第一篇:3.1.3有理数加减法微教案
1.3有理数加减法(3)微教案
临清市潘庄镇中学 孙雪晴
一、教学目标:
(1)经历探索有理数的减法法则的过程,理解并掌握法则,能进行有理数的减法运算.
(2)通过把减法运算转化为加法运算,让学生了解转化思想.
二、教学重、难点
1.重点:掌握有理数减法法则,能进行有理数的减法运算. 2.难点:探索有理数减法法则,能正确完成减法到加法的转化.
三、教学过程:
1.通过两个题目探索有理数的减法法则:
(1)出示问题:北京市某天的最高气温为+4℃,最低温度为-3 ℃,该天的最大温差是多少?
可以先考虑:+4℃比0 ℃高4 ℃
0 ℃比-3 ℃高3 ℃,因此用加法求解:(+4)+(+3)=+7 ①
再考虑温差的含义,利用减法求解:(+4)-(-3)= +7 ②
比较①、②两式,发现:4-(-3)=4+(+3).
(2)由(-5)-(+ 2)=-7(-5)+(-2)=-7 得到(-5)-(+ 2)=(-5)+(-2)
得出:有理数的减法可以转化为加法来进行. 2.有理数减法法则:
减去一个数,等于加上这个数的相反数. 用式子表示为:a-b=a+(-b). 注意:减法在运算时有2 个要素要发生变化: 1 减号变加号
2减数变相反数
3.通过例题,利用有理数减法法则,解决有理数的减法运算题目。强调:减号变加号、减数变相反数。
第二篇:1.3 有理数的加减法 教学设计 教案
教学准备
1.教学目标
知识技能:
①通过实例,了解有理数加法的意义,掌握有理数加法法则,并能运用法则进行计算。②在有理数加法法则的教学过程中,培养观察、比较、归纳及运能力。
③理解有理数加法交换律和结合律;能够根据不同的情况运用不同定律来简化运算。过程与方法:
①用实例引出问题,正确掌握有理数加法运算。②用数形结合的方法得出有理数法则。
③体验加法交换律、结合律在实际运算中的应用。情感态度与价值观:
通过师生活动、学生自我探究,让学生充分参与到数学学习的过程中来。
2.教学重点/难点
教学重点:
①了解有理数加法的意义,会根据有理数加法法则进行有理数加法计算; 难点:异号两数如何相加的法则。
②了解加法交换律、结合律的内容,运用运算律进行加法运算。③运用有理数加法解决问题。教学难点:
①有理数加法中的异号两数如何进行加法运算。②运用有理数的加法解决实际问题。
3.教学用具 4.标签
教学过程 1情景带入
(一)我们来看一个大家熟悉的实际问题:
一个物体作左右方向的运动,我们规定向左为负,向右为正.(1)如果物体先向右运动5米,再向右运动3米,那么两次运动的最后结果是向右运动了8米。写出算是就是5+3=8。
这个问题用数轴表示就是如图所示:
(2)如果物体先向左运动5米,再向左运动3米,两次运动的最后结果是向左 运动了8 米。写出算是就是(-5)+(-3)=-8.图略。
【教师说明】从(1)(2)可以看出:符号相同的两个数相加,结果的符号不变,绝对值相加。
(3)如果物体先向左运动3米,再向右运动5米,那么两次运动的最后结果是向右运动了2米。写成算式就是(—3)+5=2。
(4)如果物体先向右运动3米,再向左运动5米,那么两次运动的最后结果是向左运动了2米。写成算式就是3+(-5)=-2。
【教师说明】从(3)(4)可以看出:符号相反的两个数相加,结果的符号与绝对值较大的加数的符号相同,并用较大的绝对值减去较小的绝对值。
【探究活动】
如果物体先向右运动5米,再向左运动5米,那么两次运动的最后结果是仍在起点处。写成算式就是5+(-5)=0。
如果物体第一秒向右(或向左)运动5米,第二秒原地不动,两秒后物体从起点向右(或向左)运动了5米。写成算式就是5+0=5 或(—5)+0= —5。你能从上面算式中发现什么结论? 【教师说明】有理数加法法则
1.同号的两数相加,取相同的符号,并把绝对值相加.2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得零.3.一个数同0相加,仍得这个数。
2巩固练习(具体过程和答案在课件中已给出)
计算
1.(1)(-79)+(+79);(2)(-12)+12:;(3)5+0(4)(—3)+0 2.(1)(-20)+30(2)30 +(-20)(3)(-2.37)+(-4.63)(4)(-4.63)+(-2.37)
3情景带入
(二)【思考】 在小学里,我们学过的加法运算有哪些运算律?它们的内容是什么?能否举一两个例子来?
那这些加法运算律还适于有理数范围吗?今天,我们一起来探究这个问题. 【教师说明】有理数加法的运算律 请你计算 30 +(-20),(-20)+30.通过这两个题计算,可以看出它们的结果都为10,说明有理数的加法满足交换律,即:两个数相加,交换加数的位置,和不变.用式子表示为:
加法交换律:a + b = b + a 再请你计算一下,[ 8 +(-5)] +(-4),8 + [(-5)]+(-4)].通过这两个题计算,可以仍然可以看出它们的结果都为-1,说明有理数的加法满足结合律,即:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.用式子表示为:
加法结合律:(a + b)+ c = a +(b +c)
4巩固练习(具体过程和答案在课件中已给出)
(1)计算:16+(-25)+24+(-35)(2)计算:(-2.48)+4.33+(-7.52)+(-4.33)5交流讨论
1“一个数和零相加,仍得零,对吗?”
【教师说明】和我们小学时学的一样,一个数和零相加,仍得这个数。
课堂小结
1、有理数的加法法则
(1).同号两数相加,取相同的符号,并把绝对值相加;(2).异号两数相加时:
若绝对值不相等,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值; 若绝对值相等,和为0,也就是相反数的和为0.(3).一个数与0的和仍得这个数.2、有理数加法运算定律:
一般地,总是先把正数或负数分别结合在一起相加。有相反数的可先把相反数相加,能凑整的可先凑整。有分母相同的,可先把分母相同的数结合相加。课后习题
1.请在下列的(1)(+5)+(+7)=+((2)(-10)+(-3)=(3)(+6)+(-5)=(4)0+=
内填入正确的符号或数字 +(10(6)=+3)=-5)=
(5)(-2.3)+(+2.3)=2.10袋小麦称后记录如下表:(1)10袋小麦一共重多少千克?
(2)如果每袋小麦以90千克为标准,10袋小麦总计超过多少千克或不足多少千克?
板书
1、有理数的加法法则
(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加时:
若绝对值不相等,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值; 若绝对值相等,和为0,也就是相反数的和为0.(3)一个数与0的和仍得这个数.2、有理数加法运算定律:
一般地,总是先把正数或负数分别结合在一起相加。有相反数的可先把相反数相加,能凑整的可先凑整。有分母相同的,可先把分母相同的数结合相加。
第三篇:1.3 有理数的加减法 教学设计 教案
教学准备
1.教学目标
一、知识与技能
1.理解有理数减法法则能熟练进行减法运算.2.会将减法转化为加法,进行加减混合运算,体会化归思想.二、过程与方法
通过观察实例并亲自计算,探索有理数加减法之间的关系,培养学生动手计算的能力。
三、情感态度和价值观
感受数学与现实生活的密切联系,增强学生的数学应用意识,养成学会分析问题、解决问题的良好习惯。
2.教学重点/难点
教学重点
有理数加减的运算法则 教学难点
有理数加减法的内在关系
3.教学用具
PPT课件
4.标签
教学过程
一、导入新课
1.(‐2)-4=______,(‐2)-()= ‐7 ,()-(+2)=+8,(‐10)-(‐6)=_______ 2.下表是北京与国外几个城市的时差,其中带正号的的数表示同一时刻比北京时间早的小数,试分别求出(1)东京与巴黎的时差.(2)芝加哥与巴黎的时差.(3)纽约与东京的时差。教学过程:
二、新课学习
气象预报员报告了某天中的最高气温与最低气温分别是8 ℃与‐2℃你会求 这一天的日温差吗?(借助温度计试试)比较一下你与别人列出的算式是否一样,能说明一下你的算式吗? 8-(‐2)=10 8 + 2 =10结论相同,是偶然巧合吗?你还能举出其它例子吗? 即为8(‐5)= 3 + _____ ③ 3 – 5 = 3 + _______
④‐3()-(‐3.2)练习:根据天气预报:北京‐14---5 ℃,沈阳‐7---2℃,长春‐10---1℃
天津‐2---9℃,计算它们的日温差 小结:根据有理数减法法则,有理数的加法与减法就可以统一为加法运算,加减混合
运算也即可统一为加法运算.如:3+5-7可看成3+5+(‐7), ‐3-51+2可看成‐3+(‐51)+2
例2: 计算: ‐12-(+20)+(‐36)-(+3.6)(注意简便计算)
练习: 1.(‐2.8)-(‐3.6)+(‐1.5)-(+3.6)2.课堂小结
三、结论总结:
1.有理数加减法的混合运算,根据有理数减法法则,先把减法转化成加法,从而把含加减法运算的式子转化成几个有理数和的形式,再按有理数的加法法则进行计算.
2.加减混合运算的两个关键点是:
(1)在交换加数的位置时,要连同前面的符号一起交换.(2)计算时,先把正数、负数分别相加.
课后习题
四、课堂练习
1.填空1.(‐4)-(‐4)=_____, 2.(+6)+()= ‐20, 3.(‐18)-(+24)-(‐35)=_______ 2.计算1.(‐5.3)-(‐6.1)-1.8 2.3.(‐1.5)+1.4-(‐3.6)-4.3+(‐5.2)试一试:在小圆圈里填上数,使每个小圈里的数都是它旁边小圆圈里数的和.另求出圈里所有数的和,如果把原来填的数字改成字母a,b按上面的要求填满后,有圈里的数相加和为多少?
五、作业布置 P68 1~2
板书
1.有理数加减法的混合运算,根据有理数减法法则,先把减法转化成加法,从而把含加减法运算的式子转化成几个有理数和的形式,再按有理数的加法法则进行计算.
2.加减混合运算的两个关键点是:(1)在交换加数的位置时,要连同前面的符号一起交换.(2)计算时,先把正数、负数分别相加.
第四篇:1.3 有理数的加减法 教学设计 教案
教学准备
1.教学目标
1、理解有理数的加法法则.
2、能够应用有理数的加法法则,将有理数的加法转化为非负数的加减运算.
3、掌握异号两数的加法运算的规律.
4、理解有理数的加法的运算律.
5、能够应用有理数的加法的运算律进行计算.
2.教学重点/难点
能够应用有理数的加法的运算律进行计算.
3.教学用具 4.标签
教学过程
一、有理数加法:
正有理数及0的加法运算,小学已经学过,然而实际问题中做加法运算的数有可能超出正数范围.例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数.如果,红队进4个球,失2个球;蓝队进1个球,失1个球.
于是红队的净胜球数为4+(-2),蓝队的净胜球数为1+(-1).
这里用到正数和负数的加法.
下面借助数轴来讨论有理数的加法.
看下面的问题:
一个物体作左右方向的运动;我们规定向左为负,向右为正,向右运动 5m记作 5m,向左运动 5m记作− 5m;如果物体先向右移动 5m,再向右移动 3m,那么两次运动后总的结果是什么?
两次运动后物体从起点向右移动了 8m,写成算式就是:5+3 = 8
如果物体先向左运动 5m,再向左运动 3m,那么两次运动后总的结果是什么?
两次运动后物体从起点向左运动了 8m,写成算式就是(−5)+(−3)= −8
如果物体先向右运动 5m,再向左运动 3m,那么两次运动后总的结果是什么?
两次运动后物体从起点向右运动了 2m,写成算式就是5+(−3)= 2
探究
这三种情况运动结果的算式如下:
3+(—5)=—2;
5+(—5)= 0;
(—5)+5= 0.
如果物体第1秒向可(或向左)走 5m,第二秒原地不动,两秒后物体从起点向右(或向左)运动了 5m.写成算式就是5+0=5 或(—5)+0=—5.
你能从以上7个算式中发现有理数加法的运算法则吗?
有理数加法法则:
①同号的两数相加,取相同的符号,并把绝对值相加.
②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得零.
③一个数同0相加,仍得这个数.
例题
例
1、计算
(-3)+(-9);(2)(-4.7)+3.9.
分析:解此题要利用有理数的加法法则.
解:(1)(-3)+(-9)=-(3+9)=-12 9=-(4.7-3.9)=-0.8.
(2)(-4.7)+3·
例2 足球循环赛中,红队胜黄队4:1,黄队胜蓝队1:0,蓝队胜红队1:0,计算各队的净胜球数.
解:每个队的进球总数记为正数,失球总数记为负数,这两数的和为这队的净胜球数.
三场比赛中,红队共进4球,失2球,净胜球数为(+4)+(—2)= +(4—2)=2;
黄队共进2球,失4球,净胜球数为(+2)+(—4)=—(4—2)=();
蓝队共进()球,失()球,净胜球数为()=().
二、有理数加法的运算律
通过这两个题计算,可以看出它们的结果都为10,说明有理数的加法满足交换律,即:两个数相加,交换加数的位置,和不变.用式子表示为:
再请你计算一下,[ 8 +(-5)] +(-4),8 + [(-5)]+(-4)].
通过这两个题计算,可以仍然可以看出它们的结果都为-1,说明有理数的加法满足结合律,即:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变. 用式子表示为:
上述加法的运算律说明,多个有理数相加,可以任意改变加数的位置,也可以先把其中的几个数相加,使计算简化.
例题
例1 计算:16 +(-25)+ 24 +(-35).
若使此题计算简便,可以先利用加法的结合律,将正数与负数分别结合在一起进行计算.
解: 16 +(-25)+ 24 +(-35)
=(16 + 24)+ [(-25)+(-35)]
= 40 +(-60)
=-20.
例2 每袋小麦的标准重量为90千克,10袋小麦称重记录如下:
91 91.5 89 91.2 91.3 88.7 88.8 91.8 91.1
10袋小麦总计超过多少千克或不足多少千克?10袋小麦的总重量是多少千克?
解:91+91+91.5+89+91.2+91.3+88.7+88.8+91.8+91.1 = 905.4.
再计算总计超过多少千克 10 =5.4.
905.4-90×
答:总计超过 5千克,10袋水泥的总质量是 505千克.
三、小结:
有理数加法法则:
①同号的两数相加,取相同的符号,并把绝对值相加.
②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值. 互为相反数的两个数相加得零.
③一个数同0相加,仍得这个数.
有理数加法运算律:
①加法交换律:a+ b= b + a
②加法结合律:(a+b)+ c = a+(b +c)
第五篇:人教版七年级上册1.3有理数的加减法教案
2012人教版九年制义务教育七年级数学上册
《有理数的减法》教学设计
教学目标:
知识与技能:
1、掌握有理数的减法法则。
2、熟练地进行有理数的减法运算。思想与方法:
1、经历探索有理数减法法则的过程,理解有理数减法法则.2、培养学生探究思维能力和分析解决问题的能力
情感态度与价值观:
1、使学生了解加与减两种运算的对立统一的关系,了解数学中转化的数学思想方法。
2、通过与学生的交流、探索,逐步培养学生的抽象概括能力及口头表达的能力.3、渗透辩证唯物主义思想,培养探究分析数学知识方法的兴趣。教学重难点:
重点:有理数的减法法则及应用;
难点:理解有理数减法的意义,正确熟练地进行有理数的减法运算 教学过程:
一、.创设情景问题,引入课题
展示:一幅全国某个主要城市的某天的气温情况。
问题:根据该气温图,你能得到哪些信息或可以提出哪些问题? 预设情形:
1、某天的最高或最低气温是多少?或什么时间的气温最后或最低?
2、某天的最高气温比最低气温高多少?或某天的温差是多少? 结合预设情形2,引入新课
1.3.2有理数的减法(1).二、复习铺垫:
1、减法的意义,在什么情况下运用减法运算呢?
2、教师明确:有了负有理数后,减法的意义同样是“已知两个加数的和与其中的一个加数,求另一个加数的运算”.由减法的意义可知减法与加法是互为逆运算。
三、探索有理数减法法则: 讨论交流:如何计算9-(-2)=? 小组讨论、交流方法: 展示:
方法一 根据加法与减法运算的互逆关系,要计算9-(-2)=?,可先思考_____+(-2)=9.根据有理数的加法法则知:11+(-2)=9,所以9-(-2)=11.方法二 利用温度计.因为温度是由温度计测出的.所以可以在温度计上找到9 ℃与-2℃所表示的点,然后看这两个点之间有多少小格,数数一共有11个小格,因而9-(-2)=11.教师:这位同学想得办法很好.他利用了温度计从零上9℃数到零下2℃间相隔11个小格(出示温度计及小黑板以帮助其他学生理解)得出上面9个小格加下面2个小格等于11个小格,即9+2=11。
追问:根据以上交流的结果,说一说你的想法? 预设: 9-(-2)=9+2,更进一步,可能得出
减去一个数,等于加上这个数的相反数。
分组训练,验证结论
计算比较,强调结论(板书):
有理数的减法法则 减去一个数,等于加上这个数的相反数.思考:
1、用字母如何表示?
a-b=a+(-b)
2、根据有理数的减法法则,说一说有理数减法的运算步骤?运算时应注意什么?
把减法都可以转化为加法运算.在进行有理数减法时要注意:(1)首先应弄清减数的符号(是“+”号,还是“-”号)(2)将有理数减法转化为加法时,要同时改变两个符号,一个是运算符号由“-”变为“+”;另一个是减数的性质符号.四、初步展示,巩固新知
1、解决上面的探索交流问题 9-(-2)= ;
2、口答各题————六道题目
(投影展示,意图是在口答中巩固法则)
3、板演强化————四道题目
(四位同学板演,意图是训练学生的运算步骤)
五、开动脑筋 拓展思维
1、如果|a|=3,|b|=1,求a-b的值。
2、已知|a-3|+|b+1|=0,求a-b的值。
六、知识总结
学生口述的形式展现
1、有理数的减法法则:减去一个数,等于加上这个数的相反数.2、在进行有理数减法运算时,首先把减法转化为加法。转化时要注意符号的变化。其次要利用有理数加法法则运算,最后得出结果。
七、后置作业
回放情境引入,请同学们谈一下自己的感想。
板书设计:
1.3.2有理数的减法(1)
减法法则 减去一个数,等于加上这个数的相反数。
注意问题:将有理数减法转化为加法时,要同时改变两个符号: 一个是运算符号由“-”变为“+”;另一个是减数的性质符号。