北师大版七下1.7《整式的除法》教案1(共5则)

时间:2019-05-15 07:17:16下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《北师大版七下1.7《整式的除法》教案1》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《北师大版七下1.7《整式的除法》教案1》。

第一篇:北师大版七下1.7《整式的除法》教案1

1.7整式的除法

课时安排说明: 《整式的除法》是第一章《整式的乘除》的最后一节.本节内容共分两课时,第一课时,主要内容是单项式除以单项式;第二课时,主要内容是多项式除以单项式.一、学生起点分析:

学生的知识技能基础:学生在小学已经学习过整数除法,对整数除法的运算掌握较为熟练.在本章前面几节课中,又学习了同底数幂的除法,单项式乘以单项式的法则,并利用其解决了一些问题,这些知识储备为学生本节课的学习奠定了良好的知识技能基础.学生活动经验基础:在本章前面知识的学习过程中,学生已经经历了一些探索、发现的数学活动,积累了初步的数学活动经验,具备了一定的探究能力.同时在本章前面的数学学习中学生已经经历了探究幂的乘法除法以及乘法运算的过程,为探究除法运算打下了基础,并且经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力.二、教学任务分析:

教科书基于学生对整式乘法以及整数除法的认识,提出了本课的具体学习任务:掌握单项式除以单项式的运算法则,并能够综合运用所学知识解决实际问题.本课内容从属于“数与代数”这一数学学习领域,因而必须服务于代数教学的远期目标:“让学生经历观察、操作、推理、想象等探索过程,能够在实际情境中,抽象概括出所要研究的数学问题,增强学生的数感符号感.发展学生的合作交流能力、推理能力和有条理的表达能力”,同时也应力图在学习中逐步达成学生的有关情感态度目标.为此,本节课的教学目标是:

1.知识与技能:理解整式除法运算的算理,会进行简单的整式除法运算;

2.过程与方法:经历探索整式除法运算法则的过程,发展有条理的思考及表达能力.3、情感与态度:体会数学在生活中的广泛应用

三、教学过程设计:利用学案: 整式的除法(1)

【课标分析】:掌握单项式除以单项式的运算法则

【学习目标】:

1、经历探索整式除法运算法则的过程,会进行简单的整式除法运算;

2、理解整式除法运算的算理,发展有条理的思考及表达能力。

一、【新课探究】:计算下列各题,并说明你的理由。(1)xyx(2)8mn2mn(3)abc3ab

提醒:可以用类似于分数约分的方法来计算。

讨论:通过上面的计算,该如何进行单项式除以单项式的运算?

★ 结论:单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。例1 :计算(1)

(3)2ab2ab 352222422323xy3x2y(2)10a4b3c25a2bc 5

34222针对性练习:(1)12xyz4xyz

(2)2mn138m2n1

例2:月球距离地球大约3.84×105千米,一架飞机的速度约为8×102千米/时,如果乘坐此飞机飞行这么远的距离,大约需要多少时间?

【总结收获】:

【自我检测】: 基础达标:

1、计算:

(1)

能力提升:

2、计算:

(1)3ab28a3b

(2)8a4b3c2a2b33164153abc2a3c

(2)6abab 43232abc 3板书设计

整式的除法(1)

法则:单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。

例1 :计算(1)

323xy3x2y2

(2)10a4b3c25a2bc 5(3)2ab2ab 3

例2:月球距离地球大约3.84×105千米,一架飞机的速度约为8×102千米/时,如果乘坐此飞机飞行这么远的距离,大约需要多少时间?

第二篇:北师大版七下1.7《整式的除法》教案2

1.7 整式的除法

课标要求:课标对本节没有具体明确的要求。

一、学生起点分析:

学生的知识技能基础:学生在小学已经学习过整数除法,对整数除法的运算掌握较为熟练.在本章前面几节课中,学习了同底数幂的除法,而在上一节课中又学习了单项式的除法,并利用其解决了一些问题,这些知识储备为学生本节课的学习奠定了良好的知识技能基础.学生活动经验基础:在本章前面知识的学习过程中,学生已经经历了一些探索、发现的数学活动,积累了初步的数学活动经验,具备了一定的探究能力.同时在上一节课学生通过自主探究,得到了单项式除法的法则,为本节课探究多项式除以单项式运算打下了基础.此外,在解决应用问题的方面学生之前也经过了适量的训练,因此,其解决应用问题的能力也有了一定的提高和良好的基础.二、教学任务分析:

教科书基于学生对整式乘法,整数除法以及上一节对单项式除法的学习,提出了本课的具体学习任务:掌握多项式除以单项式的运算,并能够综合运用所学知识解决实际问题.本课内容从属于“数与代数”这一数学学习领域,因而必须服务于代数教学的远期目标:“让学生经历观察、操作、推理、想象等探索过程,能够在实际情境中,抽象概括出所要研究的数学问题,增强学生的数感符号感.发展学生的合作交流能力、推理能力和有条理的表达能力”,同时也应力图在学习中逐步达成学生的有关情感态度目标.为此,本节课的教学目标是:

1.知识与技能:理解整式除法运算的算理,会进行简单的整式除法运算;

2.过程与方法:经历探索整式除法运算法则的过程,发展有条理的思考及表达能力.3.情感与态度:体会数学在生活中的广泛应用

三、教学过程设计:

整式的除法(2)

【课标分析】:掌握多项式除以单项式的运算,并能够综合运用所学知识解决实际问题 【学习目标】: 1.经历探索整式除法运算法则的过程,会进行简单的整式除法运算;

2.理解整式除法运算的算理,发展有条理的思考及表达能力。

【知识回顾】:1.计算

322214a3b4c2a2b2c 2abc3ab

4

2.计算并回答问题:

132213xxx1

24aaa2

62

(3)以上的计算是什么运算?能否叙述这种运算的法则?

【新课探究】:法则的推导以小组讨论的形式完成

1.对照整式乘法的学习顺序,下面我们应该研究整式除法的什么内容?

2.法则的推导.

引例:(8x3-12x2+4x)÷4x=(?)分析:

利用除法是乘法的逆运算的规定,我们可将上式化为

4x ·

(?)

=8x3-12x2+4x. 原乘法运算:

乘式

乘式

积(现除法运算):(除式)(待求的商式)(被除式)以上的思想,可以概括为“法则”:

ambmcmmammbmmcmm

法则的语言表达是

多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。例1 :计算:

(l)(28a3-14a2+7a)÷7a;

(2)(36x4y3-24x3y2+3x2y2)÷(-6x2y). 师生一块完成此题目,并提醒学生应该注意的问题,注意符号问题

针对性练习:计算:(1)(6xy+5x)÷x;

(3)(8a2b-4ab2)÷4ab;

(4)(4c2d+c3d3)÷(-2c2d).

小结:(l)当除式的系数为负数时,商式的各项符号与被除多项式各项的符号相反,要特别注意;

(2)多项式除以单项式是利用相应法则,转化为单项式除以单项式而求得结果的.(3)在学习、巩固新的法则阶段,应尽量要求学生写出表现法则的那一步.

例2:化简[(2x+y)2-y(y+4x)-8x]÷2x.

【总结收获】:

【自我检测】:当堂检测,老师公布答案,学生交换阅卷,满分100分 基础达标:填空

(1)(ab-ac)÷a=(2)(16xy-8xy-2xy)÷(-2xy)=(3)(ab-3ab)÷(-ab)=(4)()÷(3ab)=2ab-ab+3

223453242332

(2)(15x2y-10xy2)÷5xy;

(5)()·(8a)=24a-16a+8a(6)()÷(-7xy)=14xy-7xy+21xy

2、计算

(1)(3xy+y)÷y(2)(ma+mb+mc)÷m

能力提升:计算

(1)(4xy+3xy)÷(7xy)(2)[(2a+b)-(2a+b)] ÷(2a+b)

板书设计: 整式的除法(2)

多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。例1 :计算:

(l)(28a3-14a2+7a)÷7a;

(2)(36x4y3-24x3y2+3x2y2)÷(-6x2y). 例2:化简[(2x+y)2-y(y+4x)-8x]÷2x.

第三篇:七年级数学1.7整式的除法同步测试题

1.7

整式的除法

同步测试题

班级:_____________姓名:_____________

一、选择题

(本题共计

小题,每题

分,共计24分,)

1.计算6m2÷(-3m)的结果是()

A.-3m

B.-2m

C.2m

D.3m

2.计算(6x3-2x)÷(-2x)的结果是()

A.-3x2

B.-3x2-1

C.-3x2+1

D.3x2-1

3.下列计算错误的是()

A.(-5a2b)(-3a)=15a3b

B.(-4x2)(3x+1)=-12x3-4x2

C.(3x+1)(x+2)=3x2+7x+2

D.-5a5b3c÷15a4b=-13ab2

4.若x2+4x-4=0,则3(x-2)2-6(x+1)(x-1)的值为()

A.-6

B.6

C.18

D.30

5.计算[(-a2)3-3a2(-a2)]÷(-a)2的结果是()

A.-a3+3a2

B.a3-3a2

C.-a4+3a2

D.-a4+a2

6.计算(72x3y4-36x2y3+9xy2)÷(-9xy2)等于()

A.-8x2y2+4xy-1

B.-8x2y2-4xy-1

C.-8x2y2+4xy+1

D.-8x2y2+4xy

7.如图,下列四个选项中,不能表示图中阴影部分面积的是()

A.(x+a)(x+b)-bx

B.x2+(a+b)x

C.a(x+b)+x2

D.x(x+a)+ab

8.如图,正方形卡片A类,B类和长方形卡片C类若干张,如果要用A、B、C三类卡片拼一个边长为(a+2b)的正方形,则需要C类卡片多少张()

A.2

B.3

C.4

D.6

二、填空题

(本题共计

小题,每题

分,共计24分,)

9.计算:-xn-3y3-n÷2x3-nyn-3=________.

10.已知x2-2=y,则x(x-3y)+y(3x-1)-2的值是________.

11.已知x2[(xy2)2+y]=x2y+13,则代数式17xy2⋅14(xy3)2⋅14x5的值等于________.

12.若M(3x-y2)=y4-9x2,那么代数式M为________.

13.(3y-1)(2y-3)+(6y-5)(y-4)=________,[ab(3-b)-2a(b-12b2)](-3a2b3)=________.

14.已知x+y=1,xy=-2,则(x-2)(y-2)的值为________.

15.一个矩形的面积为a3-2ab+a,宽为a,则矩形的长为________.

16.(x-2)(x2+2x+4)+(x+5)(x2-5x+25)=________.

三、解答题

(本题共计

小题,共计72分,)

17.计算题

(1)(-a2)3⋅(2a2b3)2÷(ab2)(2)(-x2)3-3x2(x4+2x-2)

18.计算:

(1)(-3x)2⋅2xy÷(3xy)2

(2)4(x+2)2-(2x-1)(2x+1)

19.先化简,再求值:(a+3)2-2(3a+4),其中a=-2.

20.先化简,再求值:3x2-[6xy+2(x2-y2)]-3(y2-2xy),其中x=-2,y=3.21.先化简,再求值:[(x-2y)2-y(4y-x)-5xy]÷(12x),其中x=2,y=-12.22.先化简,后求值:(x-3)2-(x+2)(x-2)-(x-2)(3-x),其中x=2.

23.先化简,再求值:(x+2)(x-2)-(x+3)2,其中x=13.

24.一个底面是正方形的长方体,高为5cm,底面正方形边长为6cm.如果它的高不变,底面正方形边长增加了b cm,那么它的体积增加了多少?

第四篇:整式的除法教案

课题: 8.4 整式的除法

一、教学目标:

1、经历探索单项式除以单项式法则的过程,会进行单项式除以单项式的运算。

2、掌握单项式除以单项式的运算

3、经历探索多项式除以单项式法则的过程,会进行多项式除以单项式的运算。

4、熟练掌握多项式除以单项式的运算

二、教学重难点:

1、运用法则计算单项式除法

2、单项式除以单项式法则的探索

3、运用法则计算多项式除以单项式

4、(1)多项式除以单项式法则的探索;(2)多项式除以单项式法则的逆应用;

三、教具:PPT

四、教学过程:

1、引入新课

一、创设情境

问题:木星的质量约是1.90×1024吨,地球的质量约是5.98×1021吨,你知道木星的质量约为地球质量的多少倍吗?

如何计算:(1.90×1024)÷(5.98×1021),并说明依据。

二、合作讨论

讨论如何计算:

(1)8a3÷2a(2)6x3y÷3xy(3)12a3b3x3÷3ab

2[注:8a3÷2a就是(8a3)÷(2a)]

三、复习提问: 计算:(1)am÷m+bm÷m(2)a÷a+ab÷a(3)4x2y÷2xy+2xy2÷2xy

四、合作探究,探索多项式除以单项式法则

计算:(am+bm)÷m,并说明计算的依据

∵(a+b)m = am+bm ∴(am+bm)÷m=a+b 又am÷m+bm÷m=a+b 故(am+bm)÷m=am÷m+bm÷m

2、知识点讲解

知识点一:单项式除以单项式法则:

单项式相除,把系数与同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。知识点二:用语言描述上式,得到多项式除以单项式法则:

多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所2得的商相加。

3、例题分析 例1:计算

423534(1)28xy÷7xy(2)-5abc÷15ab

例2:计算下列各题

(1)(a+b)÷(a+b)

3324(2)[(x-y)]÷[(y-x)](3)(-6x2y)3÷(-3xy)3

例3:计算(1)(4x2y+2xy2)÷2xy

(3)(12a3-6a2+3a)÷3a

例4:计算

(1)(2/5ax-0.9ax)÷3/5ax 3

433 4

2(2)(21x4y3-35x3y2+7x2y2)÷(-7x2y)

(4)[(x+y)2-y(2x+y)-8x]÷2x

(2)(2/5xy-7xy+2/3y)÷2/3y

32232

4、课堂练习

一、选择题:

1.如果(3x2y-2xy2)÷m=-3x+2y,则单项式m为()A.xy B.-xy C.x D.-y 2.计算:[2(3x2)2-48x3+6x]÷(-6x)等于()

A.3x-8x B.-3x+8x C.-3x+8x-1 D.-3x-8x-13.下列计算正确的是()

A.6a2b3÷(3a2b-2ab2)=2b2-3ab B.[12a3·(-6a2)÷(-3a)=-4a2+2a C.(-xy2-3x)÷(-2x)=

432323

y2+

324

D.[(-4x2y)÷2xy2]÷2xy=-2x+y 4.下列计算正确的是()A、(a)÷a=a B、(a)÷a=a C、(-5ab)(-2a)=10ab D、(-ab)÷5.-a6÷(-a)2的值是()

A、-a4 B、a4 C、-a3 D、a3 6.已知8xy÷28xy=323

333

332510

212ab=-2ab

224mn227y2,那么m,n的值为()A.m=4,n=3 C.m=2,n=3

二、填空题

B.m=4,n=1 D.m=1,n=

3347.(1)a2bx3÷a2x=_________;(2)3a2b2c÷(-a2b2)=________;

(3)(a5b6-a3b2)÷ab=________;(4)(8x2y-12x4y2)÷(-4xy)=________. 8.(1)(6×10)÷()=-2×10;(2)()·(-3

4210

52512ax)=-5a; xy=_____+_____-1.(3)()÷n=a-b+2c;(4)(3xy+xy-______)÷9.若-12ab÷mab=2a,则m=_______. 210.(24x3y3-6x4y3)÷(-3x2y2)=_____;(-54a5+45a4-18a2)÷(-9a2)=_____.三、解答题

11.化简:[(3x+2y)(3x-2y)-(x+2y)(5x-2y)]÷4x.

12.计算:(3an+2+6an+1-9an)÷3an-1.

13.设梯形的面积为35m2n-25mn2,高线长为5mn,下底长为4m,求上底长(m>n).

14.一颗人造卫星的速度为2.88×104千米/时,一架喷气式飞机的速度是1.•8•×103千米/时,这颗人造卫星的速度是这架喷气式飞机的速度的多少倍?

5、课后作业 教师安排配套练习

6、教学反思

应用单项式除法法则应注意:

①系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号;

②把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数;

③被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;

④要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同 级运算从左到右的顺序进行.

第五篇:整式除法原教案

教学目标:

1、经历探索整式除法运算法则的过程,会进行简单的整式除法运算;

2、理解整式除法运算的算理,发展有条理的思考及表达能力。

教学重点:可以通过单项式与单项式的乘法来理解单项式的除法,要确实弄清单项式除法的含义,会进行单项式除法运算。

教学难点:确实弄清单项式除法的含义,会进行单项式除法运算。教学方法:探索讨论、归纳总结。准备活动:

1、填空:

1、x4x教学过程:

一、探索练习,计算下列各题,并说明你的理由。(1)x5yx2(2)8m2n22m2n(3)a4b2c3a2b

提醒:可以用类似于分数约分的方法来计算。

讨论:通过上面的计算,该如何进行单项式除以单项式的运算?

结论:单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。

2、anan1

3、x6x3

二、例题讲解:

3234322221、计算(1)xy3xy

(2)10abc5abc

5(3)2ab32ab

做巩固练习1。

2、月球距离地球大约3.84×105千米,一架飞机的速度约为8×102千米/时,如果乘坐此飞机飞行这么远的距离,大约需要多少时间?

做巩固练习2。

三、巩固练习:

1、计算:

(1)12x3y4z24x2y2z

(2)(3)2mn1

2、计算:(1)3a314abc2ac5643

38m2n

1(4)6ab13ab3

b8ab 23(2)8a4b3c2a2b3232abc 3学生活动:让六名学生到黑板板演,其余同学在练习本上计算,同伴可交流,互相订正。教师巡回检查,对存在问题时及时更正。小

结:本节课主要学习了单项式除以单项式的运算.在运用法则应注意以下几点:

1、系数相除与同底数幂相除的区别。

2、符号问题。

3、指数相同的同底数幂相除商为1而不是0。

4、在混合运算中,要注意运算的顺序。作

业: 课本P48习题1.15:1、2、3。

9、整式的除法

第二课时 整式的除法(2)教学目的

使学生熟练地掌握多项式除以单项式的法则,并能准确地进行运算. 教学重点

多项式除以单项式的法则是本节的重点. 教学过程

一、复习提问

1. 计算并回答问题:

(3)以上的计算是什么运算?能否叙述这种运算的法则? 2.计算并回答问题:

(3)以上的计算是什么运算?能否叙述这种运算的法则? 3.请同学利用2、3、6其间的数量关系,写出仅含以上三个数的等式.

说明:希望学生能写出 2×3=6,(2的3倍是6)3×2=6,(3的2倍是6)6÷2=3,(6是2的3倍)6÷3=2.(6是3的2倍)

然后向大家指明,以上四个式子所表示的三个数间的关系是相同的,只是表示的角度不同,让学生理解被除式、除式与商式间的关系.

二、新课

1.新课引入.

对照整式乘法的学习顺序,下面我们应该研究整式除法的什么内容?在学生思考的基础上,点明本节的主题,并板书标题.

2.法则的推导.

引例:(8x3-12x2+4x)÷4x=(?)

分析:利用除法是乘法的逆运算的规定,我们可将上式化为

4x ·

(?)

=8x3-12x2+4x. 原乘法运算:

乘式

乘式

积(现除法运算):(除式)(待求的商式)(被除式)然后充分利用单项式乘多项式的运算法则,引导学生对“待求的商式”做大胆的猜测:大体上可以从结构(应是单项式还是多项式)、项数、各项的符号能否确定、各具体的项能否“猜”出几方面去思考.根据课上学生领悟的情况,考虑是否由学生完成引例的解答.

解:(8x3-12x2+4x)÷4x =8x3÷4x-12x2÷4x+4x÷4x =2x2-3x+4x.

思考题:(8x3-12x2+4x)÷(-4x)=? 以上的思想,可以概括为“法则”:

法则的语言表达是

3.巩固法则. 例

1计算:

(l)(28a3-14a2+7a)÷7a;

(2)(36x4y3-24x3y2+3x2y2)÷(-6x2y). 解:(l)(28a3-14a2+7a)÷7a

=28a3÷7a-14a2+7a+7a÷7a =4a2-2a+1;

(2)(36x4y3-24x3y2+3x2y2)÷(-6x2y)

=36x4y3÷(-6x2y)-24x3y2÷(-6x2y)+3x2y2÷(-6x2y)

小结:

(l)当除式的系数为负数时,商式的各项符号与被除多项式各项的符号相反,要特别注意;

(2)多项式除以单项式是利用相应法则,转化为单项式除以单项式而求得结果的.

(3)在学习、巩固新的法则阶段,应尽量要求学生写出表现法则的那一步.

本节是学习多项式与单项式的除法,因此对于单项式除以单项式的计算则可以从简.

练习1.计算:

(1)(6xy+5x)÷x;(2)(15x2y-10xy2)÷5xy;

(3)(8a2b-4ab2)÷4ab;(4)(4c2d+c3d3)÷(-2c2d). 例2 化简[(2x+y)2-y(y+4x)-8x]÷2x. 解:[(2x+y)2-y(y+4x)-8x]÷2x

=(4x2+4xy+y2-y2-4xy-8x)÷2x =(4x2-8x)÷2x=2x-4.

三、小结

1.多项式除以单项式的法则写成下面的形式是否正确?

(a+b+c)÷m=a÷m+b÷m+c÷m.

答:上面的等式也反映出多项式除以单项式的基本方法(两个要点):

(1)多项式的每一项除以单项式;(2)所得的商相加.

所以它也可以是多项式除以单项式法则的数字表示形成. 学习了负指数之后,我们可以理解a、b、c是否能被m整除不是关键问题.

2.多项式除以单项式的商在项数与各项的符号与什么式子有联系?有何联系?

业: 课本P50习题1.16:1。

下载北师大版七下1.7《整式的除法》教案1(共5则)word格式文档
下载北师大版七下1.7《整式的除法》教案1(共5则).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    整式的除法教案

    《整式的除法(第一课时)》教学设计 泾源县第一中学 李 俭 《整式的除法(第一课时)》教学设计 一、教案背景 1、面向学生:中学七年级学生2、学科:数学 3、课时:一课时 4、课前准备:学......

    山东省青岛市城阳区第七中学七年级数学下册 1.7 整式的除法教案(二) 北师大版

    整式的除法 一、课时安排说明: 《整式的除法》是第一章《整式的运算》的最后一节。本节内容共分两课时,第一课时,主要内容是单项式除以单项式;第二课时,主要内容是多项式除以单......

    数学:1.7《有理数的除法》教案1(湘教版七年级上)

    1.7有理数的除法 学习目标 1、理解有理数除法的法则,会进行有理数的除法运算 2、会求有理数的倒数 3、培养类比、拓展、观察、归纳、表达、转化等能力 重点:有理数除法运算法......

    (教案)1.7 有理数的除法课时2

    有理数的除法(课时2) [定标自学] 1.自学目标: 进一步理解有理数乘法和除法的法则,熟练进行有理数乘除混合运算。 2.学习重点:有理数的乘除混合运算 3.学习难点:处理结果的符号 4.学习......

    北师大版七下7、1轴对称现象教案

    北师大版实验教科书七年级上册 7、1轴对称现象 教学目标: 1. 经历观察、分析现实生活实例和典型图案的过程,认识轴对称和轴对称图形培养学生探索知识的能力与分析问题、思考问......

    北师大版七下1.5《平方差公式》教案1

    1.5平方差公式 【课标与教材分析】: 1.经历探索平方差公式的过程,并能运用公式进行简单的计算. 2.感受数学公式的意义和作用.培养学生观察、发现、归纳、概括、猜想能力和有......

    15.3.1整式的除法(一_)教案

    启航教育15.3.1整式的除法(一)---同底数幂的除法一、教学分析(一)教学目标:1. 熟练掌握同底数幂的除法运算法则 . 2 会用同底数幂的除法性质进行计算.3知道任何不等于0的数的0次......

    整式的除法教案 人教版数学

    教学设计思想本节分为2个小节。同底数幂的除法是学习整式除法的基础,因此教科书在第1小节中首先介绍同底数幂的除法性质。熟练地进行单项式除法是学好多项式除以单项式的关键......