小学英语教学中培养学生思维品质的案例研究

时间:2019-05-15 05:42:14下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《小学英语教学中培养学生思维品质的案例研究》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《小学英语教学中培养学生思维品质的案例研究》。

第一篇:小学英语教学中培养学生思维品质的案例研究

小学英语教学中培养学生思维品质的案例研究

——以牛津英语1AM3U3 In the restaurant为例

东华大学附属实验学校 戴郁莲

【案例背景】

《义务教育英语课程标准》在课程性质中明确指出“就工具性而言,英语课程承担着培养学生基本英语素养和发展学生思维能力的任务,初步形成用英语与他人交流的能力,进一步促进思维能力的发展。”在课程基本理念中也阐述到“语言既是交流的工具,也是思维的工具。学习一门外语能够促进人的心智发展;英语课程应成为学生在教师的指导下构建知识、发展技能、拓展视野、活跃思维、展现个性的过程;英语学习的评价系统必要促进学生的自主学习能力、思维能力、跨文化意识和健康人格的发展。”因此,英语课程的学习,不仅是语言学习的过程,更是培养学生思维能力、提升学生思维品质的过程。我国著名的心理学家朱光潜、林崇德认为: “培养思维品质是发展思维能力的突破口, 是提高教育质量、减轻学生负担的好途径, 是应试教育向素质教育转轨的一项重要任务”。因此,在新的教育形势下,小学英语教师必须建立与之相适应的英语教学观, 通过开发学生思维的内在潜能, 来培养学生的思维品质, 提高教学质量,提升英语课堂效能。【案例描述】

本文将结合小学牛津英语1AM3U3 In the restaurant的教学片段,来阐述如何通过各教学环节关注培养学生的思维品质,提升英语课堂效能。一年级学生具有活泼好动的特点,思维活跃,发言积极,教师如果能作出恰当的引导,可以潜移默化地培养学生良好的思维品质,包括思维的敏捷性,广阔性,深刻性,创造性等,以此来提高英语课堂的效能。

教学片段一:教授完核心词汇“cake”,出示蛋糕图片,进行快速问答。T:How is the cake? S1: The cake is nice.T:How is the cake? S2: The cake is sweet.T:How is the cake? S3: The cake is yummy.T:How is the cake? S4: The cake is red.T:Yes.The cake is nice, sweet and yummy.So I can say a chant “Cake, cake.Nice, nice.Cake, cake.Sweet, sweet.Cake, cake.Yummy, yummy.” Let’s chant together!

片段分析:在这个教学片断中,教师以较快速的方式对学生进行提问,让学生在短时间内,快速地积极应答,学生会进行头脑风暴,对蛋糕从视觉、味觉以及颜色上对蛋糕进行描述,这不仅训练了学生思维的敏捷性,也能提高课堂的效率。教学片断二:教授完核心词汇“pie”,出示苹果派的图片,进行组词游戏。T:Look, I can make an apple pie.What kind of pie can you make? You can say like this: Pie, pie, apple pie.S1: Pie, pie, orange pie.S2: Pie, pie, banana pie.S3: Pie, pie, peach pie.S4: Pie, pie, pear pie.S5: Pie, pie, cherry pie.S6: Pie, pie, lemon pie.S7: Pie, pie, pineapple pie.片段分析:这个游戏可以帮助学生积极思考,唤起学生对所学语言的回忆,正确灵活运用所学的语言,能使学生的思维变得越来越宽广,学生也因为自己能够将之前所学的水果单词结合到新学的词汇中,显得尤为兴奋,发言的积极性大大提高,不仅提高了学生思维的灵活性,更活跃了英语课堂的氛围。

片段教学三:由句型“Give me a ____, please.”转换到新授句型“May I have a ____, please?”

多媒体课件上,依次播放顺序如下:,T:(picture 1)If you need a pie, what can you say? S1:Give me a pie, please.T:(picture 2)Yes, you can say ‘Give me a pie, please’.Now let’s listen what Winnie says.Winnie: May I have a pie, please?(picture 3)T: What does Winnie say? S1: May I have a pie, please? S2: May I have a pie, please? T: Great!Now let’s be Winnie together.Ss: May I have a pie, please? T: Now let’s sing a simple song May I have.Please listen carefully and try to follow it.(picture 4)片段分析:在新授句型“May I have a _____, please?”前,笔者先让学生回忆已学的句型“Give me a _____, please.”这是为后者做铺垫,通过新旧知识的比较,既能帮助学生巩固旧的知识,又能加深对新知识的理解,培养学生思维的深刻性。同时,学生也会发现在英语课堂上有话可说,层层递进的方式让学生更能接受。随后简单的英文歌曲May I have更好地巩固了新授句型的掌握,在后续的句型训练中,学生明显能较流畅地表达运用这个句型,达到了这一课时中对这个句型的教学目标。

教学片断四:复习巩固后,教师下发作业单,让学生进行课后巩固。

T: Look, this is a nice pizza.Let’s make a pizza song by ourselves.今天回家后我们一起来模仿Apple tree的格式,创编一首属于自己的披萨之歌吧。

Pizza ______, Pizza ______, Pizza ______, Pizza ______, Pizza, pizza, I love you.Pizza ______, I love to eat.片段分析:在本节课的最后环节,笔者下发作业单,布置了“创编儿歌”的环节,让小朋友仿照上一单元的歌曲Apple tree的曲调来为pizza这个新授核心词汇创编儿歌,经过本堂课的学习加上之前的积累,学生已经掌握了很多可以描述披萨的形容词,比如nice, sweet, yummy, round, big等,学生可以自由组合发挥,创编一首属于自己的儿歌。这不仅能够帮助更好的巩固本节课的知识,也让学生在第二课进行成果展示时,氛围活跃异常。此次作业不仅培养了学生思维的创造性,也提高了他们学习英语的兴趣,提升了他们的口语表达能力,对于学生语言综合运用能力的提高也有所帮助。由此可见,如果教师能够精心设计作业,可以让学生在完成作业的过程中,逐渐培养学生的思维能力,提升他们的思维品质,提高课堂的效能。【案例分析】

一、快速问答,培养学生思维的敏捷性

思维的敏捷性是指思维活动的速度,它反映了智力的敏锐程度。有了思维敏捷性,在处理问题和解决问题的过程中,能够适应变化的情况来积极地思维,周密地考虑,正确地判断和迅速地作出结论。在英语课堂中,快速问答能够创造一种紧张的氛围,让学生积极的思考,提高了思维活动的速度。在快速问答过程中,学生好胜心强,反应迅速,能够有效地训练学生思维的敏捷性。基础英语教育专家龚亚夫教授认为“语言学习可以影响人的思维方式与行为,并形成习惯,习惯进而渐变为品格。当语言的输入系统培养学生的品格与思维认知能力时,语言的输出则体现出学生的品格和思维方式。”因此,教师可以在课堂上,通过运用抢答、快速问答、连锁问答的手段,让学生在进行语言输出时,提升学生思维的敏捷性,提高课堂的效率。

二、举一反三,培养学生思维的灵活性

灵活性是指思维活动的灵活程度,反映了智慧能力的“迁移”,而举一反三的能力正是学生灵活地进行思维迁移、运用规律的能力。案例中老师说出“Pie, pie, apple pie.”后,学生能立马举一反三,明白“Pie, pie, ______ pie.”的回答规律,将上个单元的水果词汇迁移到这个句子中,摆脱了教材中对“pie”的单一阐释,呈现了丰富多彩,各式各样的水果派。当学生发现了这个句子的特点后,会去回忆搜索之前学过的水果相关单词,学生的思维也更活跃,发言踊跃,敢于说,乐于说,即使是学习能力较弱的学生也有话可说,大大提高了学生的课堂参与意识以及学习热情,课堂效率也在逐步优化。

三、推陈出新,培养学生思维的深刻性

新旧知识间有着内在的逻辑联系:旧知识是学习新知识的基础;新知识又是旧知识的发展。通过旧知识引出新知识,既能巩固旧的知识,又能加深对新知识的理解,而思维的深刻性表现为能深刻理解概念,分析问题周密,善于抓住事物的本质和规律,因此教师可以通过推陈出新的手段,逐渐培养学生思维的深刻性。在案例中,教师通过教师通过旧知识点“Give me a _____, please.”引出新知识点“May I have a _____, please?”,让学生进行比较,之后又通过一首儿歌进行巩固,这样才不至于让学生感到思维混乱,反而会加深对新句型的记忆,这对于学生转换思维,巩固教学难点也有一定帮助。因此,教师使用推陈出新的方法引导学生,能逐渐培养学生思维的深刻性。

四、发散思维,培养学生思维的创造性

思维的创造性是在一般思维的基础上发展起来的,它是后天培养与训练的结果。卓别林为此说过一句耐人寻味的话:“和拉提琴或弹钢琴相似,思考也是需要每天练习的。”因此,小学英语教师可以在各个教学环节中,有意识地对学生进行发散性思维的训练,开阔学生的思路,加强学习的独立性,保持学生的好奇心,对学生创造性的想法进行鼓励与支持,就能逐渐培养学生思维的创造性。正如案例中创编儿歌的作业,每个学生需要独立完成,并体验创作与成功的喜悦,不仅巩固新知,复习旧知,对思维的创造性也得到了一定的训练。思维的创造性训练贵在创新,在小学英语教学中要善于引导学生敢于对旧知识进行重组,敢于标新立异,这对培养学生的创新思维大有裨益。

总而言之,正如《义务教育英语课程标准》所强调的“语言既是交流的工具,也是思维的工具。”因此,英语课程的学习,不仅是语言学习的过程,更是培养学生思维能力、提升学生思维品质的过程。在新的教育形势下, 小学英语教师必须建立与之相适应的英语教学观, 通过对学生进行快速问答,让学生灵活综合性地运用语言,通过新旧结合的方式等,发散学生的思维,以此培养学生思维的敏捷性,灵活性,深刻性和创造性,开发学生思维的内在潜能, 培养学生良好的思维品质, 提高教学质量。

参考文献: [1]黎亭亭.小学英语教学中学生批判思维能力培养研究.首都师范大学,2014.05.[2]王丹凤.小学英语教学应注重学生思维品质的培养[J],中小学教材教学,2013(37).[3]义务教育英语课程标准[M],北京师范大学出版社,2013.12.[4]余树花.在小学英语教学中如何培养学生的创新思维[J],外语教学与研究, 2011(43).

第二篇:培养学生思维品质之我见

培养学生思维品质之我见

摘要:课堂教学实质是学科思维活动的教学,教师的观念、方法和对教学的设计处理直接影响到教学的质量和效果,关系到学生思维品质的培养。作为教师,在教学中要注重学生思维品质的培养,从而提高学生的探究精神和创新思维能力,最终达到提高教育教学质量的目的。

关键词:严密性,灵活性,深刻性,敏捷性

思维指理性认识或指理性认识的过程,是人类特有的一种脑力活动,是人脑对客观事物间接的和概括的反映,是认识的高级形式。思维品质,其实质是人的思维的个性特征。它反映了每个个体智力或思维水平的差异,主要包括严密性、深刻性、独创性、灵活性、批判性和敏捷性等几个方面。

当前我国的教育正由“应试教育”向“素质教育”、“创新教育”转变,小学数学教学大纲明确指出:小学数学要有意识地培养学生的思维品质。这就要求小学数学教学要突破以往的单一地使学生掌握基础知识和基本技能的圈子,把发展学生的潜能,培养学生的创新能力和思维品质放到一个不可忽视的地位。

课堂教学是培养学生思维品质的主渠道,教师的观念、方法和对教学的设计处理直接影响到教学的质量和效果,关系到学生思维品质的培养。作为教师,在教学中要注重学生思维品质的培养,从而提高学生的探究精神和创新思维能力。在长期的教学研究中,我吸取同行们的教学精华,形成了自己的教学理念,现就我对现代课堂教学中培养学生思维品质谈几点粗浅体会。

一、创设思维情境,培养学生思维的严密性

众所周知,往往是在学生遇到问题需要解决时就会引发创新灵感。教师在教学过程中,有意创设问题情境,就能有效地激发学生的探索欲、求知欲、创新欲,培养学生主动参与意识。如教学“长方形面积的计算”时,有一位老师设计了对面积、面积单位两个概念的复习作为铺垫,然后出示了一个长4厘米、宽3厘米的小长方形,启发学生说出可以用1平方厘米的小正方形来测量这个小长方形的面积,并通过多媒体演示,让学生数出这个小长方形的面积是由多少个1平方厘米的小正方形组成的,进一步巩固了可以用面积单位来测量较小的长方形的面积这一知识。然后,该老师向学生提出了这样一个问题:如果要求学校长方形大操场的面积,也采用面积单位直接测量的方法,可以吗?这时学生对问题感到新奇:学校操场那么大,也用面积单位来一块一块地进行测量,行吗?全班同学立即展开激烈的争论,得出了“用这种办法不行”的结论。要测量操场的面积,该怎么办呢?学生陷入了深思!这时,老师发现学生主动参与学习的意识已萌发,便把学生的求知欲很自然地引导到“长方形面积的计算”教学内容上。通过这样的问题情境的创设,学生主动参与学习的积极性和思维的自觉性就会逐步提高,有利于培养学生的数学意识,真正地学会“数学的思维”。

二、鼓励标新立异,培养学生思维的灵活性

思维的灵活性指的是善于从不同角度和不同方面进行分析思考,其核心是善于运用已有知识、经验展开联想解决实际问题。在数学教学中教师要鼓励学生大胆独立思考,敢于标新立异,“异想天开”。要注重启发学生多角度地思考问题,鼓励联想和提倡一题多解。例如,看到“一年级同学比二年级同学多23人”时,要启发学生联想到:二年级同学比一年级同学少23人。培养学生多角度思考问题的能力。又如;计算应用题“一台洗衣机价格是1200元,一台计算机的价格是一台洗衣机的6倍少80元”时,教师可问学生:你能根据这两个条件,提出哪些问题?学生通过观察和讨论,从不同侧面提出下面问题:(1)一台计算机的价格是多少元?(2)一台计算机比一台洗衣机贵多少元?(3)一台计算机和一台洗衣机共多少元?学生用立体的眼光去观察事物,思维是多向的,有利于思维灵活性的培养。学生思考问题常常是单一的,教师在关键时刻自然地把学生的思维向高层次引导,这就把学生的思维引向多向。在教学基本概念时,要设法让学生从不同的角度,不同的侧面来理解概念的实质。如:

如:教学倍数关系时自编应用题“在北湖区教育局举行中小学生运动会上,我校女同学有5人获奖,男同学获奖的人数是女同学的3倍。男同学获奖的人数有多少?”教师可引导学生用画线段图的方法来理解题目中的倍数关系。当学生初步掌握线段图之后,可把学生的思维引向高层次,引导学生脱离线段图找出题中的对应关系:女同学:6人—1份;男同学:?人—3份。可直接根据对应关系看出:通用学校和一完小的人数比,把女同学的获奖人数看作1份,男同学的获奖人数有这样的3份,求5的3倍是多少,用乘法计算。学生学会了这种方法以后,在解答应用题:“通用机械厂第一车间生产了9箱零件,二车间各生产了36箱零件,二车间生产的零件是一车间的几倍?”时,就可让学生直接用找对应关系的方法来理解应用题中的倍数关系,从而解答应用题。教师要设计新颖灵活的题目,以便学生从不同角度去分析解决。从而开阔了他们的思路,培养了他们思维的灵活性。在小学数学教学中的“一题多说”、“一题多解”、“一题多变”,都是引导学生进行发散式的灵活思维的有效方法。

1、一题多说,就是一个问题让学生从多方面来叙述。这样可以使学生对所学的知识理解得更深刻,思维更灵活。如“32÷8=?”这道算式就可叙述成:①把32平均分成8份,每份是多少?②32里面包含几个8?③32除以8,商是多少?④8除32,商是多少?⑤被除数是32,除数是8,商是多少?⑥32是8的几倍?

2、一题多变,先以一道题为基本题,然后改变它的条件或问题,使它成为新的题目。这样发挥了知识的迁移作用,利于培养学生思维的灵活性,这种方式的训练,在应用题教学中尤为常用。

如,以基本题“果园里有苹果树500棵,梨树350棵,苹果树和梨树一共有多少棵?”为例,就可把问题改为:①苹果树比梨树多多少棵?(梨树比苹果树少多少棵?)②苹果树是梨树的几倍?③梨树是苹果树的几分之几?④苹果树、梨树分别占果园里果树的几分之几?⑤苹果树比梨树多几分之几?(梨树比苹果树少几分之几?)等等。

三、加强概念教学,培养学生思维的深刻性

概念是反映事物的本质属性的思维形式,是构成数学知识的基础。在数学学习中,对概念(还有符号、公式)的理解和使用,越来越能体现一个人的数学素质。教学中,教师应设法让学生对概念(符号、公式)加强理解,极大的拓展学生的创新思维。我读到了一篇教学经验介绍,执教者从学生的认知特点出发,在教学“长方形面积的计算”时,用现代课堂教学的探究式方式组织学生操作实践,探求规律,推导出公式。本人认为很可取,稍加整理后奉献给大家。

整个过程分三点:

㈠ 观察:先用电脑显示,用1平方厘米的小正方形来测量一个长5厘米、宽3厘米的长方形的面积。沿着长边一个一个地摆1平方厘米的小正方形,数数看,每排能摆几个?再沿着宽边照前样摆小正方形,数数看,能摆几排?

㈡ 操作探究:学生根据电脑演示过程,进行学具操作,在一个长5厘米、宽3厘米的小长方形纸片上摆面积是1平方厘米的小正方形。试试看,可以摆几个?

㈢ 推导结论(电脑演示、学生观察):在这个长5厘米、宽3厘米的长方形里沿长边摆1个小正方形,正方形对应边长是1厘米,摆2个小正方形,对应边长是2厘米„„,沿宽边摆小正方形,每摆一排,正方形对应宽边是1厘米,摆2排、3排,对应宽边是2厘米、3厘米。在教师指导下,学生很快明白:沿着这个长方形的长边每排可以摆5个1平方厘米的小正方形,即长边所含厘米数是5;摆3排,即宽边所含厘米数是3,可以用算式5×3=15求出一共摆的小正方形的个数。由此推导:在这个长方形里长边所含厘米数×宽边所含厘米数=长方形所含平方厘米数。从而进一步概括出面积计算公式:长×宽=长方形的面积。通过展示长方形面积公式的推导过程,学生不仅掌握了长方形面积的计算公式,而且进一步深刻理解了长方形的面积与长方形的边长的关系;同时,学生在获取知识的过程中思维得到了充分训练,培养了学生思维的深刻性。

四、强化技能训练,培养学生思维的敏捷性

思维的敏捷性,就是在思考数学问题时反应灵敏,表现在数学学习中能善于抓住问题的本质,正确、合理、巧妙地运用概念、法则、性质、公式等基本知识,简缩运算环节和推理过程,使运算既准又快。教学中教师要对学生进行强化技能的训练,使之在学习时由旧到新、由易到难的“台阶”减少,“跨度”增大,思维效率提高。

例1:(9+6)+(4+1),教师可根据加法的交换律,让学生用凑十法计算比较简便,计算过程是:

(9+6)+(4+1)=(9+1)+(6+4)=10+10=20

例2:(30+7)+(50+5),可让学生用整十数与整十数相加,个位数与个位数相加,计算比较简便。计算过程是:

(30+7)+(50+5)=(30+50)+(7+5)=80+12=92

例3:(60+9)-(20+7),可让学生用整十数和整十数相减,个位数和个位数相减比较简便。计算过程是:

(60+9)-(20+7)=(60-20)+(9-7)=40+2=42

随着学生运算技能的形成和增强,计算过程的中间环节就逐步简化或压缩。教师要培养和训练学生从详尽的思维,逐步过渡到压缩省略的思维。这样可以使学生一看到题目,通过感知就能很快地算出得数。例4:20+1-7-3,可让学生根据和减一个数的方法计算比较简便。计算过程是:

(20+1)-(7+3)=(20+1)-10=21-10=11

例5:6+6+6+6+6+6+6+8,,有的学生会用连加法下一步下一步做;有的学生则采用两个数一组相加的方法做,速度都比较慢;教师可以指导学生利用乘法的意义做:过程是:

6+6+6+6+6+6+6+8=6×7+8=50,比较简便;还可以进一步指导学生将8分解成6+2来做,于是:

6+6+6+6+6+6+6+8=6×8+2=50。又快又简便。

通过反复的强化训练,学生的思维敏捷性就会逐渐形成。,例如:甲乙两车同时A、B两地相向而行,甲每小时行120千米,乙每小时行100千米,经过3小时两车相遇。问A、B两站相距多少千米?先引导学生分析数量关系,列出算式:120×3+100×3或者(120+100)×3。这时,教师巧妙地设疑,进行改编:如果A、B两站之间的路程只由甲车行驶呢?学生陷入了沉思,这时教师继续点拨:如果甲车行6小时会出现什么情况?学生恍然大悟,分析得出甲车行驶6小时要超出B站,每小时超出(120-100)千米,3小时就超出3个(120-100)千米),则用120×6-(120-100)×3即是A、B两站之间的路程。教师的话音刚落,便有学生提出如果甲乙两站的路程只由乙车行驶,那么就应该用90×6+(120-90)×3。培养学生思维的敏捷性是培养学生创造能力的重要方面,教师在教学中的每节课里都要相应地训练学生的发散思维,以培养学生思维的敏捷性。培养思维的批判性

思维的批判性是指思维活动中善于严格地估计思维材料和精细地检查思维过程的智力品质。教学中,要善于将学生考试、作业或课堂答问中的典型错误,让全班学生议论、辨析,去伪存真,提高思维的批判性程度。

例如:一块长方形的纸板,长11厘米,宽8厘米,现在要剪成直角边分别为4厘米、2厘米的三角形,能剪几块?学生由于受思维定势的影响,很多学生错误列式为11×8÷(4×2÷2)=22(块)。教师可将这种错误解法展示给全班同学看,让他们找病根,开处方,分小组组织学生思考、辨析错误的原因。经过讨论,有的学生说:“这样列式是符合常理的,怎么会错呢?”有的学生说:“长方形的长是11厘米,而要剪成直角三角形直角边分别是4厘米和2厘米,它们之间不是倍数关系,所以材料不可能全部用上。”还有的学生说:“这样的题目只有自己亲自动手剪一剪才能找到正确答案。”经过一番讨论,同学们统一了认识,弄清了计算与实际操作之间的区别,得出了正确的答案。由一道错题引发了学生对所学知识的争论,学生在主动参与找错、议错、辨错、改错的反思中,加深了对知识的理解和掌握,提高了自己的分析水平,同时也培养了学生思维的批判性。1)小数点后面添上“0”或者去掉“0”小数的大小不变。(2)小数点末尾添上“0”或者去掉“0”小数不变让学生抓住“小数的末尾”、“小数的大小不变”、“ 等关键问题进行质疑,达到既透彻理解概念,又诱发质疑问难积极性

不容置疑思维品质主要的几个方面是交融在一起的,在课堂教学中我们决不可以把它们机械地割裂开来。一个教学片断只能侧重培养学生思维品质的某一方面,只有在教学中把各种思维品质的培养贯穿在各项训练之中,深入展开对问题的探究,加强师生的交流合作,才能全面提高学生的思维品质。前途光明,任重而道远,我将为全面推进素质教育,深化教育改革而积极投身于教学研究之中。

培养学生思维品质之我见

郴州市通用学校 李儒新 电话 ***

【摘要】:课堂教学实质是学科思维活动的教学,教师的观念、方法和对教学的设计处理直接影响到教学的质量和效果,关系到学生思维品质的培养。作为教师,在教学中要注重学生思维品质的培养,从而提高学生的探究精神和创新思维能力,最终达到提高教育教学质量的目的。

【关键词】严密性,灵活性,深刻性,敏捷性,批判性

思维指理性认识或指理性认识的过程,是人类特有的一种脑力活动,是人脑对客观事物间接的和概括的反映,是认识的高级形式。思维品质,其实质是人的思维的个性特征。它反映了每个个体智力或思维水平的差异,主要包括严密性、深刻性、独创性、灵活性、批判性和敏捷性等几个方面。

当前我国的教育正由“应试教育”向“素质教育”、“创新教育”转变,小学数学教学大纲明确指出:小学数学要有意识地培养学生的思维品质。这就要求小学数学教学要突破以往的单一地使学生掌握基础知识和基本技能的圈子,把发展学生的潜能,培养学生的创新能力和思维品质放到一个不可忽视的地位。

课堂教学是培养学生思维品质的主渠道,教师的观念、方法和对教学的设计处理直接影响到教学的质量和效果,关系到学生思维品质的培养。作为教师,在教学中要注重学生思维品质的培养,从而提高学生的探究精神和创新思维能力。在长期的教学研究中,我吸取同行们的教学精华,形成了自己的教学理念,现就我对现代课堂教学中培养学生思维品质谈几点粗浅体会。

一、创设思维情境,培养学生思维的严密性

数学是一门具有高度抽象性和精密逻辑性的科学,这就要求教师在教学过程中一定要创设思维情境,培养学生思维的严密性。

曾在学校订阅的刊物上看到过这样一道题目,原意是:“一张方桌四只角,锯掉一只角,还剩几只角?” 这类题测试的目标不单是考察知识本身,而更重要的是考察学生思维的严密性。我把它“借”来考察学生的思维能力,结果不少学生脱口而出“还剩三只角”。由于受到“4-1=3”定势的束缚,思维单一的学生就得出了这样的计算结果。这时我引导学生展开思维,并随着思维的进程画出相应的示意图给他们看(也可以借助实物模型演示),结果出现了同学们没有想到的情况:①沿着对角线锯的话还有3个角;②沿一个角的顶点和其对边上任一点(除两端点)的连线锯的话还有4个角;③以相邻两边各任意一点(除端点)的连线锯的话还有5个角。在教学过程中,我有目的的加强对考生进行思维的多向性与严密性的训练,有效地防止了解题时出现错解或漏解的情况。

我们知道,许多概念往往前一个概念是后一个概念的的基础,而后一个概念又是前一个概念的发展。这就要求教师在教学中要引导学生弄清概念的内存联系,分辨出从属概念和相邻概念,使学生在考察问题时能够严格和准确,在运算和推理时能够准确无误,形成严密的思维方式和思维过程。例如学习小数乘法和小数加减法后,列竖式时就会出现如下错误:

⒍ 3 4

7.3 8

×⒐ 5

+ 5 6.

2 ̄ ̄ ̄ ̄ ̄

 ̄ ̄ ̄ ̄ ̄ ̄

针对这样的情况,教师要指导学生通过比较,区别不同点,进一步理解和掌握计算方法。并通过辨析、判断、归类,形成计算的良好知识网络,学生思维的严密性就能得到了较好的培养。

二、鼓励标新立异,培养学生思维的灵活性

思维的灵活性指的是善于从不同角度和不同方面进行分析思考,其核心是善于运用已有知识、经验展开联想解决实际问题。

在小学数学教学中的“一题多说”、“一题多解”、“一题多变”,就是培养学生灵活思维的有效方法。

1、一题多说,就是一个问题让学生从多方面来叙述。这样可以使学生对所学的知识理解得更深刻,思维更灵活。如“56÷7=?”这道算式就可叙述成:①把56平均分成7份,每份是多少?②56里面包含几个7?③56除以7,商是多少?④7除56,商是多少?⑤被除数是56,除数是7,商是多少?⑥56是7的几倍?

2、“一题多解”是指充分运用学过的知识,从不同的角度思考问题,采用多种方法解决问题的方法。这种方法有利于学生加深对知识的横向、纵向联系的理解,掌握各部分知识之间的相互转化,是加深和巩固所学知识的有效途径,也是培养学生思维灵活性的好方法。

例: “买一对乒乓球拍20元,买4对送一对,问每对乒乓球拍实际多少元钱?比每对原价节约了多少元钱?”

此题有两种解法;(1)20X4=80

80÷ 5=16(元)--------(每对乒乓球拍 实际多少元钱)20-16=4(元)---------(节约多少钱)(2)20÷ 5=4(元)-------(节约多少钱)

20-4=16(元)--------(每对乒乓球拍实际多少元钱)

3、一题多变,先以一道题为基本题,然后改变它的条件或问题,使它成为新的题目。这样发挥了知识的迁移作用,也有利于培养学生思维的灵活性,这种方式的训练,在应用题教学中尤为常用。

如,以基本题“果园里有李树600棵,桃树200棵,李树和桃树一共有多少棵?”为例,就可把问题改为:①李树比桃树多多少棵?②桃树比李树少多少棵?③李树是桃树的几倍?④桃树是李树的几分之几?⑤李树、桃树分别占果园里果教学中,教师要设计新颖灵活的题目,运用各种有效的方法,鼓励标新立异,引导学生从不同角度去分析解决。从而开阔了他们的思路,培养了他们思维的灵活性。

三、加强概念教学,培养学生思维的深刻性

概念是反映事物的本质属性的思维形式,是构成数学知识的基础。在数学学习中,对概念(还有符号、公式)的理解和使用,越来越能体现一个人的数学素质。教学中,教师应设法让学生对概念(符号、公式)加强理解,极大的拓展学树的几分之几?⑥李树比桃树多几分之几?⑦桃树比李树少几分之几?等等。

生的创新思维。我读到了一篇教学经验介绍,执教者从学生的认知特点出发,在教学“长方形面积的计算”时,用现代课堂教学的探究式方式组织学生操作实践,探求规律,推导出公式。本人认为很可取,稍加整理后奉献给大家。

整个过程分三点:

㈠ 观察:先用电脑显示,用1平方厘米的小正方形来测量一个长5厘米、宽3厘米的长方形的面积。沿着长边一个一个地摆1平方厘米的小正方形,数数看,每排能摆几个?再沿着宽边照前样摆小正方形,数数看,能摆几排?

㈡ 操作探究:学生根据电脑演示过程,进行学具操作,在一个长5厘米、宽3厘米的小长方形纸片上摆面积是1平方厘米的小正方形。试试看,可以摆几个?

㈢ 推导结论(电脑演示、学生观察):在这个长5厘米、宽3厘米的长方形里沿长边摆1个小正方形,正方形对应边长是1厘米,摆2个小正方形,对应边长是2厘米„„,沿宽边摆小正方形,每摆一排,正方形对应宽边是1厘米,摆2排、3排,对应宽边是2厘米、3厘米。在教师指导下,学生很快明白:沿着这个长方形的长边每排可以摆5个1平方厘米的小正方形,即长边所含厘米数是5;摆3排,即宽边所含厘米数是3,可以用算式5×3=15求出一共摆的小正方形的个数。由此推导:在这个长方形里长边所含厘米数×宽边所含厘米数=长方形所含平方厘米数。从而进一步概括出面积计算公式:长×宽=长方形的面积。通过展示长方形面积公式的推导过程,学生不仅掌握了长方形面积的计算公式,而且进一步深刻理解了长方形的面积与长方形的边长的关系;同时,学生在获取知识的过程中思维得到了充分训练,培养了学生思维的深刻性。

四、强化技能训练,培养学生思维的敏捷性

思维的敏捷性,就是在思考数学问题时反应灵敏,表现在数学学习中能善于抓住问题的本质,正确、合理、巧妙地运用概念、法则、性质、公式等基本知识,简缩运算环节和推理过程,使运算既准又快。教学中教师要对学生进行强化技能的训练,使之在学习时由旧到新、由易到难的“台阶”减少,“跨度”增大,思维效率提高。

例1:(9+6)+(4+1),教师可根据加法的交换律,让学生用凑十法计算比较简便,计算过程是:

(9+6)+(4+1)=(9+1)+(6+4)=10+10=20 例2:①(30+7)+(50+5),②

60+9)-(20+7),这两道题可让学生用整十数与整十数相加(减),个位数与个位数相加(减),计算比较简便。计算过程是:

①(30+7)+(50+5)=(30+50)+(7+5)=80+12=92 ②(60+9)-(20+7)=(60-20)+(9-7)=40+2=42 随着学生运算技能的形成和增强,计算过程的中间环节就逐步简化或压缩。教师要培养和训练学生从详尽的思维,逐步过渡到压缩省略的思维。这样可以使学生一看到题目,通过感知就能很快地算出得数。

例3:6+6+6+6+6+6+6+8,,有的学生会用连加法下一步下一步做;有的学生则采用两个数一组相加的方法做,速度都比较慢;教师可以指导学生利用乘法的意义做(还可以进一步指导学生将8分解成6+2来做):过程是:

6+6+6+6+6+6+6+8=6×7+8=50,或

6+6+6+6+6+6+6+8=6×8+2=50。

这样计算又快又简便,通过反复的强化训练,迅速增强学生的思维敏捷性。下面是我一节数学课的一个小片段:

例4:甲乙两车同时从A、B两地相向而行,甲每小时行120千米,乙每小时行100千米,经过3小时两车相遇。问A、B两站相距多少千米?

我首先引导学生分析数量关系,列出算式:

120×3+100×3 或者(120+100)×3。

接着,我巧妙地设疑,进行改编,问学生:如果A、B两站之间的路程只由甲车行驶呢?学生陷入了沉思,这时我继续点拨:如果甲车行6小时会出现什么情况?学生恍然大悟,分析得出甲车行驶6小时要超出B站,每小时超出(120-100)千米,3小时就超出3个(120-100)千米),则用

120×6-(120-100)×3

即是A、B两站之间的路程。教师的话音刚落,便有学生提出如果甲乙两站的路程只由乙车行驶,那么就应该用

90×6+(120-90)×3。

教学方法科学,教学效果明显。我深有体会,培养学生思维的敏捷性是培养学生数学能力,培养学生思维品质的重要方面。教师在教学中的每节课里都要相应地训练学生的发散思维,以培养学生思维的敏捷性。

五、组织合作探究,培养学生思维的批判性

思维的批判性是思维品质的一个重要方面,它是在培养学生的智力时教会他们训练他们严格地估计思维材料,精细地检查思维过程的一种思维活动。教学中,教师要善于指导学生带着问题找出路,将他们平时在课堂互动中、练习上以及测验时出现的典型错误,让全班学生议论、辨析、合作探究,以理顺逻辑,分类排除,去伪存真,筛劣选优,提高思维的批判性程度。

例如:让学生思考“把20增加它的1/5以后,再减去它的1/5,结果是()”。由于受思维定势的影响,大部分学生的答案都是“20”。这时教师应把这种错误思维展示给学生看,指导他们仔细甄别加、减1/5前后的基数,千万不能以为这样的题目很容易,不然就会大意失荆州。经过组织学生思考、辨析错误的原因,同学们统一了认识,弄清了题意:增加的1/5是20的1/5,而减少的1/5却是24的1/5(因为20增加它的1/5后是24),所以结果不再是20。通过列式20×(1+1/5)×(1-1/5)计算,得出正确的答案为19又1/5。

由一道错题激发了学生对相关知识的产生兴趣,又耐心引导他们主动的参与找错、议错、辨错、改错,从而加深了对知识的理解和掌握,有效地培养了学生思维的批判性。

不容置疑,思维品质主要的几个方面是交融在一起的,在课堂教学中我们决不可以把它们机械地割裂开来。一个教学片断只能侧重培养学生思维品质的某一方面,只有在教学中把各种思维品质的培养贯穿在各项训练之中,深入展开对问题的探究,加强师生的交流合作,才能全面提高学生的思维品质。前途光明,任重而道远,我将为全面推进素质教育,深化教育改革而积极投身于教学研究之中。

第三篇:数学课堂教学中如何培养学生的思维品质

数学课堂教学中如何培养学生的思维品质

论文摘要:数学是训练学生思维能力的一门主要基础学科,改革数学教学,其着眼点应该放在引导学生通过自己的思维活动掌握学习方法上。因此,落实素质教育,培养思维能力是核心,而课堂是思维训练的主阵地,教师在教学中,应以思维为核心,以训练为主线,遵循学生的心理性和认识规律,采用灵活多样的教学方法,适时地发展学生的思维,促使学生的思维由未知向已知转化,由形象思维向抽象思维转化,由单一集中思维赂发散思维转化,增强思维品质。

关键词: 思维品质 数学教学 培养方法

思维品质,是指个体思维活动特殊性的外部表现,实质是人的思维的个性特征。它包括思维的严密性、灵活性、深刻性、广阔性、批判性和敏捷性等品质。思维品质反映了每个个体智力或思维水平的差异。

人们在工作、学习、生活中每逢遇到问题,总要“想一想”,这种“想”,就是思维。它是通过分析、综合、概括、抽象、比较、具体化和系统化等一系列过程,对感性材料进行加工并转化为理性认识及解决问题的。我们常说的概念、判断和推理是思维的基本形式。无论是学生的学习活动,还是人类的一切发明创造活动,都离不开思维,思维能力是学习能力的核心,培育高品质的思维是我们最重要的学习任务之一。

高素质教育,要全面提高学生的素质,应在教学过程中通过各种途径来启迪学生思维,使之善于思考、勤于思考。个人思维能力的发展,既服从于一般的规律性,又反映出个性的差异性,这种个性差异体现在思维的智力特征方面,就是思维的智力品质。这种品质,一方面是解决问题的实践中形成的,另一方面它又直接影响新问题的解决。我们在课堂教学中要加强思维训练的目的:一是要学生学习掌握思维的方法,二是要培养学生良好的思维品质。下面,就数学教学中如何培养学生的思维品质,谈谈自己的一些看法,分为以下六点:

一、如何培养思维的敏捷性

思维的敏捷性是指思维活动中的速度,它反映了学生智力的敏锐程度。使学生的思维具有敏捷性,就是使学生思考问题的速度快,在转瞬之间能够把应该想到的内容思考

完毕,这是一个方面;另一个方面,就是思考问题要做到合情合理。这两个方面是并存的。思考问题速度很快,但不合情理,这样的“快”,其实是浪费时间,因为它没有实际意义;思考问题合乎情理,但缓慢异常,显然,这是思维质量不高的表现。所以,这两个方面全都做到,才可称之为思维敏捷。思维敏捷的人善于适应情况,周密考虑,并能正确的判断和迅速作出结论。

例:如图正方形ABCD的边长为a求分别以各边为直径的正方形内画半圆所组成阴影部分的面积。此题如果直接求图形面积时,可视阴影部分为八个全等的弓行组成。但这样计算显然较繁,若仔细观察分析之后可知,该阴影部分分为四个半圆的面积与正方形面积的差。由结果较易得到:S阴1a影=π()2×4-a2=(-1)a2

222思维的敏捷性意味着思维的效率。为了提高学生的学习效率,就必须逐步培养学生思维的敏捷性。首先,要“求速度”,就是教师安排学生的思维活动,要有时间要求,使学生的思维活动在某种速度上进行。当然,教师提出的速度要求,不能脱离学生的实际,应用学生可能达到的速度要求学生。随着时间的推移,对某项训练内容的速度要求可以逐步提高。这样循序渐进地训练学生,他们思维的敏捷性就会逐步增强。教师要对学生的计算速度提出要求,对所布置的作业更要提出时间要求,同时注意提高学生的心算能力。其次,要学会“设情境”,就是教师运用语言描述或其他形象化手段,把某种情形、某种状况、某种景象表现出来,使学生已置身于某种情境之中,他们已经暂时变成了情境中的某个角色,此时思考问题就必须与该情境的节奏想吻合,不能任意拖延时间。这样,他们思考问题就会是主动的,积极的,因而也是敏捷的。还有就是要把基础知识抓牢,对有关的定理和公式一定要在理解的基础上记住,引导学生掌握科学的运算方法。由此可见,思维的敏捷性的培养,常常要求让学生仔细观察数学问题的表面的、自问的联系,从所得印象中进行积极思考,迅速确定思维方向,找到一条正确的、简捷的、解决问题的途径。

二、如何培养思维的深刻性

思维深刻性是指思维活动的抽象程度和逻辑水平,深度和难度。它表现在深入思考问题,善于概括、归类,逻辑抽象性强,善于抓住本质和规律,开展系统的理解活动,关善于预见,猜想问题的发展过程。学生思维的深刻性集中地表现在善于全面地、深入

地思考问题,能运用逻辑思维方法,照顾到问题有关的所有条件,钻研并抓住问题的实质、正确、简便地解决问题,在形成概念、构成判断、进行推理和论证上,反映出他们的个性差异。具有思维深刻性品质的人,能从别人看来是简单的,甚至不屑一顾的理解中,看出重大的问题,从中揭露出最重要的规律来。与此相反,思维肤浅的人常被一些表面现象所迷惑,看不到问题的本质,不善于深思熟虑,往往凭一知半解就下结论。

例如:⊙O的半径是13㎝,弦AB∥CD,AB=24㎝,CD=10㎝,求AB和CD的距离。这是一道“无附图”题,同学们易犯如下错误。

错解:同学们易受思维定势的影响,画出如图(1)的图形。过O分别作AB,CD的垂线,分别交CD、AB于E、F,连接OA、OC。在Rt△OCE中:

OE=OC2CE2=13252=12(㎝)

在Rt△OAF中,OF=OA2AF2=132122=5(㎝)∴EF=12+5=17(㎝)。因此AB和CD的距离是17㎝

分析:这种解法是不完全的,因为它漏掉了另一种情况,如图(2),即AB,CD在圆心O的同侧的情况。这时,EF=12-5=7(㎝)。所以,正确的答案应是17㎝或7㎝。

我的思考:圆既是轴对称图形,又是中心对称图形,还具有旋转不变性。圆的这些特点决定了关于圆的某些问题会有多解情况。同学们解题时如果不注意,就容易产生漏解现象。解答这类问题时需要按照一定的标准,分成若干情况,逐一加以讨论,这样可以避免漏解。本题的错误在于两平行弦与圆心的位置不确定造成的。

注重培养、发展学生思维的深刻性,有利于学生更系统、牢固地掌握数学知识和技能,有利于学生学得主动、活泼。有鉴于此,我们应该由个性的各自起点,逐步提高思维的深刻性。

三、如何培养思维的广阔性

思维的广阔性是批在思维过程中善于全面地看问题,能着眼于事物之间的联系,善于从多方面多角度,不依常规地去思考问题,找出问题的本性,它反映思维的宽度、广度。学生由于年龄小,往往把自己的思维过程局限在狭小的范围内。培养思维的广阔性,就要培养学生较全面的思考问题,就要指导学生学会全面理解事物之间的联系,从多方面分析问题,研究问题。

数学思维的广阔性表现为思路开阔,既能纵观问题的整体,又能兼顾问题的细节;既能抓住问题的本身,又能兼顾有关的其他问题;善于归纳、总结、分类、形成知识的结构层次。数学思维的广阔性是多层次、多角度的立体型思维,一般说来,必须具备丰富的数学知识和经验,才能形成思维的广阔性。

克服思维定势、培养思维的广阔性。定势是由心理操作形成的模式所所引起的心理活动的准备状态,也称心向。学生由于受先前数学经验的影响,使当前的心理活动表现出一定的倾向性,在数学解题过程中总想遵循已掌握的规则系统。思维定势有时会引起负迁移,产生消极影响,表现为思维的呆板性、狭隘性。在定势的妨碍下,学生学习表现为程式化、模式化,缺少应变能力。

如:在求值计算题:“已知X-

11=1,求X2+2的值”中,许多学生习惯先求X的XX值,再代入求值,致使解题繁杂。就是由于不善于发现已知条件与求值式的联系、与所学的完全平方公式的联系。

要克服思维定势这种心理障碍的影响,教学过程中,在培养学生使用“双基”的定势来巩固、掌握数学知识的同时还要培养学生善于打破定势,使学生遇到陌生数学问题时既不落入“套式”,也不束手无策,多方面、多角度地去思考问题,培养思维的广阔性。

四、如何培养思维的周密性

思维的周密性是指思维活动的深度、逻辑的周到和细密性。往往容易出现的错误在于受思维定势的影响、对概念、性质理解不到位,审题不慎,忽视隐含条件,造成解题错误。思维的周密性是解决问题的基础,在解题过程中,要全面、系统地考虑问题,注意各种条件综合运用,方可实现解题的正确性,所以要从整体的角度观察问题的结构,才能达到 解决问题的目的,再用整体化的思想方法可使这道题迎刃而解。

下面我举例说明:

例1:忽略一元二次方程有实数根的条件

已知方程2X2-mX-2m+1=0的两实根的平方和为错解:由题意,得X1+X2=

29,求m的值 ? 412m1m,X1X2=所以,22m2m129X12+X22=(X1+X2)2-2X1 X2=()2-2×=,即m2+8m-33=0

224解得m1=3,m2=-11 剖析:由于题目中已明确有实数根,因此必须有△≥0的先决条件。△=(-m)2-4×2×(-2m+1)=m2+16m-8≥0,当m=3时,△>0;当m=-11时,△<0。故正确答案为m=3。

如果孤立地去看一个事物,就有可能得出片面的甚至错误的结论;如果把有关事物联系起来去认识,就有可能得出全面、正确的结论。所以,在解题时,指导学生运用“彼此联系”的方法,可以培养学生思维的周密性。

五、如何培养思维的灵活性

思维的灵活性是指思维活动的灵活程度,思维能迅速、轻易地从一类对象转变到另一类对象的能力,当思维缺乏灵活性时,就表现为思维刻板、僵化或呆滞。它反映了智慧能力的迁移,善于引导学生一题多解,一题多解是培养思维 灵活性的有效途径。通过“一题多解”的训练能沟通知识之间的内在联系,提高学生应用所学的基础知识与基本技能解决实际问题的能力,逐步学会举一反三的本领。

abca3b2c例:已知==,求的值。

3452abcabc一般方法是:设===K,则a=3K,b=4K,c=5K。

3453k34k25kk1代入所求代数式得:==

23k4k5k7k73b2ca3b2caaabca3b2c13121013 解法2:==2abc2abCa3452abC773645解法3:考虑到这个知识点的考查通常以填空或选择出现,所以在第一种解法的基础上,可用特殊值代入求值。即设a=3,b=4,c=5。

数学思想和方法是对数学知识的本质反映,也是知识转化为能力的纽带。数学思想的方法是通过思维活动对数学认识结构形式的核心,包括作为知识内容的表象概念、概念体系,也包括掌握相应知识内容所必须具有思维能力。教师在讲授数学知识的同时,更应注重数学思想方法的渗透和培养,把数学思维方法和数学知识、技能融为一体,不断提高学生的思维能力、解题能力及联系实际的能力。重视数学思想的教育,如集合思

想、函数思想、方程思想、数形结合思想、化归思想能事学生针对问题抓住本质,并起到举一反

三、触类旁通的作用,这样对提高学生的解题能力具有十分重要的意义,也会使学生对数学学习兴趣倍增,事半功倍,达到提高数学素质 的目的。

我们所说思维的灵活性,也是强调多解和求异。培养学生思维的灵活性是数学教学工作者的一个重要教学环节,它主要表现在使学生能根据事物的变化,运用已有的经验灵活地进行思维,及时地改变原定的方案,不局限于过时或不妥的假设之中,因为客观世界时时处处在发展变化,所以它要求学生用变化、发展的眼光去认识、解决问题,“因地制宜”“量体裁衣”的思维灵活性的表现。在此意义上也可称发散思维,灵活性越大,发散思维越发达,越能多解;多解的类型越完整,迁移过程越显著。我们常说的“举一反三”正是高水平的发散,是对思维灵活性达到一定程度的描述。

六、如何培养思维的批判性

数学思维的批判性是一种思维品质,它指一个人善于根据客观事实和观点检查自己的思维及其结果的正确性。具有思维批判性人,对自己所遇到的一切人和事,能根据一定的原则做出正确的评价;在处理问题时,能够客观的考虑正反两个方面的意见,既能坚持正确意见,又能放弃错误的想法。在思维活动中善于估计思维材料、检查思维过程,不盲从、中轻信。思维的批判性来自学生对思维活动各环节、各方面的调整、校正,即自我意识。这种自我单调的“调整”“校正”又来自学生对问题本质的认识。只有深刻的认识、周密的思考,才能全面正确地作出判断。因此,思维的批判性是在深刻性基础上发展起来的思维品质。思维的批判性是指在思维活动中独立分析和批判的程度,对面临的问题是循规蹈矩,人云亦云,还是开展独立思考,善于发问,批判性思维实际是解决问题和创造性思维的一个组成部分。

学生的数学思维品质是一个统一的整体,各个组成部分相辅相成、彼此参透、互相促进、互为补充。在教学过程中,教师就将它们有机地结合起来,有目的有计划地强化思维训练,培养学生良好的数学思维品质。只有这样,我们才能在真正意义上适应素质 教育对数学教学的要求,使学生的思维品质在数学学习中得到充分的培养。

总之,关于如何在中小学数学教学中培养学生的思维品质,我想,应该是我们广大教育工作者倍感兴趣的课题。相信通过大家的不断探索,我们一下代的素质一定会长足发展!

第四篇:在语文教学中培养学生的思维品质

在语文教学中培养学生的思维品质

传统教育中学生的学习几乎完全依赖教师,按教师和书本之导向去记忆和容纳知识。思维品质消失,依赖的思维心理严重。我们根据学生年龄特征和个体差异及其相应的心理发展水准,逐步探索一种培养学生良好的思维品质,符合学生思维规律的思维品质训练教学结构。

一、语文课堂教学中思维品质养成

1、营造民主和谐的教学情景,奠定学生思维启动的基础。学生是有情感意志的客体,他们对学习信息有筛选和加工的能力,教师所要传授的信息,能不能激起他们的思考使他们积极投入,其关键在于他们有没有产生探究反射。没有兴趣,就没有思考的可能了。因此设计好教学语言,选择好教学手段,使学生思维处于积极参与的状态,让他们进入学习情境,产生学习热情,开拓了学生思维空间,创设了思维活动的氛围,形成思维训练的开端。

2、训练思维的广阔性、敏捷性、灵活性。让学生快速思维,对问题迅速做出反映。从而达成思维的敏捷性。高速发展的现代社会需要的是反应迅速,思维敏捷的人才。思维的速度包括正确的程度,思维的轻率性不是思维敏捷的品质。

3、丰富想象,驰聘联想。想象是一种思维过程,是人类运用了储存大脑中的信息进行分析综合、推断和设想的形式。正如哲学家康德所说:“想像力是一股强大的创造力量, 在语文教学中培养学生的思维品质它能够从实际自然所提供的材料中创造出第二自然”。在这一过称中,保持和发展学生的好奇心,拓宽知识面、合理的知识结构是很重要的。

4、改变作业的形式和内容。经常布置讨论性的作业,学生相互讨论探究,是课文知识的延伸,也是思维开放的碰撞,对学生的思维广阔性大有好处。讨论结果以合作学习小组为单位进行汇报。上完《时间的脚印》一文后,我布置给学生这样一次作业:除了课文中岩石是时间的脚印外,你还从生活中发现了那些也是时间留下的脚印,它们带给你什么样的思考?从中你有什么样的体会和感想,请你写下来交流。上完《藤野先生》后,提问:文中为什么不说中国是落后之国,而要说弱国?文中“看电影事件”有句话“便影几片时事的片子,自然都是日本战胜俄国的情形„„”,这个句子中的“自然”是什么意思?包含了作者和日本青年的什么感情?

5、对课文标题、句式的选择、结构的安排、文章的立意等让学生尝试从不同的角度来思考换用,有助于学生广阔性的培养,使学生学会全面,正确,灵活的根据自己情况作出恰当选择。如《我的长生果》一文中“书,被称为人类文明的‘长生果’。”一句话,我要求学生写出与这句话内容相同的几个比喻句。再如在教学完《死海不死》一文后,我让学生想想如果要使死海不死,怎么办?你要什么好办法?

二、培养思维的深刻性、批判性

1、质疑导读,自问研读。问题的出现,意味着学生对文章理解的程度深浅和思维的启动。我鼓励学生学会大胆质疑,合理探索。激发学生活跃思路,萌发主动学习的热情。我按事先确定的教学目的或要求进行有序质疑,营造独立思考、自我提问、探索问题的教学氛围,重在“引”,精心置疑设问,示范引导,帮助学生克服思维障碍。要求学生提一些有价值、重视有个性情感体念、主体思考味浓的问题。要求学生在阅读中独立思考,对文章的重点关键的地方进行推敲顿悟质疑。以便准确地把握文意,丰富情感体念,提高思想认识。通过思考解答,学生经历了无疑-有疑-有疑-无疑的反复递进,深化了的思维过程。从而锻炼学生思维的独创性。

如《听潮》中妻子这一角色的安排到底有何作用进行质疑?有同学认为:两个人一道听潮,有问有答便于文章情节的展开和情感的表达;也有学生认为:两个人爱海的程度不同,妻子作为陪衬,更衬托作者热爱大海的雄壮美,能更好反映了作者积极的人生态度;也有同学认为:作者的激情就像涨潮的大海,妻子的柔情就像退潮的大海,两者的和谐更突出人与自然的和谐,因而这一角色不可少„„学生们据理力争,分析问题有主见,张扬了他们的个性。这种全局性的思考,有利于学生思维广阔性的培养。如此进行比较、推敲、探讨,既使学生对感知和捕捉语言的愿望越来越强烈,也逐渐养成深入思考的好习惯,有助于强化思维品质的养成。

2、课外阅读伸迁移运用提高。学生课内所学到的知识和技能向课外延伸是提高阅读能力、发展思维深刻性的有效途径。它为学生提供了更多的思考空间,既便于发挥学生创造性思维,锻炼了学生的思维深刻性,同时也提高了学生欣赏作品的能力,提高了思维质量。

学习课外文章马宝山的《铁匠铺》一文时,一学生不经意的说:“这哪是英雄,是罗汉的表现。”虽是不经意,却反映了学生对人物的认识平板肤浅,不能真正体会到作者的匠心。我便说:“是啊,英雄是顶天立地高大的,冯铁匠在第一个被他摔到的日本人吉田前哗哗的尿好一阵子。被大雄摔到后,按约定钻了大雄的裤裆,这岂不是有损于他爱国的铁汉子形象了吗?”。经启发,学生明白了这不但无损其形象,反而通过其钻裤裆牺牲自我、承诺似金的捍卫了祖国的尊严,也更真实的再现了中国农民朴实豪爽的个性特征,这样的英雄人物更亲切更贴近生活。以此为契机,我因势导利,告诉学生写文章要贴近现实,真实自然。学生的写作技巧和思想境界得到了提高,思维也深刻了。

第五篇:在数学教学中培养学生的思维品质

在数学教学中培养学生的思维品质

摘 要:思维品质,实质是人的思维的个性特征,优秀的思维品质来源于优秀的逻辑思维能力。本文结合教学实际,通过案例分析,探讨了如何提高学生的思维品质,培养学生的思维潜能,提高学生独立思考解决问题的能力。

关键词:数学教学;思维品质;主动学习

思维是人脑借助于语言对客观事物的概括和间接的反应过程,思维是认知的核心成分,思维的发展水平决定着学生解决问题的能力。创造性思维是依赖过去的经验与知识,将二者全面组织形成的全新知识和经验,比如说将过去所学的一些数学公式综合运用到具体的数学问题上,那些被认为有发明天分的人,也就是善于实施这种创造性思维的人。因此,开发学生的思维潜能,提高思维品质,具有十分重要的意义。

在数学课堂教学中如何培养学生的思维潜能,提高思维品质以及独立解决问题的能力,笔者认为可以从三个方面开展:

1.培养学生的观察能力,善于抓住事物的规律和本质,预见事物发展的过程

古人说:“知之者不如好之者,好之者不如乐之者。”这就是说强大的观察兴趣和欲望,不只是要能够让学生掌握知识,更要让学生既充满兴趣又能够在积极愉快的状态下将注意力较长时间关注在学习中,并且倾注全部的热情和力量克服学习过程中的种种困难,充分调动积极性。

在授课过程中,要从观察教学对象开始,调动学生深厚的观察积极性。数学观察,无论是观察兴趣,数据之间关系的把握、图形的识别,还是综合分析能力的提高、基本规律的发现,都与认真、细致的观察,及时对观察结果进行分析总结相关。对研究问题做细致深入的观察,善于深入地思考问题,在思维过程中有较高的逻辑水平,思维的这种深刻性对解题有重要的意义。

例如:讲解函数的奇偶性时,先观察下列函数图象是否具有对称性,如果有,关于什么对称?

问题一经提出,学生就能展开各自的想象力,激发学生浓厚的学习兴趣,图1关于y轴对称,图2关于坐标原点对称,先从感官上初步了解奇函数和偶函数,再比较f(x)与f(-x)之间的关系,会有三种不同的情况:f(x)=

f(-x)、f(x)=-f(-x)、f(x)≠f(-x)且f(x)≠-f(-x),再引导学生思考,这些现象及本质是如何描述的,最后让学生从函数的定义域及上述等量关系中得到奇函数和偶函数的定义。

2.培养学生用正确的思维方法,展开丰富的想象,寻求多样解题途径

分析与综合是极其重要的思维方式,更是关键的教学方式,是在数学学习过程中建立数学模型的关键方式之一。想象是对数学问题以及数学研究对象进行比较、实验、归纳等思维活动方式,根据现有的材料和知识经验,做出符合数学规律或者事实的推断。学习是信息加工、存储和需要知识时能够提取并加以运用的过程。在教学中首先要让学生具有数学基本知识和技能,并能够将已学的知识和方法层次化、系统化。其次要有敏锐的洞察力和丰富的想象力,用多种思维进行思考和探究,从不同的角度去分析问题,寻找解决问题的途径。

3.加强思维训练,提高思维的灵活性和创造性,培养学生求异创新意识

创新是人类社会发展与进步的永恒主题,对学生来说,只要是通过他们自己的实践、观察、分析、归纳所获取的数学规律和解题思路以及对某些定理、公式、例习题的结论进行深入延伸或推广都可理解为创新。课堂教学首先要求学生能够观察到对象的本质和揭示对象之间的相关联系,能够抓住问题的规律和实质,对问题能够实施细致的分析。同时又鼓励学生大胆创新,勇于求异,激发学生的创新欲望。

“学起于思,思源于疑”“学贵有疑”,学生在学习中主动产生疑问是学生主动学习的一种表现,更是培养创新意识不可缺少的。教师要教给学生质疑的方法,鼓励学生敢于提出问题,提高思维的灵活性和创造性,特别是培养学生善于变革和发现新问题和新关系的能力,为学生提供想象、创新的空间,提高学生的思维能力,加强思维训练,促使学生灵活应用知识去解决实际问题,培养了学生的创新意识。

参考文献:

[1]高兴花.浅谈直觉思维在数学中的应用[J].科教导刊,2015,(8).[2]刘利珍.如何培养学生在数学教学中的思维品质[J].课程教育研究(新教师教学),2013,(16).[3]刘 兵.培养学生良好的数学思维观察品质和能力[J].科教文汇,2008,(15).(作者单位:新乡卫生学校)

下载小学英语教学中培养学生思维品质的案例研究word格式文档
下载小学英语教学中培养学生思维品质的案例研究.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    数学教学中如何培养学生的思维品质

    数学教学中如何培养学生的思维品质 【关键词】 数学教学;思维品质;广泛性;深刻性;批判性;灵活性;敏捷性;独立性 【中图分类号】 G633.6 【文献标识码】 A 【文章编号】 1004―046......

    浅谈小学英语教学中的创新思维的培养

    浅谈小学英语教学中的创新思维的培养 外语系 06英语教育班 陈咨菀 0630301129 摘要:在新课程标准下的小学英语中,英语教学要培养创新型人才,要求教师们转变教育观念,优化英......

    关注学生思维品质的培养论文

    鲁迅先生的小说《社戏》生动地记叙了“我”十一、二岁时在家乡平桥村夜航到赵庄看社戏的一段生活经历,刻画了一群农家少年朋友的形象,表现了劳动人民淳朴、善良、无私的美好品......

    初中英语阅读课中思维品质的培养

    初中英语阅读课中思维品质的培养 义务教育阶段的英语课程承担着培养学生基本英语素养和发展学生思维能力的任务,英语教学不仅要让学生掌握语言知识,发展语言技能,还要进一步促......

    小学数学计算教学中应怎样培养学生的思维品质

    小学数学计算教学中应怎样培养学生的思维品质 摘 要:计算是小学数学学习的基础,当然也是数学学习的基础。计算是小学生接触数学的第一步,有助于培养对数字的敏感性。计算的学习......

    如何在数学教学中培养学生的思维品质

    如何在数学教学中培养学生的思维品质 数学思维品质是每个学生学习数学时表现出的智力特点或个性特征。在义务教育中,为了提高学生的数学素养,加强对学生思维品质的培养就成了......

    小学英语教学案例研究

    浅谈小学英语课堂导入技巧 在小学英语新课改之后,传统的英语教学模式已经不能满足现在小学英语课堂的需求了,它会使英语课堂显得沉闷无聊。所以这就需要老师对英语课堂的创新,......

    浅谈在小学英语教学中创新思维的培养

    浅谈在小学英语教学中创新思维的培养 [摘要]英语是一门工具学科。要掌握英语,除了需学习一定的语音、词汇、语法知识外,还得练就扎实的听、说 、读、写基本功。换言之,英语学习......