函数的表示法教案1

时间:2019-05-15 05:42:04下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《函数的表示法教案1》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《函数的表示法教案1》。

第一篇:函数的表示法教案1

陕县一高集体备课高一数学教案

主备人:张晓霞

备课时间9月6日

课题:§1.2.2函数的表示法(第1课时)

教学目的:(1)明确函数的三种表示方法;

(2)在实际情境中,会根据不同的需要选择恰当的方法表示函数;(3)通过具体实例,了解简单的分段函数,并能简单应用;

教学重点:函数的三种表示方法,分段函数的概念.

教学难点:根据不同的需要选择恰当的方法表示函数,什么才算“恰当”?分段函数的表示及其图象.

教学方法:启发诱导式 教学过程:

一、引入课题

1.复习:函数的概念;

2.常用的函数表示法及各自的优点:

(1)解析法;

(2)图象法;

(3)列表法.

二、新课教学

(一)典型例题

例1.某种笔记本的单价是5元,买x(x∈{1,2,3,4,5})个笔记本需要y元.试用三种表示法表示函数y=f(x).

分析:注意本例的设问,此处“y=f(x)”有三种含义,它可以是解析表达式,可以是图象,也可以是对应值表.

解:(略)注意: 函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判○断一个图形是否是函数图象的依据; 解析法:必须注明函数的定义域; ○3 图象法:是否连线; ○4 列表法:选取的自变量要有代表性,应能反映定义域的特征. ○巩固练习:课本P23练习第1题

例2.下表是某校高一(1)班三位同学在高一学年度几次数学测试的成绩及班级及班级平均分表:

第一次 第二次 第三次 第四次 第五次 第六次

87 91 92 88 95 王

76 88 75 86 80 张

65 73 72 75 82 赵

班平均88.2 78.3 85.4 80.3 75.7 82.6 分

请你对这三们同学在高一学年度的数学学习情况做一个分析. 分析:本例应引导学生分析题目要求,做学情分析,具体要分析什么?怎么分析?借助什么工具? 解:(略)注意: 本例为了研究学生的学习情况,将离散的点用虚线连接,这样更便于研究成绩○的变化特点; 本例能否用解析法?为什么? ○巩固练习:

课本P23练习第2题 例3.画出函数y = | x | .

陕县一高集体备课高一数学教案

主备人:张晓霞

备课时间9月6日

解:(略)

巩固练习:课本P23练习第3题

拓展练习:任意画一个函数y=f(x)的图象,然后作出y=|f(x)| 和 y=f(|x|)的图象,并尝试简要说明三者(图象)之间的关系.

例4.某市郊空调公共汽车的票价按下列规则制定:

(1)乘坐汽车5公里以内,票价2元;

(2)5公里以上,每增加5公里,票价增加1元(不足5公里按5公里计算). 已知两个相邻的公共汽车站间相距约为1公里,如果沿途(包括起点站和终点站)设20个汽车站,请根据题意,写出票价与里程之间的函数解析式,并画出函数的图象.

分析:本例是一个实际问题,有具体的实际意义.根据实际情况公共汽车到站才能停车,所以行车里程只能取整数值.

说明:象上面两例中的函数,称为分段函数.

注意:分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.

三、小结

理解函数的三种表示方法,在具体的实际问题中能够选用恰当的表示法来表示函数,注意分段函数的表示方法及其图象的画法.

四、堂清测试题(时量:5分钟 满分:10分)计分: 1.如下图可作为函数yf(x)的图象的是().A.B.C.D.2.函数y|x1|的图象是().A.B.C.D.3.设x2,(x≤1)2f(x)x,(1x2)2x,(x≥2)3,若

32f(x)3,则x=()

A.1

B.C.D.=

.4.设函数f(x)=2x+2(x2),则f(1)2x(x<2)5.已知二次函数f(x)满足f(2x)f(2x),且图象在y轴上的截距为0,最小值为-1,则函数f(x)的解析式为

.五.布置作业

课本P24习题1.2(A组)第1—7题(B组)第2、3题

第二篇:函数的表示法(一)教案

课题:函数的表示法

(一)课

型:新授课 课时: 1课时 教学目标:

(1)掌握函数的三种表示方法(解析法、列表法、图像法),了解三种表示方法各自的优点;

(2)在实际情境中,会根据不同的需要选择恰当的方法表示函数;(3)通过具体实例,了解简单的分段函数,并能简单应用。教学重点:会根据不同的需要选择恰当的方法表示函数。教学难点:分段函数的表示及其图象。教学过程:

一、复习准备:

1.提问:函数的概念?函数的三要素?

2.讨论:初中所学习的函数三种表示方法?试举出日常生活中的例子说明.二、讲授新课:

(一)函数的三种表示方法:

结合课本P15 给出的三个实例,说明三种表示方法的适用范围及其优点: 解析法:就是用数学表达式表示两个变量之间的对应关系,如1.2.1的实例(1);

优点:简明扼要;给自变量求函数值。

图象法:就是用图象表示两个变量之间的对应关系,如1.2.1的实例(2);

优点:直观形象,反映两个变量的变化趋势。

列表法:就是列出表格来表示两个变量之间的对应关系,如1.2.1的实例(3);

优点:不需计算就可看出函数值,如股市走势图; 列车时刻表;银行利率表等。例1.(课本P19 例3)某种笔记本的单价是2元,买x(x∈{1,2,3,4,5})个笔记本需要y元.试用三种表示法表示函数y=f(x).

例2:(课本P20 例4)下表是某校高一(1)班三位同学在高一学六次数学测试的成绩及班级平均分表:

第一次 第二次 第三次 第四次 第五次 第六次

87 91 92 88 95 甲

76 88 75 86 80 乙

65 73 72 75 82 丙

班平均88.2 78.3 85.4 80.3 75.7 82.6 分

请你对这三们同学在高一学的数学学习情况做一个分析.

(二)分段函数的教学: 分段函数的定义:

在函数的定义域内,对于自变量x的不同取值范围,有着不同的对应法则,这样的函数通常叫做分段函数,如以下的例3的函数就是分段函数。说明:(1).分段函数是一个函数而不是几个函数,处理分段函数问题时,首先要确定自变量的数值属于哪个区间段,从而选取相应的对应法则;画分段函数图象时,应根据不同定义域上的不同解析式分别作出;(2).分段函数只是一个函数,只不过x的取值范围不同时,对应法则不相同。例3:(课本P21 例6)某市“招手即停”公共汽车的票价按下列规则制定:

(1)5公里以内(含5公里),票价2元;

(2)5公里以上,每增加5公里,票价增加1元(不足5公里的俺公里计算)。

如果某条线路的总里程为20公里,请根据题意,写出票价与里程之间的函数解析式,并画出函数的图象。

2x3,x(,0)例4.已知f(x)=2,求f(0)、f[f(-1)]的值

2x1,x[0,)

(三)课堂练习:

1.课本P23 练习1,2;

2.作业本每本0.3元,买x个作业本的钱数y(元)。试用三种方法表示此实例中的函数。

3.某水果批发店,100kg内单价1元/kg,500kg内、100kg及以上0.8元/kg,500kg及以上0.6元/kg。试用三种方法表示批发x千克与应付的钱数y(元)之间的函数y=f(x)。归纳小结:

本节课归纳了函数的三种表示方法及优点;讲述了分段函数概念;了解了函数的图象可以是一些离散的点、线段、曲线或射线。作业布置:

课本P24习题1.2 A组第8,9题;

第三篇:函数的表示法教案_h

(计划一个课时,可根据实际情况适当调整)§1.2.2函数的表示法

一、教学目标: 知识与技能

(1)明确函数的三种表示方法;

(2)会根据不同实际情境选择合适的方法表示函数;(3)通过具体实例,了解简单的分段函数及应用. 过程与方法

通过引导学生回答问题,培养学生的自主学习能力;通过画图像,培养学生的动手操作能力; 情感态度与价值观

通过一些实际生活应用题,让学生感受到学习函数表示的必要性,并体会数学源于生活用于生活的价值;通过函数的解析式与图像的结合,渗透数形结合思想方法。

二、教学重难点:

重点:函数的三种表示方法,分段函数的概念.

难点:根据题目的已知条件,写出函数的解析式并画出图像

三、教学过程:

(一)、复习引入:

1.函数的定义,函数的三要素(函数相同的条件). 集合A集合B 当对应关系符合下面的条件之一时,则称f:A→B为从集合A到集合B的一个函数(1)11(集合A和B一一对应)

(2)2或者更多1(集合A多个对B一个)误区:12或者更多

× 构成函数的三要素: 定义域、对应关系和值域 函数相同:当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。

2.函数图象的基本方法画法(列表、描点、作图.)本节将进一步学习函数的表示法和函数图象的作法

(二)、讲解新课: 函数的三种表示方法:

老师:同学们,回忆一下在初中时,我们学习过什么函数? 一次函数: 二次函数: 反比例函数:

教师引导学生归纳函数解析法的特点。

(1)解析法:把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式。

说明:①解析式法的优点是:函数关系清楚,容易从自变量的值求出其对应的函数值,便于用解析式来研究函数的性质;

②中学里研究的主要是用解析式表示的函数。

以下是我国1992年-1998年的国内生产总值(单位:亿元)年份 1992 1993 1994 1995 1996 1997 1998

生产总值 26651.9 34560.5 4670.0 57494.9 66850.5 73142.7 76967.1

老师:根据我们学习的函数的概念,我们知道年份与生产总值之间构成了函数。而我们仅仅是通过一个图表就知道生产总值与年份之间的关系,像这种函数的表示法,我们称为列表法。(2)列表法:列出表格来表示两个变量的函数关系式。例如:数学用表中的平方表、平方根表、三角函数表,以及银行里常用的“利息表”。

说明:列表法的优点是:不必通过计算就知道当自变量取某些值时函数的对应值。老师:另外,在初中我们还学习了一次函数,二次函数,反比例函数的图像。

老师:像这种用图像来表示函数的方法叫做图像法。

(3)图象法:用函数图象表示两个变量之间的关系。例如:气象台应用自动记录器,描绘温度随时间变化的曲线就是用图象法表示函数关系的。(见课本P53页图2-2 我国人口出生变化曲线)

说明:图象法的优点是能直观形象地表示出函数的变化情况。

(三)、例题讲解

1、例3某种笔记本的单价是5元,买个笔记本需要元,试用三种表示法表示函数.(先学生独自做,老师做个别辅导)首先此函数的定义域是数集{1,2,3,4,5},那么由题意可知用解析法可将函数表示为y=5x。通过计算,用列表法可将函数表示为 笔记本数x 1 2 3 4 5 钱数y 5 10 15 20 25

在直角坐标系上描出各点可得用图像法将函数表示为

注意:

①函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等; ②解析法:必须注明函数的定义域; ③图象法:是否连线;

④列表法:选取的自变量要有代表性,应能反映定义域的特征. 例

2、(课本23页例4)

3、国内投寄信函(外埠),邮资按下列规则计算:

1、信函质量不超过100g时,每20g付邮资80分,即信函质量不超过20g付邮资80分,信函质量超过20g,但不超过40g付邮资160分,依次类推;

2、信函质量大于100g且不超过200g时,付邮资(A+200)分(A为质量等于100g的信函的邮资),信函质量超过200g,但不超过300g付邮资(A+400)分,依此类推.设一封x g(0

解:这个函数的定义域集合是,函数的解析式为

它的图象是6条线段(不包括左端点),都平行于x轴,如图所示.新概念教学:在上例中,函数对于自变量x的不同取值范围,对应法则也不同,这样的函数通常称为分段函数。

注意:分段函数是一个函数,而不是几个函数.例

3、课本24页例5 例

4、作出分段函数的图像

解:根据“零点分段法”去掉绝对值符号,即:

=

作出图像如右图 作函数的图象.解:∵

∴ 这个函数的图象是抛物线 介于之间的一段弧(如图).(四)、课堂练习:

2、一个面积为100cm2的等腰梯形,上底长为xcm,下底长为上底长的3倍,则把它的高表示成x的函数为

例1:1)设f(x)是一次函数,且f[f(x)]=4x+3,求f(x)

k=4,kb+b=3

k=2,b=1或k=-2,b=-3

f(x)=2x+1或f(x)=-2x-3

(五)、小结

函数的三种表示方法及图像的作法,以及如何求函数解析式

(六)、课后作业:课本第28习题1.2:A组习题4,6,7,12,13 补充:

1、作出函数的函数图像 解: 步骤:(1)作出函数y=(2x(3的图象

(2)将上述图象x轴下方部分以x轴为对称轴向上翻折(上方部分不变),即得y=|(2x(3|的图象

f(x+1)=x+2(x+1)=x+2x+2

(七)、板书设计(略)

第四篇:1.7 函数的表示法 教学设计 教案

教学准备

1.教学目标

1.知识与技能

(1)明确函数的三种表示方法;

(2)会根据不同实际情境选择合适的方法表示函数;(3)通过具体实例,了解简单的分段函数及应用. 2.过程与方法:

学习函数的表示形式,其目的不仅是研究函数的性质和应用的需要,而且是为加深理解函数概念的形成过程.

3.情感态度与价值观

让学生感受到学习函数表示的必要性,渗透数形结合思想方法.2.教学重点/难点

教学重点:函数的三种表示方法,分段函数的概念.

教学难点:根据不同的需要选择恰当的方法表示函数,什么才算“恰当”?分段函数的表示及其图象.

3.教学用具

投影仪

4.标签

函数的表示法

教学过程

(一)创设情景,揭示课题.

我们在前两节课中,已经学习了函数的定义,会求函数的值域,那么函数有哪些表示的方法呢?这一节课我们研究这一问题.

(二)研探新知

1.函数有哪些表示方法呢?

(表示函数的方法常用的有:解析法、列表法、图象法三种)2.明确三种方法各自的特点?

(解析式的特点为:函数关系清楚,容易从自变量的值求出其对应的函数值,便于用解析式来研究函数的性质,还有利于我们求函数的值域;列表法的特点为:不通过计算就知道自变量取某些值时函数的对应值;图像法的特点是:能直观形象地表示出函数的变化情况)

(三)质疑答辩,排难解惑,发展思维. 例1.某种笔记本的单价是5元,买三种表示法表示函数

”有三种含义,它可以是解析表达式,个笔记本需要

元,试用分析:注意本例的设问,此处“可以是图象,也可以是对应值表. 注意:

①函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等; ②解析法:必须注明函数的定义域; ③图象法:是否连线;

④列表法:选取的自变量要有代表性,应能反映定义域的特征.

例2.下表是某校高一(1)班三位同学在高一学几次数学测试的成绩及班级平均分表:

请你对这三位同学在高一学的数学学习情况做一个分析.

分析:本例应引导学生分析题目要求,做学情分析,具体要分析什么?怎么分析?借助什么工具? 注意:

①本例为了研究学生的学习情况,将离散的点用虚线连接,这样更便于研究成绩的变化特点:

②本例能否用解析法?为什么?

例3.画出函数的图象。

例4.某市郊空调公共汽车的票价按下列规则制定:(1)乘坐汽车5公里以内,票价2元;

(2)5公里以上,每增加5公里,票价增加1元(不足5公里按5公里计算),已知两个相邻的公共汽车站间相距约为1公里,如果沿途(包括起点站和终点站)设20个汽车站,请根据题意,写出票价与里程之间的函数解析式,并画出函数的图象.

分析:本例是一个实际问题,有具体的实际意义. 注意:

①本例具有实际背景,所以解题时应考虑其实际意义; ②像例

3、例4中的函数,称为分段函数.

③分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.

(四)巩固深化,反馈矫正.

(1)课本P23 练习第1,2,3题

(2)国内投寄信函(外埠),假设每封信函不超过20,付邮资80分,超过20而不超过40付邮资160分,每封(0<≤100的信函应付邮资为y(单位:分)

课堂小结

理解函数的三种表示方法,在具体的实际问题中能够选用恰当的表示法来表示函数,注意分段函数的表示方法及其图象的画法.课后习题

板书

第五篇:函数的表示法教学设计

“函数的表示法”教学设计

南京师大附中 陶维林

一、内容和内容解析

函数的表示法是“函数及其表示”这一节的主要内容之一.

学习函数的表示法,不仅是研究函数本身和应用函数解决实际问题所必须涉及的问题,也是加深对函数概念理解所必须的.同时,基于高中阶段所接触的许多函数均可用几种不同的方式表示,因而学习函数的表示也是领悟数学思想方法(如数形结合、化归等)、学会根据问题需要选择表示方法的重要过程.

学生在学习用集合与对应的语言刻画函数之前,比较习惯于用解析式表示函数,但这是对函数很不全面的认识.在本节中,从引进函数概念开始,就比较注重函数的不同表示方法:解析法、图象法、列表法.函数的不同表示法能丰富对函数的认识,帮助理解抽象的函数概念.特别是在信息技术环境下,可以使函数在数形结合上得到更充分的表现,使学生更好地体会这一重要的数学思想方法.因此,在研究函数时,应充分发挥图象直观的作用;在研究图象时要注意代数刻画,以求思考和表述的精确性.

解析法有两个优点:一是简明、精确地概括了变量间的关系;二是可以通过解析式求出任意一个自变量的值所对应的函数值.中学阶段所研究的主要是能够用解析式表示的函数.

图象法的优点是,直观形象地表示自变量的变化,相应的函数值变化的趋势,有利于我们通过图象来研究函数的某些性质.图象法在生产和生活中有许多应用,如企业生产图,股票指数走势图等.

列表法的优点是,不需要计算就可以直接看出与自变量的值相对应的函数值,简洁明了.列表法在实际生产和生活中也有广泛应用.如成绩表、银行的利率表等.

在研究函数时,根据问题的特点,往往需要同时借助几种不同的函数表示法研究函数,如同时采用解析法和图象法表示函数,加强数形结合,这是研究函数的常用方法.

分段函数是一类重要的函数.所谓分段函数,就是在同一个定义域的不同子集上对应关系不同的函数.这类似于,同一个国家的不同地区可以实行不同的社会制度.

二、目标和目标解析

1.掌握函数的三种表示方法(图象法、列表法、解析法),会根据不同的需要选择恰当的方法表示函数.

通过具体的实例,在不同的表示法的选择、转化中,逐步学会用恰当的方法表示一个函数,逐步养成用不同方法表示一个函数的习惯,尤其是增强数与形结合的意识.

2.了解简单的分段函数,并能简单的应用.

通过具体实例(如出租车资费、邮件资费等),以及画出含绝对值函数的图象,或者求含绝对值的函数的值域,认识分段函数是一种普遍存在的函数.

3.会用列表、描点、连线的三步作图法画一些简单函数的图象,并能通过几何直观得到函数的有关信息(性质).

三、教学问题诊断分析

1.初中已经接触过函数的三种表示法:解析法、列表法和图象法.高中阶段重点是让学生在了解三种表示法各自优点的基础上,使学生会根据实际情境的需要选择恰当的表示方法.因此,教学中应该多给出一些具体问题,让学生在比较、选择函数模型表示方式的过程中,加深对函数概念的整体理解,而不再误以为函数都是可以写出解析式的.

(2)让学生用借助计算器,列表描点,画出给出解析式的函数的图象,加强各种表示法之间的联系.有条件的,可使用信息技术,利用计算机软件画出图象,为学生创设丰富的数形结合环境,帮助学生更深刻地理解函数概念及其表示法.如可补充如下函数:

上述四个函数的图象如图1所示,依次为:

图1

(3)分段函数大量存在,但比较繁琐.一方面,要加强用分段函数模型刻画实际问题的实践,另一方面,可以画含绝对值号的函数的图象,促使学生根据绝对值的意义把函数分段写出来,然后分段画出图象.还可以通过求分段函数的值域,让学生体验到,分段函数的问题应该分段解决,然后再综合.这也为下一步研究分段函数的单调性等性质打下伏笔.

四、教学基本流程

五、教学过程设计

1.用三种表示法表示同一个函数

我们在初中就已经知道函数的三中表示法:解析法,图象法,列表法.

问题1 某种笔记本的单价是5元,买x(x∈{1,2,3,4,5})本笔记本需要y元.试用函数的三种表示法表示函数y=f(x).(教科书第19页例3)

设计意图:通过具体例子,让学生用三种不同的表示方法来表示的同一个函数,进一步理解函数概念. 这个函数的图象由一些离散的点组成,与以前学习过的一次函数、二次函数的图象是连续的曲线不同.通过本例,进一步让学生感受到,函数概念中的对应关系、定义域、值域是一个整体.函数y=5x不同于函数y=5x(x∈{1,2,3,4,5}),前者的图象是(连续的)直线,而后者是5个离散的点.

由此认识到:“函数图象既可以是连续的曲线,也可以是直线、折线、离散的点,等等.”(教科书例3的边空)

让学生体会到三种表示方法各自的优点.为“问题2”(教科书第20页)提供一个具体的事例.

解:这个函数的定义域是{1,2,3,4,5}.(1)用解析法表示为

y=5x,x∈{1,2,3,4,5}.(2)用列表法表示为

(3)用图象法表示,函数y=f(x)的图象如图2所示.

图2

问题2(教科书第20的“思考”)

(1)比较函数的三种表示法,各自的有哪些优、缺点?

(2)所有的函数都能用解析法表示吗?举出一个函数,并分别用三种表示法表示. 设计意图:通过比较,明确各种表示法的优点;通过举例,让学生通过自己的例子说明怎样用适当的表示法来表示某些函数.

不是所有的函数都能用解析法表示,如心电图.

讨论中,还可以问学生“函数图象可以是折线吗”让学生举例说明.(如y=|x|)问题3 图3能表示某个函数的图象吗?为什么?

图3

设计意图:这是例3边空的内容“那么判断一个图形是不是函数图象的依据是什么?”通过讨论,进一步理解函数概念中“对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应”. 组织学生讨论后,归纳出判断方法“平行于y轴的直线(或y轴)与图形至多一个交点”. 2.选择适当方法表示函数,以便分析其特点

问题4(教科书第20页例4)下表是高一(3)班三位同学在高一学6次数学测试的成绩及班级平均分表.

请你对这三位同学在高一学的数学学习情况做一个分析.

设计意图:这里有三个用表格法给出的函数.要“对这三位同学在高一学的数学学习情况做一个分析”不太方便,因此需要改变函数表示的方法,选择图象法比较恰当.

教学中,先不必直接把图象法告诉学生,可以让学生说说自己是如何分析的,选择了什么样的方法来表示这三个函数.通过比较各种不同的分析方法,达成共识:用图象法比较好.培养学生根据实际需要选择恰当的函数表示法的能力.

能够从图象中读出哪些信息也不要直接告诉学生,让学生经过观察、思考获得结论.比如总体水平(王伟成绩好)、变化趋势(赵磊的成绩在逐步提高)、与班级平均分的比较,等等.培养学生的观察能力、获取有用信息的能力.

图4

解:从表中可以知道每位同学在每次测试中的成绩,但不太容易分析每位同学的成绩变化情况(学习情况).如果将“成绩”与“测试序号”之间的关系用函数图象表示出来,如图4,那么就能比较直观地看到成绩变化情况.这对我们进行分析学习情况是有利的.

从图4中可以看到,王伟同学的学习成绩始终高于班级平均水平,学习情况稳定,而且成绩优秀.张城同学的学习成绩不够稳定,总是在班级平均水平上下波动,而且波动幅度也比较大.赵磊同学的学习成绩低于班级平均水平,但是他的成绩呈上升趋势,表明他的成绩在稳步提高.

必须提醒学生,图中的虚线不是函数图象的组成部分,之所以用虚线连接散点,主要是为了区分这三个函数,直观感受三个函数的图象具有整体性,也便于分析学习情况,加以比较. 3.分段函数及其表示

问题5 某市出租车资费规定如下:(1)3公里以内(含3公里)9元;(2)3公里以上,每增加1公里,资费增加2.4元(不足1公里按1公里计算).

某线路总里程为6公里,请根据题意写出资费与里程之间函数的解析表达式,并画出函数的图象.

设计意图:让学生尝试选择适当表达方式来表示实际问题;学习分段函数及其表示.

解:设资费为y元,里程为x公里.由题意,自变量x的取值范围是(0,6.

根据解析式画出的图象如图5所示.

图5

象问题5这样的函数称为分段函数. 所谓分段函数,就是在函数的同一个定义域的不同子集上对应关系不同的函数.类似于大陆、台湾是同一个国家的不同地区,社会制度可以不同.

生活中有许多需要分段表示的函数,请你举出几个分段函数的例子,并画出它的图象.

如分期付款,邮件资费等.再如 y=|x|=

4.课堂练习

教科书第23页,练习,1,2,3.

5.小结

通过本节课的学习,你的主要收获有哪些?

大致有:函数的表示方法有三种,各有优、缺点;应该根据不同的问题、不同的要求选择恰当的方法表示它,以便研究函数某些性质.还学习了什么样的函数是分段函数.

6.课后作业

教科书第24页,习题1.2,7,8.

下载函数的表示法教案1word格式文档
下载函数的表示法教案1.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    备课资料(函数的表示法)

    备课资料 [备选例题] 【例1】2006第十七届“希望杯”全国数学邀请赛(高一)第一试,8区间[0,m]在映射f:x→2x+m所得的象集区间为[a,b],若区间[a,b]的长度比区间[0,m]的长度大5,......

    函数及其表示方法教案

    函数及其表示方法 一、目标认知 学习目标: (1)会用集合与对应的语言刻画函数;会求一些简单函数的定义域和值域,初步掌握换元法的简单运用. (2)能正确认识和使用函数的三种表......

    函数及其表示方法教案

    §1.1集合及其表示法 教学目标 知识与技能目标: (1)使学生初步了解集合的概念,知道常用数集的概念及其记法 (2)使学生初步了解“属于”关系的意义。 (3)使学生初步了解有限集、无限......

    函数及其表示方法教案5篇

    函数及其表示方法 一、目标认知 学习目标: 会用集合与对应的语言刻画函数;会求一些简单函数的定义域和值域,初步掌握换元法的简单运用. 能正确认识和使用函数的三种表......

    集合的表示法(教案)

    【课题】1.2集合的表示法(教案) 【教学目标】 使学生掌握常使用的集合的表示方法,能选择自然语言、图形语言、集合语言(列举法和描述法)描述不同的具体问题; 【教学重点】 集合的......

    函数的表示方法

    1 宜宾市翠屏区龙凤教育培训学校主讲人:杨老师函数的概念及表示方法重点、难点:1. 对应、函数、映射2. 函数的三要素:定义域、值域、对应法则3. 定义域、值域计算的基本方法4.......

    新课标数学教案·必修1_§1.2.2函数的表示法

    课题:§1.2.2函数的表示法 教学目的:(1)明确函数的三种表示方法; (2)在实际情境中,会根据不同的需要选择恰当的方法表示函数; (3)通过具体实例,了解简单的分段函数,并能简单应用; (4)纠正认......

    1.2 函数及其表示 教学设计 教案

    教学准备 1. 教学目标 1、知识与技能: 函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依 赖关系,同时还用集合与对应的语言刻画函数,高中阶段更......