第一篇:一元二次方程的解法----十字相乘法教案大全
一元二次方程的解法——十字相乘法
班级________姓名________学号________
一、学习目标:
1、利用十字相乘法分解因式
2、利用十字相乘法解一元二次方程 练习:(1)x2+7x+12 =0
(2)x2—5x+6=0
(3)(x+2)(x—1)=10
二、典例精析
例
1、用十字相乘法分解因式(1)x2+5x+6
(3)x2+5x—6
(5)x2—5xy+6y2
练习:(1)x2—7x+10
(3)x2—12x—13
例
2、用十字相乘法解一元二次方程(1)x2+5x+6=0
(3)(x+3)(x—1)=5
(2)x2—5x+6
4)x
2—5x—6
(6)(x+y)2—5(x+y)—6
(2)y2
+y—2
(4)m2—5m+4
(2)y2
+y—2=0
(4)t(t+3)=28
例
3、用十字相乘法解关于x的方程:
(1)(x—2)2—2(x—2)—3=0
*(2)(x2—3x)2—2(x2—3x)—8=0
练习:(1)(x1)25(x1)240
(2)x2(m2n2)xm2n20
★例
4、已知x2—5xy+6y2 =0(y≠0),求yxxy 的值。
四、课后作业
1、m2+7m—18=(m+a)(m+b),则a,b的符号为()A、a,b异号
B、a,b异号且绝对值大的为负 C、a, b同号
D、a,b同号且绝对值大的为正
(2、在下列各式中,(1)x2+7x+6(2)x2+4x+3(3)x2+6x+8(4)x2+7x+10(5)x2+15x+44有相同因式的是()A、(1)(2)
B、(3)(5)
C、(2)(5)
D、(1)(2)、(3)(4)、(3)(5)
3、x2+2x—3,x2—4x+3,x2+5x—6的公因式是()
A、x—3
B、3—x
C、x +1
D、x—1
4、若y2+py+q=(y—4)(y+7),则p=
,q=
.5、分解因式:(1)x2+7 x—8
(2)y2—2y—15
(3)(x+3y)2—4(x+3y)—32
6、用十字相乘法解一元二次方程
(1)x2—3x—10 =0
(2)x
2+3x—10 =0
(3)x2—6x—40 =0
(4)x2
—10x+16 =0
(5)x2—3x—4 =0
(6)m2—3m—18=0
7、用十字相乘法解关于x的一元二次方程:
(1)(x+1)(x+3)=15
(2)(x+2)(x—3)=14
(3)x24ax3a20
(5)(x—2)2+3(x—2)—4=0
(4)x2—3xy—18y2=0
*(6)(x2—x)2—4(x2—x)—12=0
8、已知:△ABC的两边长为2和3,第三边的长是x2—7x+10=0的根,求△ABC的周长.9、已知下列n(n为正整数)个关于x的一元二次方程:
x2101x2x202
x22x303 ……x2n1xn0n
(1)请解上述一元二次方程<1>、<2>、<3>、
(2)请你指出这n个方程的根具有什么共同特点,写出一条即可.
第二篇:十字相乘法
十字相乘法分解因式
1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
2、十字相乘法的用处:(1)用十字相乘法来分解因式。(2)用十字相乘法来解一元二次方程。
3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。
4、十字相乘法的缺陷:
1、有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单。
2、十字相乘法只适用于二次三项式类型的题目。
3、十字相乘法比较难学。
5、十字相乘法解题实例:
1)、用十字相乘法解一些简单常见的题目 例1把m²+4m-12分解因式
分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题 解:因为 1-2 1╳6 所以m²+4m-12=(m-2)(m+6)例2把5x²+6x-8分解因式 分析:本题中的5可分为1×5,-8可分为-1×8,-2×4,-4×2,-8×1。当二次项系数分为1×5,常数项分为-4×2时,才符合本题 解: 因为 1 2 5 ╳-4 所以5x²+6x-8=(x+2)(5x-4)例3解方程x²-8x+15=0 分析:把x²-8x+15看成关于x的一个二次三项式,则15可分成1×15,3×5。解: 因为 1-3 1 ╳-5 所以原方程可变形(x-3)(x-5)=0 所以x1=3 x2=5 例
4、解方程 6x²-5x-25=0 分析:把6x²-5x-25看成一个关于x的二次三项式,则6可以分为1×6,2×3,-25可以分成-1×25,-5×5,-25×1。解: 因为 2-5 3 ╳ 5 所以 原方程可变形成(2x-5)(3x+5)=0 所以 x1=5/2 x2=-5/3 2)、用十字相乘法解一些比较难的题目 例5把14x²-67xy+18y²分解因式 分析:把14x²-67xy+18y²看成是一个关于x的二次三项式,则14可分为
1×14,2×7, 18y²可分为y.18y , 2y.9y , 3y.6y 解: 因为 2-9y 7 ╳-2y 所以 14x²-67xy+18y²=(2x-9y)(7x-2y)例6 把10x²-27xy-28y²-x+25y-3分解因式
分析:在本题中,要把这个多项式整理成二次三项式的形式
解法
一、10x²-27xy-28y²-x+25y-3 =10x²-(27y+1)x-(28y²-25y+3)4y-3 7y ╳-1 =10x²-(27y+1)x-(4y-3)(7y-1)=[2x-(7y-1)][5x +(4y-3)] 2-(7y – 1)5 ╳ 4y4y ╳-3 说明:在本题中先把10x²-27xy-28y²用十字相乘法分解为(2x-7y)(5x +4y),再把(2x-7y)(5x +4y)-(x-25y)-3用十字相乘法分解为[(2x-7y)+1] [(5x-4y)-3].例7:解关于x方程:x²-3ax + 2a²–ab-b²=0 分析:2a²–ab-b²可以用十字相乘法进行因式分解 解:x²-3ax + 2a²–ab-b²=0 x²-3ax +(2a²–ab-b²)=0 x²-3ax +(2a+b)(a-b)=0 1-b 2 ╳ +b [x-(2a+b)][ x-(a-b)]=0 1-(2a+b)1 ╳-(a-b)所以 x1=2a+b x2=a-b如何使用十字相乘法分解因式及练习题 形如2X2表示的是2X的平方 例1 把2x2-7x+3分解因式.分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数.分解二次项系数(只取正因数): 2=1×2=2×1; 分解常数项:
3=1×3=1×3==(-3)×(-1)=(-1)×(-3).用画十字交叉线方法表示下列四种情况: 1 1 2 3 1×3+2×1 =5 1 3 2 1 1×1+2×3 =7 1 -1 2 -3 1×(-3)+2×(-1)=-5 1 -3 2 -1
1×(-1)+2×(-3)=-7 经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7.解 2x2-7x+3=(x-3)(2x-1).一般地,对于二次三项式ax2+bx+c(a≠0),如果二次项系数a可以分解成两个因数之积,即a=a1a2,常数项c可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2,排列如下: a1 c1 a2 c2 a1a2+a2c1 按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax2+bx+c的一次项系数b,即a1c2+a2c1=b,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即 ax2+bx+c=(a1x+c1)(a2x+c2).像这种借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常 叫做十字相乘法.例2 把6x2-7x-5分解因式.分析:按照例1的方法,分解二次项系数6及常数项-5,把它们分别排列,可有8种不同的排列方法,其中的一种 2 1 3 -5 2×(-5)+3×1=-7 是正确的,因此原多项式可以用十字相乘法分解因式.解 6x2-7x-5=(2x+1)(3x-5).指出:通过例1和例2可以看到,运用十字相乘法把一个二次项系数不是1的二次三项式因式分解,往往要经过多次观察,才能确定是否可以用十字相乘法分解因式.对于二次项系数是1的二次三项式,也可以用十字相乘法分解因式,这时只需考虑如何把常数项分解因数.例如把x2+2x-15分解因式,十字相乘法是 1 -3 1 5 1×5+1×(-3)=2 所以x2+2x-15=(x-3)(x+5).例3 把5x2+6xy-8y2分解因式.分析:这个多项式可以看作是关于x的二次三项式,把-8y2看作常数项,在分解二次项及常数项系数时,只需分解5与-8,用十字交叉线分解后,经过观察,选取合适的一组,即 1 2 5 -4 1×(-4)+5×2=6 解 5x2+6xy-8y2=(x+2y)(5x-4y).指出:原式分解为两个关于x,y的一次式.例4 把(x-y)(2x-2y-3)-2分解因式.分析:这个多项式是两个因式之积与另一个因数之差的形式,只有先进行多项式的乘法运算,把变形后的多项式再因式分解.问:两上乘积的因式是什么特点,用什么方法进行多项式的乘法运算最简便? 答:第二个因式中的前两项如果提出公因式2,就变为2(x-y),它是第一个因式的二倍,然后把(x-y)看作一个整体进行乘法运算,可把原多项式变形为关于(x-y)的二次三项
式,就可以用十字相乘法分解因式了.解(x-y)(2x-2y-3)-2 =(x-y)[2(x-y)-3]-2 =2(x-y)2-3(x-y)-2 =[(x-y)-2][2(x-y)+1] =(x-y-2)(2x-2y+1).1 -2 2 +1 1×1+2×(-2)=-3 指出:把(x-y)看作一个整体进行因式分解,这又是运用了数学中的“整体”思想方法.三、课堂练习1.用十字相乘法分解因式:
(1)2x2-5x-12;(2)3x2-5x-2;(3)6x2-13x+5;(4)7x2-19x-6;(5)12x2-13x+3;(6)4x2+24x+27.2.把下列各式分解因式:
(1)6x2-13xy+6y2;(2)8x2y2+6xy-35;(3)18x2-21xy+5y2;(4)2(a+b)2+(a+b)(a-b)-6(a-b)
四、小结 1.用十字相乘法把某些形如ax2+bx+c的二次三项式分解因式时,应注意以下问题:(1)正确的十字相乘必须满足以下条件: a1 c1 在式子 中,竖向的两个数必须满足关系a1a2=a,c1c2=c;在上式中,斜向的 a2 c2 两个数必须满足关系a1c2+a2c1=b.(2)由十字相乘的图中的四个数写出分解后的两个一次因式时,图的上一行两个数中,a1是第一个因式中的一次项系数,c1是常数项;在下一行的两个数中,a2是第二个因式中的一次项的系数,c2是常数项.(3)二次项系数a一般都把它看作是正数(如果是负数,则应提出负号,利用恒等变形把它转化为正数,)只需把它分解成两个正的因数.2.形如x2+px+q的某些二次三项式也可以用十字相乘法分解因式.3.凡是可用代换的方法转化为二次三项式ax2+bx+c的多项式,有些也可以用十字相乘法分解因式,如例4.五、作业 1.用十字相乘法分解因式:
(1)2x2+3x+1;(2)2y2+y-6;(3)6x2-13x+6;(4)3a2-7a-6;(5)6x2-11xy+3y2;(6)4m2+8mn+3n2;(7)10x2-21xy+2y2;(8)8m2-22mn+15n2.2.把下列各式分解因式:(1)4n2+4n-15;(2)6a2+a-35;(3)5x213;(4)4x2+15x+9(5)15x2+x-2;(6)6y2+19y+10;-20y2;(8)7(x-1)2+4(x-1)(y+2)-20(y+2)
-8x--9y(7)20
第三篇:9.15十字相乘法教案
9.15十字相乘法(1)西南位育
单萍
【教学目标】
1.通过学生自己探究、小组讨论,探索形如x2pxq的二次三项式的因式分解的基本方法(十字相乘法);
2.通过学生自行尝试和小组互助的形式,探究非标准形式的十字相乘法因式分解的步骤和注意要点; 3.进一步培养学生的观察力、解决数学问题的能力、以及培养小组合作的能力。【教学重难点】
正确使用十字相乘法进行因式分解 【教学过程】
一、游戏时间(随机抽查学生回答)
口答计算结果:
x1x2
x1x2
x2x3
x-2x-3
x4x5 x1x3
x2x5
x1x2
x1x3
x3x5
二、探究时间
我们已经学习过提取公因式法,平方差公式法,完全平方公式法对多项式进行因式分解成几个整式乘积的形式。
1)x23x(2)x2-6x5 探究一:((二次项系数为1且常数项为素数二次三项式的因式分解规律) 自助时间(1min)
学生通过掌握游戏时间的乘法规律自行探索上式因式分解的结果,训练独立思考的能力;
互助时间(1min)
通过学生二人小组交流上式因式分解的结果,找出正确的结果,并能够初步小结方法,通过整式乘法检查自己或同学的分解结果的正确性; 交流时间
通过小组代表发言,得到解决二项式系数为1且常数项为素数的二次三项式因式分解的规律。
探究二:(1)x2-5x6
(2)x25x-6
(二次项系数为1且常数项为简单合数的二次三项式的因式分解规律) 自助时间(1min)学生通过探究一得出的规律自行探索上式因式分解的结果,训练独立思考的能力;
互助时间(1min)
通过学生二人小组交流上式因式分解的结果,找出正确的结果,并能够初步小结方法,通过整式乘法检查自己或同学的分解结果的正确性; 交流时间
通过小组代表发言,得到解决二项式系数为1且常数项为简单合数的二次三项式因式分解的规律。探究三:(1)x29x-36
(2)x2-14x-24(不能分解)
(二次项系数为1且常数项为复杂合数的二次三项式的因式分解规律) 自助时间(1min)
学生通过探究二得出的规律自行探索上式因式分解的结果,训练独立思考的能力;
互助时间(2min)
通过学生四人小组交流上式因式分解的结果,找出正确的结果,并能够初步小结方法,通过整式乘法检查自己或同学的分解结果的正确性; 交流时间
通过小组代表发言,会用十字相乘的方式验证一次项是否符合因式分解的条件,从而得到解决二项式系数为1的二次三项式因式分解的规律。
三、教师时间
我们刚才探究的各个多项式是关于x的形如x2pxq(p,q为整数)的二次三项式,关键是将q分解为两个整数a,b,使得xaxb的一次项恰好是px,我们可以通过如下的验证方式验证一次项:
xaxbbxaxabx
按这种交叉相乘后相加验证一次项,形如一个倾斜的“十字”,我们成为“十字相乘法”。
四、练习时间
发学案,完成概念整理及练习:分解因式
(1)x2+5xy−24y2
(2)-x2−10y2+7xy
(3)x38x215x
(4)x2y23xy10
(5)x413x236(6)a2a14a2a2
4 自助时间(5min)
2 互助时间(3min)
通过学生四人小组交流练习的答案,找出正确的结果和方法,并交流其中注意要点。
交流时间:小组代表交流答案和注意要点
教师小结:十字相乘法因式分解的特征和方法及注意要点。
五、彩蛋时间
学生提问:学生可针对本课内容及方法的细节进行提问老师 老师提问:教师可针对本课内容及方法的细节进行提问学生
第四篇:因式分解--十字相乘法教案
因式分解------十字相乘法
一基础知识:利用十字相乘法分解因式,实质上是逆用(axb)(cxd)竖式乘法法则.1.二次项系数为1的二次三项式:直接利(pq)xpq(xp)(xq)进行分解
特点:(1)二次项系数是1;(2)常数项是两个数的乘积;(3)一次项系数是常数项的两因数的和;
2.二次项系数不为1的二次三项式ax分解结果:ax22用公式——x2bxc可分解的条件:(1)aa1a2,(2)cc1c2,(3)ba1c2a2c1
2思考:十字相乘有什么基本规律?凡是能十字相乘的二次三项式axbxc,满足b24ac0,且是一个完全平方数 bxc=(a1xc1)(a2xc2)二典例分析
1.分解下列因式(1)x
(5)x22(2)x7x6;
22(3)a14x24;
22(4)x15a36;
224x5
x2
;(6)y22y15
;(7)x210x24;(8)x12x27
22.分解下列因式(1)3x(5)6y211x10
(2)5x27x6
(3)3x2(4)10x7x2
;
2217x3
11y102(6)2x5x3;
(7)3x8x3
(8)2b13b18
23.分解下列因式(1)a28ab128b(2)x223xy2y(3)m22226mn8n(4)a2222ab6b
22(5)x7xy18y
(6)x3xy18y4.分解下列因式
(1)2x222
(7)xxy12y
(8)x6xy16y
27xy6y;
(2)15x7xy4y ;
(3)12x2211xy15y
2(4)x2xy35y
(5)
a5ab24b
(6)
5x4xy28y 2222225.分解下列因式
(1)xy223xy2
(2)2xy5xy3
(3)ax22226ax8
(4)mn11mn80
(5)(a8a)22(a8a)120
(6)(a2b)2(a2b)15 2222226.分解下列因式(1)8x2267x1(2)(xy)3(xy)10
(3)(ab)4a4b3
22222322(4)(a2a)5(a2a)4(5)(xx)(xx)42(6)(3ab)2(3ab)48
7.分解下列因式(1)m224mn4n223m6n2(2)x2xy3y2x10y8;
222(3)4x4xy3y4x10y3;(4)
x222224xy4y222x4y3
28.分解下列因式(1)xyyzzxxzyxzy2xyz;(2)abcx2222(ab222c)xabc
2(3)(x2x3)(x2x24)90(4)a(bc)b(ca)c(ab);9.已知0<a≤5,且a为整数,若2x3xa能用十字相乘法分解因式,求符合条件的a.10.如果x42xmx322mx2能分解成两个整数系数的二次因式的积,试求m的值,并把这个多项式分解因式
三随堂练习
(1)x3x4
(2)x3x4
(3)x8x20
(4)x5x24
(5)x8x12
(6)x6x7x
2232222(7)x11x60
(8)a2a8
(9)ab4ab3
(10)y35y36
(11)y13y36
(12)x8xy9y
(13)4x13xy9y
(14)2(3x2y)(3x2y)3
(15)4x四.课后作业
1.(2x)(3x)是多项式()的因式分解
A.6xx
B 6xx C 6xx
D.6xx 2.如果xmx6(xn)(x3),那么mn的值是()A.1
B 1
C 3
D.3 3.若x***24224224224xy6x3yy210
y2mx5y6能分解为两个一次因式的积,则m的值为()A.1 B.-1 222C.1 D.2
224.不能用十字相乘法分解的是()A.xx2 B.3x10x3x C.4xx2
D.5x6xy8y
5.多项式x3xa可分解为(x-5)(x-b),则a,b的值分别为()A.10和-2 B.-10和2 C.10和2 D.-10和-2 6.分解结果等于(x+y-4)(2x+2y-5)的多项式是()A.2(xy)13(xy)20
B.(2x2y)13(xy)20
C.2(xy)13(xy)20
D.2(xy)9(xy)20
7.将下述多项式分解后,有相同因式x-1的多项式有()A.2个
B.3个
C.4个
D.5个
①x7x6;②3x2x1;③x5x6;④4x5x9;⑤15x23x8 ⑥x11x12
8.2x5x3(x3)(_____);9.x____2y***22(xy)();10.x9xy52y222(x)(x)
11.x10x =(x12)(x);12.整数k=______时,多项式3x7xk有一个因式为(_______)13.分解下列因式
(1)y15y36
(2)m10m24
;(3)m22222222210m24
222(4)y13y36
(5)xy5xy6x
(6)5(ab)23(ab)10(ab)
(7)4xy4425xy2229y;
(8)12(xy)11(x222222y)2(xy)(9)4x4xy4y3;
2222222(10)x7x1
(11)
3p7pq2q(14)ab22
n(12)xy3xy2;
(13)xxy2yx7y6;
16ab39;(15)15x2n7xy2n14y22n2;(16)x223x22x22223x72
242(17)a2a24;
(18)(x1)4(x1)4x;
(19)(2x5x)(2x5x)6
2(20)xy23xyz60z(21)xy8xy15y(22)(xx)11(xx)26
(23)x(pq)xpq(pq)(pq);(24)(x3x2)(x7x12)120;(25)5ab23aby10y(26)(xxyy)(xxy2y)12y
(27)x2xyy5x5y6
42214.已知x6xx12有一个因式是xax4,求a值和这个多项式的其他因式. ***222242215.已知多项式xax6可分解为两个整数系数的一次因式的积,求a的值 2
第五篇:一元二次方程解法教学反思
用公式法解一元二次方程教学反思
张春元
通过本节课的教学,使我真正认识到了自己课堂教学的成功与失败。对我今后课堂教学有了一定引领方向有了很大的帮助。下面我就谈谈自己对这节课的反思。
本节课的重点主要有以下3点:
1.找出a,b,c的相应的数值
2.验判别式是否大于等于0
3.当判别式的数值符合条件,可以利用公式求根.在讲解过程中,我没让学生进行(1)(2)步就直接用公式求根,第一次接触求根公式,学生可以说非常陌生,由于过高估计学生的能力,结果出现错误较多.1、a,b,c的符号问题出错,在方程中学生往往在找某个项的系数时总是丢掉前面的符号
2、求根公式本身就很难,形式复杂,代入数值后出错很多.其实在做题过程中检验一下判别式着一步单独挑出来做并不麻烦,直接用公式求值也要进行,提前做着一步在到求根公式时可以把数值直接代入.在今后的教学中注意详略得当,不该省的地方一定不能省,力求收到更好的教学效果
3、板书不太理想。板书可以说在课堂教学也起关键作用,它可以帮学生温习本课的内容,而我许多本该板书的内容全部反映在大屏幕上,在继续讲一下个内容时,这些内容也就不会再出现,只给学生瞬间的停留,这样做也有欠妥当。
4、本节课没有激情,学习的积极性调动不起来,对学生地鼓励性的语言过于少,可以说几乎没有。