什么联系?”顺势引导学生得出推导过程:将平行四边形剪、拼后转化成长方形,拼成的长方形的长就是平行四边形的底,宽就是平行四边形的高。因为长方形的面积=长*宽,所以平行四边形的面积=底*高。如用S表示平行四边形的面积,a表示平行四边形的底,h表示平行四边形的高,那么平行四边形的面积分公式用字母表示为S=ah同桌互说整个操作过程,真正理解。
最后让学生回顾推导过程,在闭上眼睛回想进一步深化公式的推导过程。
分层训练,理解内化新知及时巩固,才能得到理解与内化。本着“重基础,验能力,拓思维”的原则,设计三个层次的练习: 第一层:基本练习正确分清平行四边形的底和高的关系。
第二层:综合练习
要求平行四边形的面积必须具备哪些条件?动手操作量底和高,体现“重实践”这一理念。通过不同的高引起学生的混淆。在计算中让学生明确计算平行四边形面积时要注意底与高的对应,根据面积公式的灵活运用求平行四边形的底或高。
第三层次:拓展提高(深化学生的转化意识,为后面三角形面积、梯形面积的推导作铺垫
全课总结,质疑问难让学生说说本节课学到的知识,并说说是怎样学到的。还有什么问题想与老师和同学商讨。培养学生整理知识的能力和质疑问难的能力
通过这节课的教学,我的收获颇丰:
1、导入部分能针对教学目标进行设计,注重了新旧知识的联系,为新知识的学习做好了铺垫,为引发学生学习求知的欲望营造了良好的氛围,同时也揭示了知识产生的过程。
2、注重操作,使学生在实际活动中推倒出公式。课上我通过创设情境导入新课,给学生造成悬念,为探索新知创设了情境。在这样的情境中学习,学生容易兴奋、有积极性,学生产生了我要学的欲望。这样的教学方式培养学生的创新精神、合作意识,提高探究能力。
3、结合知识内容本身的灵活性,活动与习题的设计体现开放性和探索性。最后一道练习,体现了数学学习开放性、灵活性、发散性和挑战性。可以激发学生的学习兴趣,拓展学生的思维空间,使不同的学生得到不同的发展。把培养学生的创新意识落到实处。综观本堂课也有一些遗憾,需要在今后的教学中引起注意:
1、语言组织的不是很严谨、到位!如在最后一道练习题的处理有些操之过急,今后还要在提高课堂的应变能力上下工夫,这种应变能力是建立在教师对教材的深入钻研的基础之上的,把握住了这个关键点才能驾驭教材、驾驭课堂、驾驭学生的思维。
2、在今后的教学中还要在课堂操作讨论的过程中,教师如何介入,何时介入,才能既节约时间,又充分保留学生思维的空间和在课堂教学中应如何培养学生合作交流的习惯与能力这些问题上加以研究,提高学生小组学习的实效性。
3、要重视对学生的即时评价,不断提高学生学习数学的兴趣。我想,不止“学无止境”,教也无止境。今后的教学中,我在努力提高自己善于捕捉信息的能力的同时,更要提升自己判断、重组的能力,在新的水平上更好地胜任教学过程的“重组者”、动态生成的“推进者”这一重要角色。与此同时本节课应用到了非常重要的数学思想——转化思想
在教学转化的过程中,我认为特别需要注意一个问题:谁在要求学生转化?
教材在编排“平行四边形的面积计算”这一内容时,先让学生比较两组图形的面积是否相等,要求学生把平行四边形转化成长方形;在编排“三角形的面积计算” 时,先让学生说一说平行四边形的一半(一个三角形)的面积是多少……如此的安排,如果教师在教学过程中没有足够的警惕,照搬教材中的教法的话,那么,转化就成了教师的一个要求,学生的操作、思考都将处于被动的状态,对转化的理解则可能浮于表面。
转化应该成为学生在解决问题过程中的内在的迫切需要,而不应该是教师所提出的要求。在教学的过程中,可以将“怎样计算平行四边形的面积”直接抛向学生,让学生独立自由地思考。陌生的题目,调动所有的储备,寻找可能的方法,在此过程中转化的思想也就随之潜入学生的心中。
当然,为了能达到最佳的效果,对于转化过程中需要的基础性的知识,可以安排在这一课之前先行梳理,使诸多要用的知识成为学生熟知的内容,转化就能水到渠成。转化成什么?
学生将没有学过的平行四边形的面积计算转化成已经学过的长方形的面积的时候,需要让学生体会两个方面:一是在转化的过程,把平行四边形剪一剪、拼一拼,最后得到的长方形和原来的平行四边形的面积是相等的(等积转化)。在这个前提之下,长方形的长就是平行四边形的底,宽就是高,所以平行四边形的面积就等于底乘高。二是在转化完成之后应提醒学生反思“为什么要转化成长方形的”。因为长方形的面积我们先前已经会计算了,所以,将不会的生疏的知识转化成了已经会了的、可以解决的知识,从而解决了难题。其他图形的教学亦是如此。
转化思想是解决数学问题的一种最基本的数学思想,在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题,我们也常常在不同的数学问题之间互相转化,可以说在解决数学问题时转化思想几乎是无处不在的。
第三篇:谈转化思想在小学数学教学中的应用(定稿)
内容摘要:
为了学生的终身可持续发展,作为数学教师,我们应深入地了解和钻研数学思想方法;在教学中,不仅要重视显性的数学知识的教学,也要注重对学生进行数学思想方法的渗透和培养。转化思想是数学思想的核心,在教学中,始终紧扣“转化”这根弦,对提高学生的思维能力、分析问题和解决问题的能力是十分有效的。教师应把隐含在知识中的转化思想加以揭示和渗透,让学生明确转化思想的作用,体会运用转化思想的乐趣,提高学生的数学素养。
一、整体把握,注意挖掘教材中所蕴涵的转化思想
数学教学论告诉我们,数学知识是数学思想的载体,进行数学思想方法教学时要注意以数学知识为载体,把隐藏于知识背后的思想方法揭示出来,使之明朗化,这样才能通过知识传授过程达到思想方法教学之目的。因此一节课结合具体教学内容考虑渗透哪些数学思想方法、怎么渗透、渗透到什么程度,老师都应有一个精心的设计和具体的要求。如《平行四边形的面积》的教学可以设计如下相关的教学目标:引导学生经历平行四边形面积计算的探究过程,初步理解化归思想,掌握方法,渗透“变与不变”的函数思想;培养学生分析、综合、抽象、概括和解决实际问题的能力,发展学生的空间观念。
二、探索途径,在教学中灵活应用转化思想
教学实践经验证明,要在教学中灵活运用转化思想,融会贯通、举一反三,其关键在于教师在平时的教学中应根据教学内容和学生的认知特点,探求相应的途径和方法,科学地归纳整理,不断加以完善。
任何客观事物都具有特殊和一般两方面的属性,特殊性既寓于一般性之中,又从某些方面反映着一般性。
运用转化思想,既可以实现一般向特殊转化,使需求解的具有一般性的问题转化为特殊形式来解决;也可以运用特殊向一般的转化,通过解决一般性问题而使得特殊问题得到解决。如,低年级数学中关于数的性质、简单四则运算法则等规律性知识的教学,常常运用不完全归纳法把问题转化为特殊的、个别的应用题或图形、算式研究,通过观察、计算、分析、比较,然后归纳出具有一般性的结论。而关于图形认识的教学,一般都是通过对具体的、个别的图形的分析和研究而归纳出图形共同的本质属性。
第四篇:模型思想在小学数学教学中渗透
《数学课程标准》中关于课程内容中阐述“在教学中,应帮助学生建立数感和符号意识,发展运算能力和推理能力,初步形成模型思想。”在基本理念的第二条中阐述“数学是人们生活、劳动和学习必不可少的工具,能够帮助人们处理数据、进行计算、推理和证明,数学模型可以有效地描述自然现象和社会现象。”
在数学教学中应当引导学生感悟建模过程,发展“模型思想”。在小学,进行数学建模教学具有鲜明的阶段性、初始性特征,即要从学生熟悉的生活和已有的经验出发,引导他们经历将实际问题初步抽象成数学模型并进行解释与运用的过程,进而对数学和数学学习获得更加深刻的理解。数学模型不仅为数学表达和交流提供有效途径,也为解决现实问题提供重要工具,可以帮助学生准确、清晰地认识、理解数学的意义。在小学教学活动中,教师应采取有效措施,加强教学模型思想的渗透,提高学生的学习兴趣,培养学生用数学意识以及分析和解决实际问题的能力,将模型思想渗透到教学中。
关键词:模型;数学建模;建模教学;小学数学教学《数学课程标准》指出:“数学教学应该从学生已有生活经验出发,让学生亲身经历将实际问题抽象成数学模型并理解运用。”
一、在创设情境时,感知数学建模思想。情景的创设要与社会生活实际,时代热点问题,自然,社会文化等与数学有关系的各种因素相结合。激发学生的兴趣,使学生用积累的生活经验来感受其中隐含的数学问题,从而促进学生将生活问题抽象成数学问题,感知数感
知数学模型的存在。学习数学的起点是培养学生以数学眼光发现数学问题,提出数学问题。在教学中教师就应根据学生的年龄及心理特征,为儿童提供有趣的、可探索的、与学生生活实际密切联系的现实情境,引导他们饶有兴趣地走进情境中,去发现数学问题,并提出数学问题。
二、在探究知识的过程中,体验模型思想。
善于引导学生自主探索、合作交流,对学习过程、学习材料、主动归纳。力求建构出人人都能理解的数学模型。
例如:在推导圆柱体积公式一节课中,教师要有目的让学生回顾平行四边形,三角形、梯形、圆几种平面图形面积的推导过程是怎样的?学生会想起通过割、补、平移、旋转等方 法拼成学过的图形,那么今天我们要探究的是圆柱的体积,你们怎样来推导它的公式?这样 学生很自然的想到一个新知识都是用旧知识来分解,从中找到新知识的内在模型。
三、新知识的结论,就是建立数学模型。
加法,减法,乘法、除法之间的内在联系。各类应用题的解题规律,各类图形的周长 与面积、体积的公式都是各种数学模型,学生有了这种模型思想才能应用它解释生活中的现 实问题。
在解决问题中,拓展应用数学模型。用所建立的数学模型来解答生活实际中的问题,让学生能体会到数学模型的实际应用价值,体验到所学知识的用途和益处,进一步培养学生应用数学的意识和综合应用数学解决问题的能力,让学生体验实际应用带来的快乐。
例如:我在教学“平行四边形面积的计算”时,采用了探究式的学习方法,使学生在获取数学知识的同时,数学思维和学习能力也得到了培养。
1.让学生充分参与与操作活动
数学知识具有抽象性,但来源于生活实际,加强教学中的实践活动,不仅有助于学生理解抽象的数学知识,而且可以通过让学生参与操作活动,促进学生的思维发展。如:在探究平行四边形面积的计算方法时,我为学生设计了这样的操作活动:让他们通过剪一剪,拼一拼,想办法把平行四边形转化为已学过的图形,然后利用已有知识来推导它的面积计算方法,这就为学生创设一个“做数学”的机会,学生在操作前必须动脑思考,想好了才能动手剪拼,通过实际操作,多数学生都将平行四边形剪拼成了长方形,这样学生在积极参与操作活动的过程中,不仅促进了他们的思维发展,而且提高了他们的操作技能。
2.让学生积极参与交流活动
四、解释与应用中体验模型思想的实用性。
如在学生掌握了速度、时间、路程之间关系后,先进行单项练习,然后出示这样的变式题:
1.汽车3小时行驶了270千米,5小时可行驶多少千米?
2.飞机的速度是每小时900千米,飞机早上11:00起飞,14:00到站,两站之间的距离是多少千米?
学生在掌握了速度乘时间等于路程这一模型后,进行变式练习,学生基本能正确解答,说明学生对基本数学模型已经掌握,并能够从3小时行驶了270千米中找到需要的速度,从11:00至14:00中找到所需时间。虽然两题叙述不同,但都可以运用同一个数学模型进行解答。掌握了数学模型,学生解答起数学问题来得心应手。综上所述,数学建模思想的形成过程是一个综合性的过程,是数学能力和其他各种能力协同发展的过程。在数学教学过程中进行数学建模思想的渗透,可以使学生感觉到利用数学建模的思想解决实际问题的妙处,进而对数学产生更大的兴趣。这也给我们一些启发:在对学生进行模型思想渗透时,要从现实生活出发,从实物出发,这样才可以让学生更快地接受,更快地理解;在渗透这些思想时,教师首先需站在更高的高度上去考虑;在教学过程中,通 过引导学生处理问题,可以让学生更快、更有兴趣地跟踪教师的思路。在小学数学教材中,模型无处不在。小学生学习数学知识的过程,实际上就是对一系列数学模型的理解、把握的 过程。在小学数学教学中,重视渗透模型化思想,帮助小学生建立并把握有关的数学模型,有利于学生握住数学的本质。通过建模教学,培养学生应用数学的意识和自主、合作、探索、创新的精神,为学生的终身学习、可持续发展奠定基础。因此在数学课堂教学中,逐步培养
第五篇:转化思想在小学数学教学中的渗透论文
摘要:小学是学习数学知识的启蒙时期,是学生思维发展的重要时期,学生了解、掌握和运用“转化”的数学思想与方法,不仅有利于提高学生数学学习的效率,开发智力,培养数学能力,提高数学应用意识,还为学生的后继学习和未来发展乃至终生发展奠定坚实的基础。
关键词:小学数学;教学;转化思想
数学是逻辑思维、抽象思维较强的学科,而小学生正处于形象思维活跃、抽象逻辑思维较为薄弱的极端,转化思想在数学中有助于优化解题方法,揭露数学问题的本质等。因此在小学数学教学中,教师必须有意识地训练学生转化思想,促进学生数学学习上的长足发展。
一、在教学观念中树立转化思想
在小学数学教学中,教师首先应该改变传统的教学观念,重视对学生数学知识、数学方法的教授,帮助学生确立正确的课程学习思想,在教学过程中结合教学内容、教材等,教授学生化新为旧、化繁为简、化曲为直等转化思想,一方面帮助学生有效解决数学难题,另一方面有助于学生学习思维的转化,同时也能培养学生的创新精神。教师在进行教学设计、教学准备时,要时时注意转化思想的体现,做好转化思想在小学数学教学中继续渗透的第一课。
二、在教学活动中渗透转化思想
(一)重视学生基础知识的掌握,为转化思想的训练奠定基础
简单而言,转化思想就是将复杂问题转化为简单问题,将未知知识转化为已知知识,因此教师在学生转化思想的训练中必须重视对学生基础知识的掌握。只有基础知识掌握了,学生才知道应该将复杂的问题转为何种知识,从而训练转化思想。例如,在小学数学中乘法口诀、几何面积周长、分数小数计算、最大公约数、最小公倍数等都是最基本的知识,这在小学生日后的异分母运算、组合图形面积的计算等都会起到巨大的作用,因此要引导学生掌握基本知识。
(二)巧设情境,培养学生的转化意识
情境教学法是有效的教学方法之一,其通过创设具体的情境,让学生在具体的教学情境中积极思考,从而提高教学效率。在转化思想在小学数学教学的渗透中,教师应该设置合适的教学情境,让学生在具体的教学情境中,通过适当的点拨,建立起已学知识与未知知识的联系,从而促进未知向已知、复杂向具体的转化。如在“异分母分数加减法”中,教师可以在教学开始,引导学生向已有的知识进行复习,如教师可以引导学生计算“5/27+8/27”,在学生对同分母加减法知识进行复习后,教师又可以请学生思考“5/27+1/3”的运算,引导学生进入该问题的学习,然后通过适当的点拨,引导学生向已经学过的知识靠拢,最后再让学生通过小组交流、自主探索,进而将该知识与已经学过的“同分母分数加减法”的知识进行联系,从而指导学生转化思想意识的树立。
(三)重复运用,加深学生对转化思想的理解
任何知识的学习都不是一朝一夕的事情,对学习方法的掌握更是如此,教师在引导学生运用转化思想解决了复杂、未知问题后,应该让学生尝试运用该思想解决一定的问题,通过重复不断的加强运用,使学生真正理解到转化思想的精髓,从而指导学生在数学学习中注意新旧知识的联系,学会运用转化思想将复杂的、不规范的、不熟悉的知识转化为简单的、规范的、熟悉的知识,提高对转化思想运用的灵活程度,树立正确的数学方法。举个例子来说,在“小数乘以整数”这一知识的学习中,学生已经掌握了根据小数点位置的移动来对类似问题进行解答,此时教师可以联系以前学到的知识,进一步指导学生加强重复运用,加深理解。教师可以运用对面积的计算来让学生尝试运用,将边长为小数的未学知识与边长为整数的已学知识进行联系,引导学生进行思考,尝试运用转化思想进行解答,从而加深理解。如教师可以让学生计算边长为3.5cm的正方形的面积,基于学生已经掌握了正方形面积的计算公式和小数乘以整数的计算方法,该正方形的面积为“3.5×3.5”,教师可以引导学生重复运用整数的乘法以及小数点的移动这一知识,从而深化学生转化思想。
三、培养学生的转化意识
除了在教学观念和课程学习过程中重视对转化思想的渗透外,教师还应该做好归纳总结工作,积极培养学生的转化意识。因此,在平常的数学练习过程中教师要建议家长和学生准备一本专门用来训练学生转化习惯的练习本,将平常看到的相似的题型进行整理记录,并让学生进行题目的编写,如换一些数字、换一下图形,从而在平常的练习中培养学生转化思维。如在某经营公司有两个仓库储存彩电,甲乙两仓库储存之比为7:3,如果从甲仓库调出30台到乙仓库,那么甲、乙两仓库之比为3:2,问这两个仓库原来储存电视机共多少台?这一题目中,通过转化,就可以将该问题进行简化,将原来“甲乙两仓库储存之比为7:3”转化为“甲仓库储存电视机是总数的7/7+3=7/10”;现在“甲乙两仓库的储存量之比变为3:2”转化为“甲仓库储存电视机是总数的3/3+2=3/5甲仓库储存电视机占总数的分率发生了变化,是因为调出30台到乙仓库的缘故,这两个分率差与30台相对应,因此可求总数。总之,“思想是数学的灵魂,方法是数学的行为。”数学教学内容始终反映着数学基础知识和数学思想这两个方面,没有脱离数学知识的数学思想,也没有不包含数学思想的数学知识。因此,教师在小学数学教学中,应当结合具体的教学内容,渗透数学转化思想,从而促进学生数学素养的全面提升。
参考文献:
[1]凌德元.浅谈转化思想在小学数学教学中的渗透[J].学苑教育.2015(2).[2]戴承东.转化思想在小学数学教学中的运用探讨[J].新课程导学.2013(11).