英语学习中的点线面[大全5篇]

时间:2019-05-15 06:17:58下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《英语学习中的点线面》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《英语学习中的点线面》。

第一篇:英语学习中的点线面

英语学习中的点线面

面是由无数条线组成,线是由无数点组成。英语知识和技能博大精深,好像一个面。面越广越能体现一个人的综合素质。面又是有无线的点组成的,如语法线、能力线。线上有无数点,如英语单词、句法等知识点和听、说、读、写等能力点。我们不可能面面俱到,更不应该胡乱学习一些知识点,这些都是没有用的。只有走出一条线路,即英语思维习惯的养成,才是学习英语的正确策略。

在这条线路上,见山开路,遇河搭桥,才能走向目的地。学习英语也不能违背这一规律,广阔天地间,每个人只能走出一条适合自己的线路。知识点就好像路和河,很多、很杂、也很难通过。我们要把线路上的知识点下功夫攻破,其次攻取靠近线路的知识点。对于远离线路的知识点、能力点暂缓掌握。

初中阶段学习目标为,使用英语进行初步交际的能力,也就是运用英语进行思维的能力。入门阶段,我们的目标就是实现英语思维,这一点尤为重要,很多人受汉语思维的影响,始终不具备英语思维。所以,我们要从自己的实际出发,朝着具备英语思维能力这个目标,开辟一线路。从零起步有两个阶段,第一阶段是掌握词汇;第二阶段要掌握句法。第二阶段的句法知识又非常丰富,我们一辈子都学不完,怎么办?初级阶段只要掌握简单句的五种句型结构和最常用的五种时态,正确配合使用,就可以实现初级英语思维能力。这虽然是初中阶段的英语任务,但真正完成了,它的价值胜过一半大学生、超过80%的高中生。

让我们努力在英语学习的道路上,走出一条粗且直的线。师傅领进门后,学生可自己修行,一日千里,快者两年精通英语。

第二篇:中点四边形说课稿

《中点四边形》说课稿

彭公中学王小静

各位领导,老师:

大家好!今天我讲课的题目是《中点四边形》。以下我将从六个方面说给大家听。

一、说教材:

(一)教材内容:

《中点四边形》是北师大版教科书九年级上册第三章第二节内容,也是证明部分最后一节内容,是在学生已经掌握了平行四边形、矩形、菱形、正方形、梯形等基本四边形的性质及判定和三角形中位线的基础上学习的。因此,学生已经具备了一定的分析和解决问题的能力。它在初中数学中起着比较重要的作用,通过本节课的学习,准备使学生从感性到理性形成一个飞跃。

(二)教学目标:

根据新课程标准关于数学目标设计的基本理念,在分析课标和教材的基础上,我把本节课的教学目标划分为以下三个方面:知识与技能、过程与方法、情感与态度观。具体说来:

1、知识与技能:

(1)学生能利用三角形中位线定理判断中点四边形的形状;

(2)感受中点四边形的形状取决于原四边形的两条对角线的位置关系与数量关系;

(3)通过图形变换使学生掌握简单添加辅助线的方法。

2、过程与方法:

(1)培养学生观察、发现、分析、探索知识的能力及创造性思维和归纳总结能力;

(2)通过对图形既相互变化,又相互联系的内在规律的分析,渗透辩证唯物主义观点,使学生领悟事物是运动、变化、相互联系和相互转化的。

3、情感态度与价值观:

通过学生亲自参与、发现和证明,培养学生的参与意识及合作精神,激发学生探索数学的兴趣,体验数学学习的过程与探索成功后的喜悦。

(三)教学重难点:

根据数学课程标准对本学段这部分知识的建议,我把本节课的教学重点确定为确定中点四边形形状的探究。难点是探索出中点四边形为特殊平行四边形的决定因素。

二、说教学方法:

根据学生以往的学习经验,及九年级学生思维的感官性,所以本节课安排由学生通过实际操作去探索中点图的特征。也为使课堂生动、有趣、高效,准备将整节课以观察、思考、讨论贯穿于整个教学环节之中,并准备通过实验观察,启发式教学法和师生互动式教学模式进行教学,教学中,最大限度的调动学生学习的积极性和主动性,以利于最优化的达到教学目的。

教学过程中注意师生之间的情感交流,培养学生“多观察、动脑筋、大胆猜、勤钻研”的研讨式学习模式,培养学生归纳总结能力。为突破难点,我在教学中

适当补充练习题进行教学,重在引起学生对新知的巩固和掌握。

三、说学生学法:

(1)知识掌握上:在学生学习任意四边形中点形的基础上,再加上九级学生理解力强,所以本课安排学生分析决定中点四边形形状主要因素条件不存在太大的问题。

(2)知识障碍上:今天的新知,学生不易灵活应用,容易造成应用中的混淆现象,所以教学中灵活结合学生练习中可能存在的问题,进行简单明了、深入的分析讲解。

(3)思维特征上:根据九年级学生,不爱发表见解,希望得到老师表扬等特点,所以在教学中准备灵活抓住学生这一生理、心理特点,一方面让学生动手实际操作,尽量引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面积极创造条件和机会,让学生发表见解,发挥学生学习的主动性。

(4)心理特征上:老师抓住学生对数学课感兴趣这一有利因素,引导学生认识到数学的科学性和应用性,学好数学有利于其他学科的学习以及学科知识的渗透性。

四、说教学程序设计:

教学设计应为教学目标展开,因此,我根据课改精神以及九年级学生的年龄特点、心理特征、学生学习水平。在确立了教学目标以后,将本节课的设计思路确立为以下几个环节:

1、复习旧知、导入新课,学生在已有认知的基础上,从旧知入手,创设情境,从而激发学生的学习兴趣。而后开门见山,给出课题,并引导学生探索的方法,从而使学生对本课形成整体观念。这样导入新课既为后面突破难点节省了时间,也激发了学生的学习兴趣,又引发了学生的求知欲,使他们带着浓厚的兴趣进入新课的学习。

2、动手操作探究规律::

在大屏上映出做一做的内容,是利用学生自己动手实践,得出结论,并通过问题来引导学生开展观察、分析、交流、总结等活动,培养学生从数学的角度去观察事物,思考问题并归纳问题。

因这部分内容是本节课的教学重点也是本节课的教学难点,为突破这一难点,准备安排十五分种的时间让学生亲自动手操作、合作交流得出结论。其间,我准备参与其中,并及时给个别学生加以引导,突出学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者的地位。在学生探索的基础上,老师提出让学生欣赏自己的作品,电脑显示老师的作品,设计这一环节的主要目的是让学生进一步明确答案,体会数学语言的严密性。另外,学生在操作的过程中特别强调先独立完成,再合作交流,从而体现合作是在自主的基础上进行的理念。

3、加深理解形成技能:我们教学要激发学生独立思考,让学生主动探索,养成良好的学习习惯,因此,我先结合“我会填”让学生学会初步应用新知,再结合“动脑做”请同学在动手操作的基础上,自动形成讨论组,对所提出的问题进行实际操作。并引导学生在动手

中思维,在思维中动手。再结合“学习了,会用吗?”进一步体会数学知识的严密性,从而为突破难点打下坚实的基础。

4、练习应用感受新知:为提高对重点内容的理解和应用,因材施教,尊重

学生的个性差异的基础上,特设计了三个题,以达到本节课的高潮,三个题,并且每一部分的出题都围绕着教学目的而展开。一题着眼于基础知识的练习和巩固,使绝大部分学生都能领悟和理解。教学中,无须浪费更多时间,学生自行解决即可。二题则多知识点交叉。必要时,老师要适时给以点播。三题目的是培养解题技能。安排这一内容的主要目的是提高学习兴趣,让学生在做对的基础上体味成功感,从而提高学习数学的信心。而练后教师的点评更使学生认识到合作学习给大家带来的好处。

五、说教学评价:

在教学中充分考虑到老师的表情神态、鼓励性的语言对学生学习过程的影响。同时从不同角度或侧面了解学生的跟课情况,以便及时调整教学过程,从而保证教与学的统一。我在这节课的设计中十分注意学生学习主动性的发挥,学生在进行操作、展示的过程中,及时给以评价,提高学生的自信心,从而体验数学,感受数学,形成对数学的正确认识,并得到情感态度与价值观的陶冶与升华。

六、说教学反思及再教设计

(一)教学反思:

1、本节课的指导思想是充分发挥学生在学习中的主体作用。从“问题提出小组交流探讨归纳与概括应用”的过程中,同学们

主动参与、积极探索,并对难的问题同学们合作研究,整个课堂学习积极性高,研究风气浓。

2、老师充分发挥在学习中的主导作用。对学习能力弱的学生积极地加以指导,并帮助学生分析问题,概括归纳新知识。

3、本节课的突出特点是利用现代技术,为学生创建一个学习、研究的学习情境。通过图形的变换,使学生很容易发现问题的规律、找出解决方法,使学生学得轻松,兴趣浓厚,精神状态极佳。

4、本节课容量较大,但由于采用了多媒体辅助教学手段,使学生在老师的启发下,一步一步地探索、归纳、学习,使学生是很容易地掌握了知识,并在探索的过程中培养了学生的创新精神和创新意识。

(二)再教设计:

1、在图形的制作上再下功夫。

2、在运用鼓励性的语言,激发学生学习的积极性和主动性以及进一步发挥学生的主体性上再下功夫。

本节课的设计思路基本这样,具体操作可能会有些疏漏,恳请各位领导、同仁多提宝贵意见。

第三篇:专题线面垂直

专题九: 线面垂直的证明

题型一:共面垂直(实际上是平面内的两条直线的垂直)例1:如图在正方体ABCDA1BC11D1中,O为底面ABCD的中心,E为CC1中点,求证:AOOE

1题型二:线面垂直证明(利用线面垂直的判断定理)

例2:在正方体ABCDAO为底面ABCD的中心,E为CC1,1BC11D1中,平面BDE 求证:AO1

题型三:异面垂直(利用线面垂直的性质来证明,高考中的意图)例3.在正四面体ABCD中,求证ACBD

P N D C A M B 练:如图,PA平面ABCD,ABCD是矩形,M、N分别是AB、PC的中点,求证:MNAB

题型四:面面垂直的证明(本质上是证明线面垂直)

例4.已知PA垂直于正方形ABCD所在平面,连接PB、PC、PD、AC、BD,则下列垂直关系中正确的序号

是.①平面PAB平面PBC ②平面PAB平面PAD ③平面PAB平面PCD

例5.如图,AB是圆O的直径,C是圆周上一点,PA平面ABC.若AE⊥PC,E为垂足,F是PB上任意一点,求证:平面AEF⊥平面PBC.

第四篇:线面垂直高考题

高考真题演练:

(2012天津文数).(本小题满分13分)

如图,在四棱锥P-ABCD中,底面ABCD是矩形,AD⊥PD,BC=1,PD=CD=2.(I)求异面直线PA与BC所成角的正切值;

(II)证明平面PDC⊥平面ABCD;

(III)求直线PB与平面ABCD所成角的正弦值。

(2012天津理数)(本小题满分13分)P如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.(Ⅰ)证明PC⊥AD;

(Ⅱ)求二面角A-PC-D的正弦值;

(Ⅲ)设E为棱PA上的点,满足异面

直线BE与CD所成的角为30°,求AE的长.C

D

(2010年安徽)如图,在多面体ABCDEF中,四边形ABCD是正方形,EF//AB,EF⊥FB,AB=2EF,BFC90,BF=FC,H为BC的中点.(I)求证:FH//平面EDB;

(II)求证:AC⊥平面EDB;

(III)求二面角B—DE—C的大小.(2012上海理数)如图,在四棱锥P-ABCD中,底面ABCD

是矩形,PA⊥底面ABCD,E是PC的中点.已知AB=2,AD=22,PA=2.求:

E

(1)三角形PCD的面积;(6分)(2)异面直线BC与AE所成的角的大小.(6分)

B

(2012山东)在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,FC⊥平面ABCD,AE⊥BD,CB=CD=CF。(Ⅰ)求证:BD⊥平面AED;

(Ⅱ)求二面角F-BD-C的余弦值。

(2012年北京)如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分别是AC,AB上的点,且DE∥BC,DE=2,将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,(I)求证:A1C⊥平面BCDE;

(II)若M是A1D的中点,求CM与平面A1BE所成角的大小;

(III)线段BC上是否存在点P,使平面A1DP与平面A1BE垂直?说明理由

(2012辽宁)如图,直三棱柱ABCABC,BAC90,[来源:学科网]

///

ABACAA/,点M,N分别为A/B和B/C/的中点。

(Ⅰ)证明:MN∥平面AACC;

(Ⅱ)若二面角AMNC为直二面角,求的值。

(2012江苏)如图,在直三棱柱ABCA1B1C1中,A1B1ACCC1E分别是棱BC,11,D,上的点(点D 不同于点C),且ADDE,F为B1C1的中点. A1求证:(1)平面ADE平面BCC1B1;

(2)直线A1F//平面ADE.

(2012湖南),在四棱锥P-ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中点。(Ⅰ)证明:CD⊥平面PAE;

(Ⅱ)若直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等,求四棱锥P-ABCD的体积。

B A

D

/

/

/

C1

E

(2012湖北),∠ACB=45°,BC=3,过动点A作AD⊥BC,垂足D在线段BC上且异于点B,连接AB,沿AD将△ABD折起,使∠BDC=90°(如图2所示),(1)当BD的长为多少时,三棱锥A-BCD的体积最大;

(2)当三棱锥A-BCD的体积最大时,设点E,M分别为棱BC,AC的中点,试在棱CD上确定一点N,使得EN⊥BM,并求EN与平面BMN所成角的大小

(2012广东),在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点 E在线段PC上,PC⊥平面BDE。

(1)证明:BD⊥平面PAC;

(2)若PH=1,AD=2,求二面角B-PC-A的正切值;

(2012年福建)在长方体ABCD-A1B1C1D1中AA1=AD=1,E为CD中点。(Ⅰ)求证:B1E⊥AD1;

(Ⅱ)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的行;若存在,求AP的长;若不存在,说明理由。(Ⅲ)若二面角A-B1EA1的大小为30°,求AB的长。

(2012大纲全国卷)如图,四棱锥P-ABCD中,底面ABCD为菱形,PA⊥底面ABCD,PA=2,E是PC上的一点,PE=2EC.(Ⅰ)证明:PC⊥平面BED;

(Ⅱ)设二面角A-PB-C为90°,求PD与平面PBC所成角的大小。

(2012安徽)平面图形ABB1AC11C如图4所示,其中BB1C1C是矩形,BC2,BB1

4,ABAC,A1B1A1C1BC和B1C1折叠,使ABC

与A1B1C1所在平面都与平面BB1C1C垂直,再分别连接AA1,BA1,CA1,得到如图2所示的空间图形,对此空间图形解答下列问题。

(Ⅰ)证明:AA1BC;(Ⅱ)求AA1的长;(Ⅲ)求二面角ABCA1的余弦值。

第五篇:线面垂直教案

2012第一轮复习数学教案

线面垂直、面面垂直

教学目标:掌握线面垂直、面面垂直的证明方法,并能熟练解决相应问题.(一)主要知识及主要方法:

【思考与分析】要证明线面垂直,我们可以把它转化为证明线线垂直,这道题可以通过证明A1C与平面C1BD内两条相交直线BD,BC1垂直即可.而要证明A1C与相交直线BD、BC1垂直,可利用三垂线定理的三步曲证明.基础平面分别取下底面及右侧面.

1.线面垂直的证明:1判定定理;2如果两条平行线中一条垂直于一个平面,那么另一条也垂直于

这个平面;3一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面;4两个平面垂直,在一个平面内垂直于它们交线的直线垂直于另一个平面.5如果两个相交平面都与第三个平面垂直,那么它们的交线与第三个平面垂直.P A6向量法:

PQABPQAB0

PQ 

PQACPQAC0

CQ

2.面面垂直的证明:2如果一个平面经过另一个平面的一条垂线,1计算二面角的平面角为90 ;

那么这两个平面垂直;

题型讲解证明线线垂直

三垂线定理与平面的位置无关,即对水平位置、竖直位置、倾斜位置的平面都能用三垂线定理.下面我们通过实例来体验“三步曲”的具体应用过程.

例1(1)已知PA、PB、PC两两互相垂直,求证:P在平面ABC内的射影O是△ABC的垂心.

【思考与分析】 要证O是△ABC的垂心,我们需要证明AO⊥BC、BO⊥AC、CO⊥AB.而AO、BO、CO分别是AP、BP、CP在平面ABC上的射影,因此我们想到应用三垂线定理.分三步进行:①定线面:即面内直线BC与基础平面为底面ABC,②找三线:即垂线PO,斜线PA,射影AO,③证垂直:即AO⊥BC.同理可证其它两条.

证明:因为P在平面ABC内的射影为O,所以PO⊥平面ABC,连结AO且延长交BC于D,则AO是PA在平面ABC上的射影.

∵ AP⊥PB,AP⊥PC,PB∩PC=P,∴ PA⊥平面PBC,又BC平面PBC,∴ AP⊥BC.根据三垂线定理的逆定理知,AD⊥BC,所以AD是△ABC中BC边上的高.连结CO并延长交AB于F,同理可证CF⊥AB;所以CF是△ABC中AB边上的高,AD∩CF=O,所以O是△ABC的垂心.【反思】 解这道题时,首先应用的是线面垂直的判定定理,然后运用三垂线定理的逆定理,所以要想快速解题,我们需要熟练掌握并能综合应用所学知识.(2)正方体ABCD-A1B1C1D1中,求证:对角线A1C⊥平面C1BD.

证明:∵ A1A⊥平面ABCD,A1C是斜线,连AC,AC⊥BD,由三垂线定理知BD⊥A1C.∵ A1B1⊥平面BCC1B1,A1C是斜线,连B1C,B1C是A1C在BCC1B1内的射影,又∵ BC1⊥B1C,由三垂线定理知BC1⊥A1C.又BD∩BC1=B,∴ A1C⊥平面DBC1.

【反思】 应用三垂线定理解题一定要熟记这三个步骤,而且还需要我们有一定的空间立体感.例2在直三棱柱ABC—A1B1C1中,B1C1=A1C1,A1B⊥AC1,求证:A1B⊥B1C

证明:取A1B1的中点D1,连结C1D1∵B1C1=A1C1,∴C1D1⊥ABB1A连结AD1,则AD1是AC1在平面ABB1A1内的射影,∵A1B⊥AC1,∴A1B⊥AD11取AB的中点D,连结CD、B1D,则B1D∥AD1,且B1D是B1C在平面ABB1A1内的射影∵B1D⊥A1B,∴A1B⊥B1C点评:证明异面直线垂直的常用方法有:证明其中一直线垂直于另外一直线所在的平面;利用三垂线定理及其逆定理 证明线面垂直

例3 已知PA⊥⊙O所在的平面,AB是⊙O的直径,C是⊙O上任意一点,过A点作AE⊥PC于点E,求证:AE⊥平面PBC

证明:∵PA⊥平面ABC,∴PA⊥BC

又∵AB是⊙O的直径,∴BC⊥AC 而PC∩AC=C,∴BC⊥平面又∵AE在平面PAC内,∴BC⊥AE∵PC⊥AE,且PC∩BC=C,∴AE⊥平面PBC 点评:证明直线与平面垂直的常用方法有:利用线面垂直的定义;利用线面垂直的判定定理;利用“若直线a∥直线b,直线a⊥平面α,则直线b⊥平面α”

练习:

1.以AB为直径的圆在平面内PA⊥于A,C在圆上,连PB、PC过A作AE⊥PB于E,AF⊥PC于F,试判断图中还有几组线面垂直。

PA

BC

PAAB为直径ACBC



AF面PAC



AFPC



AF面PBCPB面PBCAFPB

AEPBPBAEF

cosBAC

AB2AC2BC

22ABAC 

a2b2a2c2b2c2

2ABAC

a

a2b2a2c2

0

BAC为锐角,同理ABC为锐角。

P在底面射影为ABC垂心。

BC面ABC

PABC

 BC面APQAQ面APQBCAQ

Q为ABC垂心

同理ACBQ

CQAB

AB面PQCPQABABPC

同理A、B5.如图,BAAA//BB确定平面

AB

ABAB//AB

AB//ABAA

AB面AACAAAB





ABAC



AB面CAAABCACAB为直角

证明面面垂直

例4在正方体ABCD-A1B1C1D1中,E、F分别是BB1,CD的中点(1)求证:AD⊥D1F;(2)求AE与D1F所成的角;(3)证明平面AED⊥平面A1FD

1分析:涉及正方体中一些特殊的点、线、面的问题,建立空间直角坐标系来解,不仅容易找到解题方向,而且坐标也简单,此时“垂直”问题转化为“两向量数量积为0”的问题,当然也可用其它的证证明:建立空间直角坐标系如图,并设AB=2,则A(0,0,0),D(0,2,0),A1(0,0,2)

D1(0,2,2),E(2,0,1),F(1,2,0)



(1)AD(0,2,0),D1F(1,0,2)



 ADD1F=0×1+2×1+0×(-2)=0, AD⊥D1F

(2)AE=(2,0,1)D1F=(1,0,-2),|AE|,|D1F|设AE与D1F的夹角为θ,则 cosθ1

21001(2)

50

所以,直线AE与D1F所成的角为90°(3)由(1)知D1F⊥AD,由(2)知D1F⊥AE,又AD∩AE=A,D1F⊥平面AED,∵D1F平面A1FD1M

平面AED⊥平面A1FDB

例5已知AB是圆O的直径,PA垂直于O所在的平面,C是圆周上不同于A,B的任一

点,求证:平面PAC平面PBC.

分析:根据“面面垂直”的判定定理,要证明两平面互相垂直,只要在其中一个平面中寻找一条与另解:∵AB是圆O的直径,∴ACBC,又∵PA垂直于O所在的平面,∴PABC,∴BC平面PAC,又BC在平面PBC中,所以,平面PAC平面PBC. 点评:由于平面PAC与平面PBC相交于PC,所以如果平面PAC平面PBC,则在平面PBC中,垂直于PC的直线一定垂直于平面PAC小结:

1垂直问题来处理或在两直线上分别取它们的方向向量,然后证它们的数量积为0

2面垂直的判定定理,证明直线垂直于平面内的两条相交直线,当然再证这直线(这平面)与已知直线(或平面)重合,有时侯将线面垂直问题转化为证面面垂直问题,也许会给你带来意想不到的收获 3如证面面垂直可转化为证明一个平面经过另一个平面的垂线

用向量法证明垂直,就是证有关向量的数量积为1“直线l垂直于平面α内的无数条直线”是“l⊥α”的 AB

CD 答案:B①直线上有两点到平面的距离相等,则此直线与平面平行②夹在两个平行平面间的两条异面线段的中点连线平行于这两个平面③直线m⊥平面α,直线n⊥m,则n∥α④a、b是异面直线,则存在唯一的平面α,使它与a、b都平行且与a、b距离相等 ABCD 解析:①错误与平面相交如下图,平面α∥β,A∈α,C∈α,D∈β,B∈β且E、F分别为AB、CD的中点,过C作CG∥AB交平面β于G,连结BG、GD设H是CG的中点,则EH∥BG,HF∥GD∴EH∥平面β,HF∥平面β

∴平面EHF∥平面β∥平面α∴EF∥α,EF∥β

③错误直线n可能在平面α内④正确AB是异面直线a、b的公垂线段,E为AB的中点,过E作a′∥a,b′∥b,则a′、b′确定的平面即为与a、b都平行且与a、b距离相等的平面,并且它是唯一确定的答案:D

3在正方形SG1G2G3中,E、F分别是G1G2、G2G3的中点,D是EF的中点,沿SE、SF及EF把这个正方形折成一个四面体,使G1、G2、G3三点重合,重合后的点记为G,那么,在四面体S—EFG中必有 A⊥平面EFGB⊥平面EFG C⊥平面SEF D⊥平面SEF

解析:注意折叠过程中,始终有SG1⊥G1E,SG3⊥G3F,即SG⊥GE,SG⊥GF,所以SG⊥平面EFGA答案:A

4PA垂直于以AB为直径的圆所在的平面,C为圆上异于A、B的任一点,则下列关系不正确的是 A⊥BCB⊥平面PACC⊥PB D⊥BC 解析:由三垂线定理知AC⊥PB,故选答案:C 5ABC的三个顶点A、B、C到平面α的距离分别为2 cm、3 cm、4 cm,且它们在α的同侧,则△ABC的重心到平面α的距离为解析:如下图,设A、B、C在平面α上的射影分别为A′、B′、C′,△ABC的重心为G,连结CG交

AB于中点E,又设E、G在平面α上的射影分别为E′、G′,则E′∈A′B,G′∈C′E,EE′=A′

A+B′B)=,CC′=4,CG∶GE=2∶1,在直角梯形EE′C′C中可求得GG′=3答案:3 cm

6ABCD—A1B1C1D1中,当底面四边形ABCD满足条件_______时,有A1C⊥B1D1认为正确的一种条件即可,不必考虑所有可能的情况)答案:A1C1⊥B1D1或四边形A1B1C1D1为菱形等 7ABCD—A1B1C1D1的棱长为1,则(1)A点到CD1的距离为________;(2)A点到BD1的距离为________;

(3)A点到面BDD1B1的距离为_____________;(4)A点到面A1BD的距离为_____________;(5)AA1与面BB1D1D的距离为__________6622(2)(3)(4)(5)232

328△ABC在平面α内的射影是△A1B1C1,设直角边AB∥α,则△A1B1C1的形状是_____________三角形答案:(1)

解析:根据两平行平面的性质及平行角定理,知△A1B1C的形状仍是Rt△答案:直角 4ABCD—A1B1C1D1中,M为CC1的中点,AC交BD于点O,求证:A1O⊥平面MBD证明:连结MO ∵DB⊥A1A,DB⊥AC,A1A∩AC=A,∴DB⊥平面A1ACC1又A1O平面A1ACC1,∴A1O⊥DB

(1)解:当a=2时,ABCD为正方形,则BD⊥AC又∵PA⊥底面ABCD,BD平面ABCD,∴BD⊥PA∴BD⊥平面故当a=2时,BD⊥平面PAC(2)证明:当a=4时,取BC边的中点M,AD边的中点N,连结AM、DM、BMN∵ABMN和DCMN都是正方形,∴∠AMD=∠AMN+∠DMN=45°+45°=90°,即DM⊥AM又PA⊥底面ABCD,由三垂线定理得,PM⊥DM,故当a=4时,BC边的中点M使PM⊥DM(3)解:设M是BC边上符合题设的点M,∵PA⊥底面ABCD,∴DM⊥AM因此,M点应是以AD为直径的圆和BC边的一个公共点,则AD≥2AB,即a≥4点评:本题的解决中充分运用了平面几何的相关知识因此,立体几何解题中,要注意有关的平面几何知识的运用事实上,立体几何问题最终是在一个或几个平面中得以解决的在矩形A1ACC1中,tan∠AA1O=

22,tan∠MOC=,22

∴∠AA1O=∠MOC,则∠A1OA+∠MOC=90A1O⊥OM∵OM∩DB=O,∴A1O⊥平面9S—ABC中,N是S在底面ABC上的射影,且N在△ABC的AB边的高CD上,点M∈SC,截面MAB和底面ABC所成的二面角M—AB—C等于∠NSC,求证:SC⊥截面证明:∵CD是SC在底面ABC上的射影,AB⊥CD,∴AB⊥SCMD∵∠MDC=∠NSC,∴DM⊥SCAB∩DM=D,∴SC⊥截面MABABC中,∠ACB=90°,AB=8,∠BAC=60°,PC⊥平面ABC,PC=4,M为AB边上的一个动点,求PM的最小值解:∵P是定点,要使PM的值最小,只需使PM⊥AB即可 要使PM⊥AB,由于PC⊥平面ABC,∴只需使CM⊥AB即可

∵∠BAC=60°,AB=8,∴AC=AB·cos60°=4

∴CM=AC·sin60°=4·

=2

B

∴PM=PC2CM2=

12P—ABCD中,底面ABCD是矩形,AB=2,BC=a,又侧棱PA⊥底面ABCD(1)当a为何值时,BD⊥平面PAC?试证明你的结论(2)当a=4时,求证:BC边上存在一点M,使得PM⊥(3)若在BC边上至少存在一点M,使PM⊥DM,求a的取值范围分析:本题第(1)问是寻求BD⊥平面PAC的条件,即BD垂直平面PAC内两相交直线,易知BD⊥PA,问题归结为a为何值时,BD⊥AC,从而知ABCD为正方形-4-

下载英语学习中的点线面[大全5篇]word格式文档
下载英语学习中的点线面[大全5篇].doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    线面平行证明

    线面平行证明“三板斧”第一斧:从结论出发,假定线面平行成立,利用线面平行的性质,在平面内找到与已知直线的平行线。例1:如图正方体ABCDA1B1C1D1中,E为DD1的中点,试判断BD1与平面AEC......

    线面平行证明题

    线面平行证明题1.一条直线若同时平行于两个相交平面,那么这条直线与这两个平面的交线的位置关系是.A. 异面B. 相交C.平行D. 不能确定2.若直线a、b均平行于平面α,则a与b的关系......

    线面平行练习题

    线面平行练习题11. 三棱柱ABC—A1B1C1中,若D为BB1上一点, M为AB的中点,N为BC的中点.求证:MN∥平面A1C1D;2、如图,在底面为平行四边形的四棱锥 P—ABCD 中,点 E 是 PD 的中点.求证:PB......

    证明线面平行

    证明线面平行一,面外一条线与面内一条线平行,或两面有交线强调面外与面内二,面外一直线上不同两点到面的距离相等,强调面外三,证明线面无交点四,反证法(线与面相交,再推翻)五,空间向......

    线面平行教案

    §2.2.1 直线与平面平行的判定【教学目标】(1)识记直线与平面平行的判定定理并会应用证明简单的几何问题; (2)进一步培养学生观察、发现的能力和空间想象能力; (3)让学生了解空间与......

    线面垂直练习题

    例1如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于同一个平面.解:已知a∥b,a⊥α.求证:b⊥α.变式训练已知点P为平面ABC外一点,PA⊥BC,PC⊥AB,求证:PB⊥AC.例2如图9,在......

    线面垂直教案

    课题:直线与平面垂直 授课教师:伍良云 【教学目标】知识与技能 1、掌握直线与平面垂直的定义及判定定理. 2、使学生掌握判定直线与平面垂直的方法. 过程与方法 培养学生的......

    《典中点》期中测试卷

    期中检测卷时间:60分钟 满分:100分参考答案:期中检测卷一、méihuā xīɡuā báiyún yuèér chábēi qīnɡtínɡ二、是 大 东 里 开 上三、四、示例:1.二 十......