第一篇:多组分系统热力学小结
多组分系统热力学小结
一、重要概念
混合物(各组分标准态相同)与溶液(分溶剂和溶质,标准态不同),组成表示:物质B的摩尔分数xB、质量分数wB、(物质的量)浓度cB、质量摩尔浓度bB,理想稀溶液,理想液态混合物,偏摩尔量,化学势,稀溶液的依数性,逸度与逸度系数,活度与活度系数
二、重要定理与公式 1.稀溶液的性质
(1)拉乌尔定律:稀溶液的溶剂:pA=pA*xA
(2)亨利定律:稀溶液的溶质:pB=kx.B xB , pB=kB.CCB , pB=kb.BbB(3)Nernst分配定律:
(4)依数性:溶剂蒸气压降低:pA=pA*xB
凝固点降低: Tf=KfbB
沸点升高: Tb=KbbB
渗透压: B=cBRT 2.理想混合物
定义:任一组分在全部组成范围内符合拉乌尔定律的液态混合物。
性质:dp=0, dT=0 混合
(1)mixV=0(2)mixH=0(3)mixS=-nRxBlnxB(4)mixG=mixH-TmixS=nRTxBlnxB 3.偏摩尔量
定义:XB=(X/nB)T,p,nc≠nB
性质:恒温恒压下:
4.化学势
(1)定义: B=GB=(G/nB)T,p,nc'≠nB
自发:朝化学势小的方向
(3)化学势的表达式
理想气体:B=B*(T,p,yc)=B(T)+RTln(pyB/p)实际气体:B=B*(T,p,yc)=B(T)+RTln(pB/p)逸度 :有效压力 逸度系数: B=
/pB=
理想液态混合物:B=B*+RTln(xB)
真实液态混合物:B=B*+RTln(B)
活度 =fBxB
在常压下,压力影响可忽略不计,故
B=Bθ+RTln(B)若气相为理想气体,则活度的计算式:
/pyB
B=pB/pB*
fB=B/xB=pB/pB* xB
稀溶液:溶剂或溶质:A=A+RTln(xA)真实溶液
溶剂: A=A+RTln(A)溶质:采用质量摩尔浓度时:B=B,b+RTln(b,B)
采用浓度时 B=c,B+RTln(c,B)
5.多组分系统的热力学基本方程
三、常见的计算题型
1.根据稀溶液的性质作依数性等方面的计算 2.在相平衡一章中常用拉乌尔定律和亨利定律。3.典型题型
例题:香烟中主要含有尼古丁(Nicotine),是致癌物质。经元素分析得知其中含 9.3% 的 H,72% 的 C 和 18.7% 的 N。现将 0.6 克尼古丁溶于 12.0 克的水中,所得溶液在101325Pa 下的凝固点为 -0.62℃,求出该物质的摩尔质量MB并确定其分子式(已知水的摩尔质量凝固点降低常数为 1.86 K·kg·mol-1)。
解:假设尼古丁的摩尔质量为MB,根据凝固点下降公式 △Tf =Kf bB
610-4kg/MB0.62K1.86Kkgmol0.012kg 则有
1
MB = 150 g·mol-1
可算出各原子数
C:Mr(B)w(C)/M(C)= 150×0.72/12 = 9.0
N:Mr(B)w(N)/M(N)= 150×0.1870/14 = 2.0
H:Mr(B)w(H)/M(H)= 150×0.093/1 = 13.9 所以分子式为(C9N2H14)
例题: 在293K时将6.84g蔗糖(C12H22O11)溶于1kg的水中。已知293K时此溶液的密度为1.02g·cm-3,纯水的饱和蒸气压为2.339kPa,试求:
(1)此溶液的蒸气压;
-1(2)此溶液的沸点升高值。已知水的沸点升高常数Kb=0.52K· mol·kg。(3)此溶液的渗透压。解:(1)蔗糖的摩尔质量为342g,x蔗糖=(6.84/342)/[(6.84/342)+1000/18.2]=0.0004
p= p*(1-x蔗糖)= 2.339kPa*(1-0.0004)=2.338kPa(2)b蔗糖=(6.84/342)mol/1kg = 0.02 mol·kg
-1Tb =Kb b蔗糖 =(0.52*0.02)K = 0.01K(3)c = n蔗糖/V =(6.84/342)mol/(1.00684kg/1.02kg·dm-3)=0.02026mol·dm-3
=cRT= 0.02026mol·1000 m-3 * 8.3145J·mol-1·K-1*293K = 49356Pa=49.4kPa
第二篇:检验信息管理分系统
3.6 检验信息管理分系统
3.6.1 系统概述
该系统是以医院实验室管理为核心、以检验信息为基础,涵盖了仪器通讯、质量控制、试剂管理、血库管理、设备管理、人事管理、主任管理、信息发布等。旨在对业务流程全面有效管理,节约成本,提高效率。
系统提供检验申请、核收、预处理、分析、报告审核及发布功能。在整个检验过程中实时对检验结果监控、评估、分析、统计并对操作规程进行严格规范。
3.6.2 主要功能
(一)业务处理功能
1.检验申请
申请提取:支持将HIS系统中的检验信息转为检验申请单;支持检验科录入检验申请单。
单据传递:支持打印多种形式的检验申请单,比如标签、条形码等;支持预制条码、现打条码等多种应用方案;支持采用实际申请单格式,与医生手工操作的习惯相匹配。
2.样本管理
样本采集:可在采样处打印标签或条码;可在门诊工作站、护士站、医生工作站打印标签或条码;支持条码自动打印粘贴系统;可记录采样者、采样日期、采样时间、样本描述等;可查询采样计划、打印采样任务表。
样本交接:包括病区标本交接、检验科标本交接,使得整个标本流程处于在控状态;支持条形码核收、刷卡核收、LIS自动核收等多种核收方式。批量审核、批量打印。
样本管理:依据条码等方式,对需要进行管理的标本(如免疫的标本等)进行库位的管理。
3.样本检验
任务分配:检验任务自动分配,根据样品的名称和特性,根据事先设置好的流程,将其自动分配到相关检测部门和相关检测岗位。
仪器通讯:支持单向通讯,计算机自动接收仪器检验结果;支持双向通讯,计算机可以向仪器下载检验任务。
结果处理:支持键盘录入、修改检验结果,包括单个和成批方式;支持自动生成计算项目,判定结果高低状态并标示;支持区别常规报告、急诊报告、打印报告;支持组内和组间的报告合并、项目合并。
4.报告审核
可以单个报告审核,也可以批量报告审核;可以用当前结果与历史结果进行比对并图形显示;
支持撤销已审定检验报告;支持多级授权审核、LIS自动审核。
5.报告发布
支持自动向相关科室通过网络发送常规、急诊检验报告。
支持单个或成批打印检验报告,以人工方式传递。
支持通过内部网络、互联网、短信等多种形式发布检验结果。
6.报告打印
提供独立的打印系统,支持各种打印机。
提供定制报告格式功能,打印的检验报告单包含40种不同类型,并可打印带有直方图、散点图、电咏图、血粘度图等的图像报告单。
支持护士站打印、查询台打印、自助打印、实时报告打印等多种形式。
(二)综合分析功能
1.查询功能
可按病人姓名、性别、年龄、科别、病区、病房、病床、检验医师、项目、病历号、样本号、采样时间、核收日期、诊断类型、收费类型、检验小组、审核医生等条件进行查询并打印。
可按单项条件快速查询并打印;可按多项条件组合复杂查询并打印。可预览检验报告而无需实际打印。
2.统计分析
具有按照多种条件统计检验样本量;具有按照多种条件统计检验工作量;具有按照多种条件统计检验收费情况;具有报表、图形等打印输出。
具有正态分布、变异系数、正常范围判定、阳性率统计等多种检验结果分析方法。
可对仪器操作员、小组或全科进行收费及成本的统计分析,为科室整体管理及效益分析提供最直接有效的数据。
(三)管理控制功能
1.检验计费
允许根据不同的检验报告(如公费、自费、全费等)设置多种计费方式。对门诊检验自动核对费用,对住院检验支持多种收费方式,多种手段控制漏费、错费。
2.权限管理功能
具备完善的日志管理,可记录每个进入系统人员的操作内容;具备多层权限控制,不同组、不同检验技师拥有不同的操作口令;具备多种权限管理,不同的用户设置不同的操作权限。
3.数据安全
提供检验数据的备份与恢复功能;提供检验数据整理、修复功能。
4.质量控制功能
实现自动接收仪器的质控结果;实现绘制质控图、标示结果失控或在控状态并打印输出;实现支持多规则质控,即Westguard规则;实现同一项目不同浓度的质控图比较;实现同一项目不同时期的质控图比较。
实现根据病人趋势找出需要复查的数据;实现根据医学常识找出需要复查的数据。
3.6.3 优势/特色
完善的数据接口,可与300种以上的检验仪器连接,采用条码和双向通讯,实现各类仪器数据的自动接收、控制和综合分析。
融入“以管理为核心”的精髓,体现检验质量控制“零缺陷”思想;提供开放性、扩展性和交互性的接口,充分利用现有设备以节约投资。
质控、结果联动,试剂、结果联动;统计单个测试的测试时间,统计单个测试的试剂消耗量。
双向通讯技术减少了检验差错、提高了工作效率,减轻了技师的工作压力。检验结果自动判定,在所有情况下,系统对检验结果都要进行数据类型正确性的验证,同时检查它们的指标限值。任何结果都应可以进行多级规格指标的检查,一旦不合格,可以触发适当的事件,如安排重新检测,或生成一个通知,并可根据设置的要求,系统给出对话框或声音等提示信息通报有关人员。
与HIS、体检等实现无缝对接,支持HL7、WEB Service等接口方式。
第三篇:电气分系统调试总结
金川电气分系统调试总结
新疆金川热电厂是我公司的总包项目,经过项目调试人员的不懈努力金川热电#1机组于2015年12月15日首次并网成功。电气分系统由我公司自己调试,下面将电气分系统调试过程中的遇到的问题和注意事项提出来供大家参考。一:分系统调试过程中应注意的事项
1:在倒送电前升压站内所有间隔断路器、隔离刀、地刀等二次回路核查完毕,并做传动试验,与发变组有关联的接线尽量完善,避免了以后升压站带电再进行调试。将省调要求的遥信、遥测、遥控、遥调信息联调完毕;保信子站、电能量采集、PMU等与省调自动化处对点完成。所有的保护定值必须仔细核对,并打印签字盖章上报调度继电保护处。倒送电结束后要进行升压站和厂用电的二次核相工作,确保相序正确,厂用电带上负荷后需查看各保护装置的采样是否正确,启备变保护柜、母线保护柜是否有差流。注意核对线路、启备变电度表的电能量的走向是否正确。
2:机组在做开短路试验前发变组系统的所有调试都应全部结束,机电炉大连锁试验完成并满足要求。做短路试验时一定要将主变去母线保护屏的那组电流短接,避免母差保护的误动作,试验结束后将短接片拆除,恢复正常。在进行假并时应将发变组出口断路器位置信号到DEH的线解除,假并正常后恢复。并网发电带负荷后注意各装置的电流电压是否采到,查看发变组保护柜、母线保护柜中各保护是否有差流产生。注意核对主变、高厂变、发电机电度表的电能量的走向是否正确。等到机组稳定运行后进行厂用电源切换工作,切换前必须做好备用电源和工作电源的一次核相工作,核相正常后才允许切换。切换前应向值长和调总汇报,组织机、电、炉各专业进行研讨,做出切换失败的事故预案。切换成功后到发变组保护屏看厂高变保护的差流是否正常。
3:机组并网发电后需要做涉网试验(AGC、AVC、一次调频等),这些试验由新疆电科院完成。但我们调试人员需要在做涉网试验之前将所有与省调的点位核对完毕,装置与省调之间的通讯应调正常,满足随时可以做涉网试验的要求。
二:机组调试过程中新疆国网公司提出的问题
1:220KV线路断路器是分相操作的,设计院只将每一相的分合闸信号设计到NCS画面中,而调试人员与省调遥信对点过程中省调要求将三相合闸总、三相分闸总信号上传。为满足省调要求调试人员和设计院沟通协商将这两个信号加入测控柜中上传给省调。
2:启备变、主变电度表电流回路设计院设计的是四线,而省调要求将四线改为六线以确保计量的准确性。为满足省调的要求现场又重新放了电缆将四线改为六线。由于主厂房至升压站的电缆施工基本结束,防火封堵已做好,给放电缆带来了很大困难。启备变、主变设计时采用的是单表计量,而省调又要求启备变、主变必须采用主、副表计量通过电能量采集装置上传。调试人员及时联系业主方采购电能表,并对回路进行更改满足主、副表配置要求。
3:在与省调对点联调过程中省调要求将每个间隔的事故总信号上传,而设计院没有设计此信号。为实现此信号上传功能,调试人员找设计院沟通增补电缆,将启备变间隔、线路间隔、母联间隔、主变间隔的事故总信号分别通过各自的测控柜上传给省调。由于现场这些区域施工基本结束,给放电缆人员施工带来极大困难,工作量增加了许多。
4:网控室线路故障录波器有两台,一台将线路一和母联的模拟量和开关量接入,另一台将线路二的模拟量和开关量接入。这样母线若发生故障后,两台录波器的录的故障波形将不能合到一起,给故障分析带来了麻烦。省调提出须将220KV升压站所有的模拟量和开关量放到一台录波器里面以便于故障分析,否则不让送电。调试人员积极与设计院和故障录波器厂家沟通,拿出了解决方案,将线路二的模拟量和开关量与线路一和母联的接到了一台故障录波器,并对通道进行了更改,使故障信息可以按调度要求上传。
5:变压器的压力释放阀、SF6气体密度继电器应尽量送到有资质的单位效验,设备一旦装好拆卸就很不容易。这是新疆技术监督、质量监检专家必查的项目,每次检查专家都会提出变压器的压力释放阀、SF6气体密度继电器没有送检的问题。给后期的整改回复带来了不小的困难。
6:在#1机组准备并网发电时省调要求新建机组必须将稳控装置调试完毕并投入运行后才允许并网发电。对于省调提出的要求,项目部积极和业主、装置厂家协调,尽快安排厂家调试人员到现场进行调试。由于此时线路和母线已带电,需做好措施才可以进行调试。厂家到现场首先将稳控装置与主站之间的通讯连上,具备联调条件。调试人员严格按照电力调度控制中心下发的稳控装置四措一案步骤进行一步步的调试,经过三天的联调稳控装置才调试完毕,可以正常投入运行。
以上几个问题可以给新疆其他工程作为参考,若其他工程有类似问题可以在前期的施工调试过程中及时提出来,寻求解决方案。三:分系统调试中存在的不足
发变组、厂用电、同期等系统调试已经在逐步完善,可以再今后的调试中进一步的积累经验。励磁系统是我们分系统调试比较薄弱的环节,里面的许多原理和参数我们都不太了解。做完试验后结果是否正确不知怎么判断,公司可以考虑组织对调试人员励磁系统进行全方位的培训学习,完善里面的不足之处。
第四篇:材料热力学作业
1、什么是热力学?动力学?
热力学是研究热现象中物质系统在平衡时的性质和建立能量的平衡关系,以及状态发生变化时系统与外界相互作用(包括能量传递和转换)的学科。工程热力学是热力学最先发展的一个分支,它主要研究热能与机械能和其他能量之间相互转换的规律及其应用,是机械工程的重要基础学科之一。
热力学(thermodynamics)是自然科学的一个分支,主要研究热量和功之间的转化关系。热力学是研究物质的平衡状态以及与准平衡态,以及状态发生变化时系统与外界相互作用(包括能量传递和转换)的物理、化学过程的学科。热力学适用于许多科学领域和工程领域,如发动机,相变,化学反应,甚至黑洞等等。
热力学,全称热动力学,是研究热现象中物态转变和能量转换规律的学科;它着重研究物质的平衡状态以及与准平衡态的物理、化学过程。
热力学是热学理论的一个方面。热力学主要是从能量转化的观点来研究物质的热性质,它揭示了能量从一种形式转换为另一种形式时遵从的宏观规律。热力学是总结物质的宏观现象而得到的热学理论,不涉及物质的微观结构和微观粒子的相互作用。因此它是一种唯象的宏观理论,具有高度的可靠性和普遍性。热力学三定律是热力学的基本理论。热力学定律
* 热力学第零定律:说明热平衡和温度的关系。* 热力学第一定律:能量守恒定律的一种特殊形式——在一个封闭系统里,所有种类的能量,形式可以转化,但既不能凭空产生,也不会凭空消失。* 热力学第二定律:孤立系统熵(失序)不会减少——简言之,热不能自发的从冷处转到热处,任何高温的物体在不受热的情况下,都会逐渐冷却。* 热力学第三定律:不可能以有限程序达到绝对零度——换句话说,绝对零度永远不可能达到。
动力学(Dynamics)是经典力学的一门分支,主要研究运动的变化与造成这变化的各种因素。换句话说,动力学主要研究的是力对于物体运动的影响。运动学则是纯粹描述物体的运动,完全不考虑导致运动的因素。更仔细地说,动力学研究由于力的作用,物理系统怎样随着时间的演进而改变。动力学的基础定律是艾萨克·牛顿提出的牛顿运动定律。对于任意物理系统,只要知道其作用力的性质,引用牛顿运动定律,就可以研究这作用力对于这物理系统的影响。在经典电磁学里,物理系统的动力状况涉及了经典力学与电磁学,需要使用牛顿运动定律、麦克斯韦方程、洛伦兹力方程来描述。自20世纪以来,动力学又常被人们理解为侧重于工程技术应用方面的一个力学分支。动力学是机械工程与航空工程的基础课程。
动力学的基本内容包括质点动力学、质点系动力学、刚体动力学、达朗贝尔原理等。以动力学为基础而发展出来的应用学科有天体力学、振动理论、运动稳定性理论,陀螺力学、外弹道学、变质量力学,以及正在发展中的多刚体系统动力学、晶体动力学等。
2.材料热力学是从能量角度研究材料,试举出和你研究领域相近的两种应用热力学理论来研究材料的例子。1.Nb表面合金化对Ti6Al4V腐蚀行为的影响,钛合金具有比强度高等特性,是适合于航空航天等领域应用的先进材料.然而未加处理的钛合金通常存在耐磨性差及高温易氧化等问题,无法满足应用要求.此外,钛合金在大气、海水等一般环境下具有较强的耐蚀性,但是在一些特殊介质里,如还原性酸中容易受到腐蚀.为了解决上述问题,适当的表面改性处理是十分必要的.因此钛合金表面改性技术近年来成为材料科学热点研究领域之一.钛合金中加入铌元素可显著提高耐蚀性及高温抗氧性能.Ti-45 Nb就是一种新型耐蚀钛合金采用双辉技术在Ti6Al4V合金表面进行Nb表面合金化处理,形成具有类似Ti45 Nb成分的表面Ti-Nb合金层,提高其抗蚀性及高温抗氧化性能,同时又保留了基体材料比强度高的特性.基体Ti6Al4V和Ti-Nb合金层在5%H2SO4溶液中电化学腐蚀极化曲线如图4所示.由图4可以看出Ti-Nb合金层较基体Ti6Al4V自腐蚀电位提高约400mV,从电化学腐蚀热力学角度表明Ti-Nb合金层抗腐蚀能力提高了.由阳极极化曲线看出,两者趋势是一样的,都发生了钝化.图5是基体Ti6Al4V和Ti-Nb合金层在5%HCl溶液中电化学腐蚀极化曲线.由图可以看出Ti-Nb合金层较基体Ti6Al4V自腐蚀电位提高约60 mV,从热力学角度表明抗腐蚀能力提高了.基体Ti6Al4V和Ti-Nb合金层阳极极化曲线基本相似,均表现为电流密度随着电位的升高而增大,它没有发生钝化现象,始终处于活性溶解区
由图6可以看出Ti-Nb合金层在315%NaCl溶液中较基体Ti6Al4V自腐蚀电位提高约160 mV,表明Nb表面合金化后增加了Ti6Al4V热力学稳定性,耐蚀性提高.由Ti6Al4V阳极极化曲线看出,电流密度随着电位的升高而增大,也就是说它没有发生钝化现象,始终处于活性溶解区;由Ti-Nb合金层阳极极化曲线可以看出,在0121 V~0139 V左右发生钝化,在电位达113 V之后,发生二次钝化,说明Ti-Nb合金层在3.5%NaCl水溶液中出现钝化膜破裂后自修复的现 象。
结论:电化学腐蚀研究表明:在5% H2SO4、5% HCl、3.5%NaCl溶液中Ti-Nb合金层较基体Ti6Al4V抗腐蚀能力有一定的提高。2.分析法
基于溶液电化学性质的化学分析方法。电化学分析法是由德国化学家C.温克勒尔在19世纪首先引入分析领域的,仪器分析法始于1922年捷克化学家 J.海洛夫斯基建立极谱法。电化学分析法的基础是在电化学池中所发生的电化学反应。电化学池由电解质溶液和浸入其中的两个电极组成,两电极用外电路接通。在两个电极上发生氧化还原反应,电子通过连接两电极的外电路从一个电极流到另一个电极。根据溶液的电化学性质(如电极电位、电流、电导、电量等)与被测物质的化学或物理性质(如电解质溶液的化学组成、浓度、氧化态与还原态的比率等)之间的关系,将被测定物质的浓度转化为一种电学参量加以测量。根据国际纯粹化学与应用化学联合会倡议,电化学分析法分为三大类:①既不涉及双电层,也不涉及电极反应,包括电导分析法、高频滴定法等。②涉及双电层,但不涉及电极反应,例如通过测量表面张力或非法拉第阻抗而测定浓度的分析方法。③涉及电极反应,又分为两类:一类是电解电流为0,如电位滴定;另一类是电解电流不等于0,包括计时电位法、计时电流法、阳极溶出法、交流极谱法、单扫描极谱法、方波极谱法、示波极谱法、库仑分析法等。
3.金属的防腐蚀问题,大部分金属腐蚀是电化学腐蚀问题。
根据电化学腐蚀原理,依靠外部电流的流入改变金属的电位,从而降低金属腐蚀速度的一种材料保护技术。按照金属电位变动的趋向,电化学保护分为阴极保护和阳极保护两类。①阴极保护。通过降低金属电位而达到保护目的的,称为阴极保护。根据保护电流的来源,阴极保护有外加电流法和牺牲阳极法。外加电流法是由外部直流电源提供保护电流,电源的负极连接保护对象,正极连接辅助阳极,通过电解质环境构成电流回路。牺牲阳极法是依靠电位负于保护对象的金属(牺牲阳极)自身消耗来提供保护电流,保护对象直接与牺牲阳极连接,在电解质环境中构成保护电流回路。阴极保护主要用于防止土壤、海水等中性介质中的金属腐蚀。②阳极保护。通过提高可钝化金属的电位使其进入钝态而达到保护目的的,称为阳极保护。阳极保护是利用阳极极化电流使金属处于稳定的钝态,其保护系统类似于外加电流阴极保护系统,只是极化电流的方向相反。只有具有活化-钝化转变的腐蚀体系才能采用阳极保护技术,例如浓硫酸贮罐、氨水贮槽等。
3.你研究课题的研究内容是什么,拟用几种分析、检测方法,课题研究中有无热力学现象,试简单介绍。
课题: TiNi合金表面双辉等离子渗Mo合金化后的表面结构和性能
采用双辉等离子表面合金化技术对TiNi合金进行表面渗钼合金化处理;采用光学显微镜、辉光放电光谱仪和扫描电镜对合金化试样的截面及表面进行表征,采用显微硬度计、硬度计、往复磨损试验机及白光干涉仪对合金化试样的表面硬度、结合强度及摩擦学性能进行了测试。采用电化学测试对表面耐蚀性能进行研究。
金相分析是金属材料试验研究的重要手段之一,采用定量金相学原理,由二维金相试样磨面或薄膜的金相显微组织的测量和计算来确定合金组织的三维空间形貌,从而建立合金成分、组织和性能间的定量关系。将计算机应用于图像处理,具有精度高、速度快等优点,可以大大提高工作效率。
计算机定量金相分析正逐渐成为人们分析研究各种材料,建立材料的显微组织与各种性能间定量关系,研究材料组织转变动力学等的有力工具。采用计算机图像分析系统可以很方便地测出特征物的面积百分数、平均尺寸、平均间距、长宽比等各种参数,然后根据这些参数来确定特征物的三维空间形态、数量、大小及分布,并与材料的机械性能建立内在联系,为更科学地评价材料、合理地使用材料提供可靠的数据。
辉光放电光谱仪: 主要用途:
导电材料和非导电材料的基体、镀层(涂层)中的化学元素含量分析; 热处理工件(渗碳、渗氮)等的元素深度定量分析;
导电材料表面覆盖有一层或多层导电或不导电镀层(涂层)中化学元素的分析; 非导体材料表面覆盖有一层或多层导电或不导电镀层(涂层)中化学元素的分析;扫描电镜:
扫描电子显微镜的制造是依据电子与物质的相互作用。当一束高能的入射电子轰击物质表面时,被激发的区域将产生二次电子、俄歇电子、特征x射线和连续谱X射线、背散射电子、透射电子,以及在可见、紫外、红外光区域产生的电磁辐射。同时,也可产生电子-空穴对、晶格振动(声子)、电子振荡(等离子体)。原则上讲,利用电子和物质的相互作用,可以获取被测样品本身的各种物理、化学性质的信息,如形貌、组成、晶体结构、电子结构和内部电场或磁场等等。显微结构的分析
在陶瓷的制备过程中,原始材料及其制品的显微形貌、孔隙大小、晶界和团聚程度等将决定其最后的性能。扫描电子显微镜可以清楚地反映和记录这些微观特征,是观察分析样品微观结构方便、易行的有效方法,样品无需制备,只需直接放入样品室内即可放大观察;同时扫描电子显微镜可以实现试样从低倍到高倍的定位分析,在样品室中的试样不仅可以沿三维空间移动,还能够根据观察需要进行空间转动,以利于使用者对感兴趣的部位进行连续、系统的观察分析。扫描电子显微镜拍出的图像真实、清晰,并富有立体感,在新型陶瓷材料的三维显微组织形态的观察研究方面获得了广泛地应用。
由于扫描电子显微镜可用多种物理信号对样品进行综合分析,并具有可以直接观察较大试样、放大倍数范围宽和景深大等特点,当陶瓷材料处于不同的外部条件和化学环境时,扫描电子显微镜在其微观结构分析研究方面同样显示出极大的优势。主要表现为: ⑴力学加载下的微观动态(裂纹扩展)研究 ;⑵加热条件下的晶体合成、气化、聚合反应等研究 ;⑶晶体生长机理、生长台阶、缺陷与位错的研究; ⑷成分的非均匀性、壳芯结构、包裹结构的研究; ⑸晶粒相成分在化学环境下差异性的研究等。纳米尺寸的研究 纳米材料是纳米科学技术最基本的组成部分,可以用物理、化学及生物学的方法制备出只有几个纳米的“颗粒 ”。纳米材料的应用非常广泛,比如通常陶瓷材料具有高硬度、耐磨、抗腐蚀等优点,纳米陶瓷在一定的程度上也可增加韧性、改善脆性等,新型陶瓷纳米材料如纳米称、纳米天平等亦是重要的应用领域。纳米材料的一切独特性主要源于它的纳米尺寸,因此必须首先确切地知道其尺寸,否则对纳米材料的研究及应用便失去了基础。纵观当今国内外的研究状况和最新成果,该领域的检测手段和表征方法可以使用透射电子显微镜、扫描隧道显微镜、原子力显微镜等技术,但高分辨率的扫描电子显微镜在纳米级别材料的形貌观察和尺寸检测方面因具有简便、可操作性强的优势被大量采用。另外如果将扫描电子显微镜与扫描隧道显微镜结合起来,还可使普通的扫描电子显微镜升级改造为超高分辨率的扫描电子显微镜。铁电畴的观测
压电陶瓷由于具有较大的力电功能转换率及良好的性能可调控性等特点在多层陶瓷驱动器、微位移器、换能器以及机敏材料与器件等领域获得了广泛的应用。随着现代技术的发展,铁电和压电陶瓷材料与器件正向小型化、集成化、多功能化、智能化、高性能和复合结构发展,并在新型陶瓷材料的开发和研究中发挥重要作用。铁电畴(简称电畴)是其物理基础,电畴的结构及畴变规律直接决定了铁电体物理性质和应用方向。电子显微术是观测电畴的主要方法,其优点在于分辨率高,可直接观察电畴和畴壁的显微结构及相变的动态原位观察(电畴壁的迁移)。
扫描电子显微镜观测电畴是通过对样品表面预先进行化学腐蚀来实现的,由于不同极性的畴被腐蚀的程度不一样,利用腐蚀剂可在铁电体表面形成凹凸不平的区域从而可在显微镜中进行观察。因此,可以将样品表面预先进行化学腐蚀后,利用扫描电子显微镜图像中的黑白衬度来判断不同取向的电畴结构。对不同的铁电晶体选择合适的腐蚀剂种类、浓度、腐蚀时间和温度都能显示良好的畴图样。
在实际分析工作中,往往在获得形貌放大像后,希望能在同一台仪器上进行原位化学成分或晶体结构分析,提供包括形貌、成分、晶体结构或位向在内的丰富资料,以便能够更全面、客观地进行判断分析。为了适应不同分析目的的要求,在扫描电子显微镜上相继安装了许多附件,实现了一机多用,成为一种快速、直观、综合性分析仪器。把扫描电子显微镜应用范围扩大到各种显微或微区分析方面,充分显示了扫描电镜的多种性能及广泛的应用前景。
目前扫描电子显微镜的最主要组合分析功能有:X射线显微分析系统(即能谱仪,EDS),主要用于元素的定性和定量分析,并可分析样品微区的化学成分等信息;电子背散射系统(即结晶学分析系统),主要用于晶体和矿物的研究。随着现代技术的发展,其他一些扫描电子显微镜组合分析功能也相继出现,例如显微热台和冷台系统,主要用于观察和分析材料在加热和冷冻过程中微观结构上的变化;拉伸台系统,主要用于观察和分析材料在受力过程中所发生的微观结构变化。扫描电子显微镜与其他设备组合而具有的新型分析功能为新材料、新工艺的探索和研究起到重要作用。
成像 二次电子和背散射电子可以用于成像,但后者不如前者,所以通常使用二次电子
课题中的热力学现象:
电化学分析:电化学腐蚀中金属电位高低与金属活动性之间一般还是有规律可循的,在特定的介质条件下,电位较负的金属活泼性比较大,电位较正的金属活泼性较小。电位较负的金属在电化学腐蚀的过程中通常作为阳极,而电位较正的金属通常作为阴极;作为阳极的金属就会因腐蚀而受到破坏,而阴极却没有太大的破坏。
化学腐蚀与电化学腐蚀有着本质的不同,化学腐蚀通常发生在高温,干燥的环境下。
电化学腐蚀是金属因发生了电化学反应而受到的破坏,通常要有第二类导体(即离子导体)的参与,阳极和阴极通常要分区域进行(均匀腐蚀阳极,阴极区域很难区分),这是与化学腐蚀一个重要的区别。
极化曲线:
表示电极电位与极化电流或极化电流密度之间的关系曲线。如电极分别是阳极或阴极,所得曲线分别称之为阳极极化曲线(anodic polarization curve)或阴极极化曲线(cathodic polarization curve)。
极化曲线分为四个区,活性溶解区、过渡钝化区、稳定钝化区、过钝化区。极化曲线 可用实验方法测得。分析研究极化曲线,是解释金属腐蚀的基本规律、揭示金属腐蚀机理和探讨控制腐蚀途径的基本方法之一。
极化曲线以电极电位为纵坐标,以电极上通过的电流为横坐标获得的曲线称为极化曲线。它表征腐蚀原电池反应的推动力电位与反应速度电流之间的函数关系。直接从实验测得的是实验极化曲线。而构成腐蚀过程的局部阳极或者局部阴极上单独电极反应之电位与电流关系称为真实极化曲线,即理想极化曲线。
第五篇:材料热力学论文
马氏体强化机制及相变研究
摘要:马氏体(martensite)是黑色金属材料的一种组织名称。本文以马氏体的组织形态以及马氏体相变过程为出发点,主要阐述了马氏体的主要强韧化机制以及马氏体相变研究中的一些新进展,包括马氏体相变特性、马氏体相变热力学、马氏体相变晶体学等。
关键词:马氏体,强化机制,马氏体相变,相变热力学,相变晶体学。
1.马氏体概述
马氏体(martensite)是黑色金属材料的一种组织名称。将钢加热到一定温度(形成奥氏体)后经迅速冷却(淬火),得到的能使钢变硬、增强的一种淬火组织。
马氏体最先由德国冶金学家 Adolf Martens(1850-1914)于19世纪90年代在一种硬矿物中发现。马氏体的三维组织形态通常有片状(plate)或者板条状(lath),但是在金相观察中(二维)通常表现为针状(needle-shaped),这也是为什么在一些地方通常描述为针状的原因。马氏体的晶体结构为体心四方结构(BCT)。中高碳钢中加速冷却通常能够获得这种组织。高的强度和硬度是钢中马氏体的主要特征之一。20世纪以来,对钢中马氏体相变的特征累积了较多的知识,又相继发现在某些纯金属和合金中也具有马氏体相变,如:Ce、Co、Hf、Hg、La、Li、Ti、Tl、Pu、V、Zr、和Ag-Cd、Ag-Zn、Au-Cd、Au-Mn、Cu-Al、Cu-Sn、Cu-Zn、In-Tl、Ti-Ni等。目前广泛地把基本特征属马氏体相变型的相变产物统称为马氏体。
2.马氏体形态
人们在马氏体形态方面进行了大量研究,发现了马氏体的许多不同形态,并找出了马氏体及其精细结构与性能之间的关系,对马氏体的晶体结构也有了比较深刻的认识。马氏体形态虽然多种多样,但从其形态特征上基本可归纳为条状马氏体和片状马氏体两大类,其精细结构可划分为位错和孪晶。同时发现马氏体与母相保持严格的晶体学位向关系。2.1 条状马氏体
主要形成于含碳量较低的钢中,又称低碳马氏体。因其形成于200℃以上的较高温度,故又称高温马氏体;因其精细(亚)结构为高密度(一般为0.3~0.9×1012cm/cm2)位错,故又称位错马氏体。
在光学显微镜下观察,条状马氏体的主要形态特征为:呈束状排列。近于平行而长度几乎相等的条状马氏体组成一束,或称为马氏体“领域”(即板条群)。板条群的尺寸约为20~35μm,由若干个尺寸大致相同的板条在空间位向大致平行排列所作组成,在原奥氏体的一颗晶粒内,可以发现几团马氏体束(即几个板条群,常为3~5个,每一个板条为一个马氏体单晶体,其尺寸约为0.5μm× 5.0μm ×20μm),马氏体板条具有平直界面,界面近似平行于奥氏体的{111}γ,即惯习面,相同惯习面的马氏体板条平行排列构成马氏体板条群。现已确定,这些稠密的马氏体板条多被连续的高度变形的残余奥氏体薄膜(约为20μm)所隔开,且板条间残余奥氏体薄膜的碳含量较高,在室温下很稳定,对钢的机械性能会产生显著影响。马氏体束与束之间以大角度相界面分开,一般为60°或120°角,马氏体束不超越原奥氏体晶界。同束中的马氏体条间以小角度晶界面分开。每束内还会有黑白色调反差,同一色调区的板条具有相同位向,称之为同向板条区。
2.2 片状马氏体
片状马氏体主要形成于含碳量较高的钢中,又称为高碳马氏体;因其形成于200℃以下的低温,故又称低温马氏体;因其精细(亚)结构为大量孪晶,故又称其为孪晶马氏体。这种孪晶在靠近马氏体片的边界处消失,不会穿过马氏体边界,而边界上的亚结构则为复杂的位错网络,现已查明:马氏体片的中脊仍是密度更高的极细孪晶。
片状的马氏体的空间形态为双凸透镜状。在光学显微镜下观察的乃是截面形状,因试样磨面对每一马氏体片的切割角度不同,故有针状、竹叶状,所以又称针(竹叶)状马氏体,马氏体片之间不平行,相交成一定角度(如60°、120°)。在原奥氏体晶粒中,首先形成的马氏体片是贯穿整个晶粒的,但一般不穿过晶界,只将奥氏体晶粒分割,以后陆续形成的马氏体由于受到限制而越来越小。所以片状马氏体的最大尺寸取决于原奥氏晶粒大小,原奥氏体晶粒越粗大,马氏体片越大,反之则越细。当最大尺寸的马氏体片小到光学显微镜无法分辨时,便称为隐晶(或称为隐针)马氏体。
片状马氏体的基本特征是在一个奥氏体晶粒内形成的第一片马氏体针较粗大,往往横贯整个奥氏体晶粒,将奥氏体晶粒加以分割,使以后形成的马氏体针大小受到限制,因此针状马氏体的大小不一,但其分布有一定规律,基本上马氏体按近似60°角分布。且在马氏体针叶中有一中脊面,含碳量愈高,愈明显,并在马氏周围有残留奥氏体伴随。由于针状马氏体形成于较低温度,故自回火现象很弱,在相同试剂浸蚀时,总是比板条马氏体显得明亮。
马氏体的硬度主要取决于它的含碳量。随碳含量增加,马氏体硬度升高,当碳含量质量分数达0.6%时,淬火钢的硬度值接近峰值。当碳含量进一步增加时,虽然马氏体硬度有所升高,但由于残余奥氏体的含量也增加,会使钢的硬度有所下降。合金元素含量对马氏体的硬度影响不大,但可以提高它的强度。
2.3 其它形态马氏体
(1)隐晶(或隐针)马氏体
在实际生产中,高碳钢或高碳高合金钢正常加热淬火时,由于原始奥氏体晶粒非常细小,所形成的马氏体晶体极细,在光学显微下看不出马氏体针的形态,称为隐晶(或隐针)马氏体。一般中碳钢快速加热时,也会得到极细的奥氏体晶粒,淬火后得到极细的条状和片状马氏体的混合组织,在光学显微镜下也看不出马氏体形态特征,也是一种隐晶马氏体。(2)蝶状马氏体
在Fe-Ni合金和Fe-Ni(-Cr)-C合金中,当马氏体在板条状马氏体的形成温度范围之间的温区形成时,会出现具有特异形态的马氏体,这种马氏体的立体形态为“V”形柱状,其断面呈蝴蝶状,故称为蝶状马氏体或多角状马氏体。蝶状马氏体两翼的惯习面为{225}γ,两翼相交的结合面为{100}γ。电子显微镜观察表明,蝶状马氏体的内部亚结构为高密度位错,无孪晶存在,与母相的晶体学位向关系大体上符合K-S关系。(3)薄片状马氏体
在Ms点极低的Fe-Ni-C合金中,可观察到一种厚度约为3~10μm的薄片状马氏体,其立体形态为薄片状,与试样磨面相截呈宽窄一致的平直带状,带可以相互交叉,呈现曲折、分枝等形态,薄片状马氏体的惯习面为{259}γ,与奥氏体之间的位向关系为K-S关系,内部亚结构为{112}α/孪晶,孪晶的宽度随碳含量升高而减小。平直的带中无中脊,这是它与片状马氏体的不同之处。(4)ε马氏体
上述各种马氏体都是具有体心立方(正方)点阵结构的马氏体(α/)。而在奥氏体层错能较低的Fe-Mn-C(或Fe-Cr-Ni)合金中有可能形成具有密排六方点阵结构的ε马氏体。ε马氏体呈极薄的片状,厚度仅为100~300nm,其内部亚结构为高密度层错。ε马氏体的惯习面为{111}γ,与奥氏体之间的位向关系为{111}γ//{0001}ε,<110>γ//<1120>ε。
2.4 影响马氏体形态的因素
实验证明,钢的马氏体形态主要取决于马氏体形成温度和过冷奥氏体中碳及合金元素的含量。对碳钢而言,随着钢中含碳量的增加,条状马氏体相对量减少,片状马式体数量则相对增加。一般来说,当奥氏体含碳量大于1%时,淬火后几乎完全是片状马氏体;当奥氏体中含碳量小于0.2%时,淬火后几乎完全是条状马氏体。含碳量在0.20~0.40%之间时,则以条状马氏体为主;含碳量在0.40~0.80%之间时,则为条状和片状马氏体的混合组织。除钴、铝以外,多数合金元素均使Ms点下降,故都增加马氏体的孪晶倾向。钴虽提高Ms点,但却不能减少马氏体内部的孪晶。
此外,应力和变形也能改变马氏体形态,在高的静压力下,可显著降低Ms,可在低碳钢中获得大片马氏体。若在Ms点以上不太高的温度进行塑性变形,则会显著增加条状马氏体的含量。
3.马氏体的强化机制
金属的强化机制大致可分为固溶强化机制、第二相强化、形变强化及细晶强化等。近年来对马氏体高强度、高硬度的本质进行了大量研究,认为马氏体的高强度、高硬度是多种强化机制综合作用的结果。主要的强化机制包括:相变强化、固溶强化、时效强化、形变强化和细晶强化等。
3.1 相变强化
马氏体相变的强化重庆316L不锈钢管研究认为:在不锈钢中具有最高硬度的SUS 440(2(13Cr-IC)(640-700[1V)属于马氏体系不锈钢,马氏体组织的结构非常微细,而且在其内部存在高密度的位错,若使碳过饱和固溶还能提高强度。另方面,经过最后的回火处理可以得到碳化物等析出物弥散细微分布的组织。马氏体系不锈钢用固溶碳量和加火处理可以调整其强度。例如,SUS 420J2(13Cr-O.3C)从i000~C的高温奥氏体区急冷时,发生固溶0.3%C的马氏体相变,再经回火热处理就会使碳化物等析出物呈微细弥散分布。其强度可达到约550HV。
3.2 细晶强化
人们早己知道晶粒大小影响金属强度。铁素体晶粒大小对退火的软钢屈服强度的影响,可以看出晶粒直径d与屈服强度间有着直线关系,晶粒越细屈服强度越高。这种屈服强度与晶粒大小间的关系称霍尔佩琪法则,因变形在晶粒内运动的位错在晶界其运动被阻,所以晶界大量存在的细晶粒材料,其强度很高。前述的固溶强化、析出强化及加工硬化若过分提高强度,则会使韧性受损。所以,有时根据加工、使用条件使强度有一定限制。另一方面,当晶粒细化时不但不损坏韧性,而且还能提高强度。现在,对钢铁材料的晶粒细化的研究非常盛行,并以“超级金属的技术开发。为题进行着开发,通常不锈钢的晶粒直径为数十微米,但在这些课题中正在研究一种制造方法,使金属晶粒有1/100到数百毫微米(nm),例如,晶粒直径为300nm的奥氏体系不锈钢其拉伸强度为1100 N/mm2,约是通常粒径材料的2倍。为了能在不损害韧性的前提下得到高强度,对这种方法寄予了很大的希望。在JIS规定的不锈钢中存在具有微细组织的不锈钢,这是把不同组织复合的双相系不锈钢。SUS329J4L(25Cr—6Ni—3Mo—N)具有在铁素体母相中分布着岛状奥氏体相的组织,由于为复合组织故各组织很细微。另外,由于加入了氮使之固溶强化提高了强度,耐点蚀性也得到改善。由于晶粒细化和固溶强化的复合作用,使得双相钢的屈服强度等强度特性好于奥氏体系和铁索体系。
3.3 固溶强化
纯金属由于强度低, 很少用作结构材料, 在工业上合金的应用远比纯金属广泛。合金组元溶入基体金属的晶格形成的均匀相称为固溶体。纯金属一旦加入合金组元变为固溶体,其强度、硬度将升高而塑性将降低, 这个现象称为固溶强化。固溶强化的机制是: 金属材料的变形主要是依靠位错滑移完成的, 故凡是可以增大位错滑移阻力的因素都将使变形抗力增大, 从而使材料强化。合金组元溶入基体金属的晶格形成固溶体后, 不仅使晶格发生畸变, 同时使位错密度增加。
结果表明,在碳含量小于0.4%时,马氏体的屈服强度随碳含量增加而升高;碳含量大于0.4%时,马氏体的屈服强度不再增加。这一现象的普遍解释为,固溶的间隙C 原子处于Fe 原子组成的八面体的中心位置,马氏体中的八面体为扁八面体(奥氏体中为正八面体),C 原子溶入后形成以C 原子为中心的畸变偶极应力场,该应力场与位错产生强烈的交互作用,令位错运动使马氏体强度升高。当含碳量高于0.4%时,C 原子间距太近,产生的畸变偶极应力场彼此抵消,降低了强化效果。
3.4 形变强化
生产金属材料的主要方法是塑性加工, 即在外力作用下使金属材料发生塑性变形, 使其具有预期的性能、形状和尺寸。在再结晶温度以下进行的塑性变形称为冷变形。金属材料在冷变形过程中强度将逐渐升高, 这一现象称为形变强化。
钢变形时给结晶加上了剪断应力,在位错运动的同时,给结晶导入了大量的位错。加工硬化加工轧制和拔丝这种塑性变形使晶体内的位错密度增加,是强化钢的方法。据重庆304不锈钢卷板研究证明这种加工硬化作用奥氏体系比铁素体系大得多。在18Cr-8Ni组成的亚稳定奥氏体系,因位错密度增大的硬化和马氏体的生成(加工引起相变)容易得到高强度。利用加工硬化的材料称硬化材,其强度可根据轧制率的变化按H(硬级)、3/4H和1/2H的强度水平划分,SUS 301(17Cr-TNi)硬化材在家庭电器机械的压簧和汽车的引擎垫圈、通信机械的连接器材等板弹簧制品方面使用非常普及。由加工硬化引起的马氏体具有磁性,所以SUS 301和SUS 304的硬化材也有磁性。非磁性的弹簧用材料有含高锰的不锈钢AISl205(17Cr-15Mn-1.5Ni-O.35N),该钢是用锰取代了SUS 301中的镍,由于其性质的不同,可以固溶更多的氮。就是说,可以得到前述的固溶强化的效果。在固溶化处理状态下SUS 304的硬度约1801tV,而AISl 205的硬度约2701]V,再进行加工时可发现显著的加工硬化特性。所有钢种随着压下率增加的同时,硬度也上升。3.5时效强化
时效强化也是马氏体强化的一个重要因素,马氏体相变是无扩散相变,但在马氏体形成后,马氏体中的碳原子的偏聚(马氏体自回火)就能发生,碳原子发生偏聚(时效)的结果,碳含量越高,时效强化越显著。
时效强化是由C 原子扩散偏聚钉扎位错引起。因此,如果马氏体在室温以上形成,淬火冷却时又未能抑制C 原子的扩散,则在淬火至室温途中C 原子扩散偏聚已自然形成,而呈现时效。所以,对于MS 高于室温的钢,在通常淬火冷却条件下,淬火过程即伴随自回火。
3.6 亚结构强化
亚结构强化主要指孪晶或层错的强化作用,其表现在以下几个方面:(1)位错与孪晶的弹性交互作用;(2)位错穿过孪晶构成滑移轨迹的曲折;(3)孪晶阻挡位错运动。
应当指出,孪晶的强化,据认为是由于碳原子在孪晶界面上的偏聚所造成的,其强化作用的贡献与钢的含碳量关系密切:当碳含量小于0.3%时,马氏体的强化主要寄托于间隙原子的固溶强化;当碳含量为0.3%-0.6%时,马氏体强度的提高除得益于固溶强化外,还可有孪晶和位错亚结构的强化贡献;当碳含量大于0.6%时,孪晶的强化作用显得很弱。
4.马氏体相变
4.1.1马氏体相变概念
马氏体(M)是碳溶于α-Fe的过饱和的固溶体,是奥氏体通过无扩散型相变转变成的亚稳定相。其比容大于奥氏体、珠光体等组织,这是产生淬火应力,导致变形开裂的主要原因。马氏体最初是在钢(中、高碳钢)中发现的:将钢加热到一定温度(形成奥氏体)后经迅速冷却(淬火),得到的能使钢变硬、增强的一种淬火组织。4.1.2马氏体概念提出
马氏体这一概念最先由德国冶金学家Adolf Martens(1850-1914)于19世纪90年代在一种硬矿物中发现。奥氏体中含碳量≥1%的钢淬火后,马氏体形态为片状马氏体,当奥氏体中含碳量≤0.2%的钢淬火后,马氏体形状基本为板条马氏体。马氏体的晶体结构为体心四方结构(BCT)。中高碳钢中加速冷却通常能够获得这种组织。目前广泛地把基本特征属马氏体相变型的相变产物统称为马氏体。
4.2 马氏体相变特征
马氏体转变的一般定义为:过冷奥氏体以较快的速度冷却,抑制其扩散性分解,在较低的温度下发生的无扩散型相变称为马氏体相变。其主要特点有以下几点:
1)马氏体相变是无扩散相变。马氏体相变时没有穿越界面的原子无规行走或顺序跳跃,因而新相(马氏体)承袭了母相的化学成分、原子序态和晶体缺陷。马氏体相变时原子有规则地保持其相邻原子间的相对关系进行位移,这种位移是切变式的。原子位移的结果产生点阵应变(或形变)。这种切变位移不但使母相点阵结构改变,而且产生宏观的形状改变。
2)产生表面相变时浮突。马氏体形状改变使先经抛光的试样表面形成浮突。马氏体形成时,与马氏体相交的表面上发生倾动,在干涉显微镜下可见到浮突的高度以及完整尖锐的边缘。
3)新相(马氏体)和母相之间始终保持一定的位向关系。马氏体相变时在一定的母相面上形成新相马氏体,这个面称为惯习(析)面,它往往不是简单的指数面,如镍钢中马氏体在奥氏体(γ)的{135}上最先形成。马氏体形成时和母相的界面上存在大的应变。为了部分地减低这种应变能,会发生辅助的变形,使界面改变。由于马氏体相变时原子规则地发生位移,使新相(马氏体)和母相之间始终保持一定的位向关系。
4)马氏体相变具有可逆性。当母相冷却时在一定温度开始转变为马氏体,把这温度标作Ms,加热时马氏体逆变为母相,开始逆变的温度标为As。
5)马氏体转变是在一个温度范围内完成的。当奥氏体到达马氏体转变温度(Ms)时,马氏体转变开始产生,母相奥氏体组织开始不稳定。在Ms以下某温度保持不变时,少部分的奥氏体组织迅速转变,但不会继续。只有当温度进一步降低,更多的奥氏体才转变为马氏体。最后,温度到达马氏体转变结束温度Mf,马氏体转变结束。
4.3 马氏体相变热力学
马氏体相变热力学研究的主要任务在于理论上求出材料开始发生马氏体相变的温度MS。这个温度不但是制定材料热处理工艺的一个主要参数,也往往表征材料经淬火后的性能如脆性。马氏体相变热力学的研究不但揭示材料相变(以及由此而引发的内部组织改变和性能改变)的一些自然规律,解释一些实验现象,更重要的是为新材料的成分设计和加工工艺设计提供基础。铁基合金马氏体相变热力学在40年代已具雏形,但不能由热力学直接计算出MS;铜基合金马氏体相变的热力学问题仅在1979年略为涉及,很不成熟。近10年来我们对铁基合金和铜基合金马氏体相变热力学研究取得了重要的发展,可由热力学计算出铁碳合金、铁合金(如Fe-Ni)、三元合金钢(如Fe-Ni-C)、多元合金钢以及铜基合金(如Cu-Zn)的MS,并与实验值很好符合。还能预测(实验方法目前还无法胜任的)钢经渗碳后在渗层中不同部位的MS(以及残余奥氏体的含量),以及铜合金在热弹性马氏体相变中,母相原子的有序状态对MS的影响。对于铁基合金中,面心立方奥氏体变为体心立方(或四方)马氏体热力学研究,以往由于对非化学自由能项估算困难,以致不能成功地由热力学直接求得MS,几十年来这项研究停滞不前。根据新近研究结果,提出非化学自由能以母相的屈服度和马氏体内储存能(后果几乎为常数项)为参数;改进和发展了热力学模型(包括Fisher模型、KRC模型以及中心原子模型),得到了满意的结果。对B-Cu基合金的研究,解决了有序化热力学,利用相图或原子间交换作用可建立规则溶液模型,奠定了热弹性马氏体相变热力学的基础。发展了Cu-基合金马氏体相变中测定非化学自由能的实验方法,丰富了相变学科的内容,也对发展和应用形状记忆材料大有裨益。国内外研究工作得出Cu-Zn-Al在略低于MS等温时,会形成所谓“等温马氏体”。经证明,这绝不是等温马氏体,而是在等温母相的有序态改变,是MS不断升高,继续形成变温马氏体。通过热力学计算可直接求出工程界所需要的MS,判别和解释现有的实验现象和数据,以及定量预测不同淬火态时MS的变化。这些对铜基形状记忆合金的成分设计、热处理工艺的制定至关重要。
4.4 马氏体相变晶体学
40年来马氏体相变晶体学表象理论被广泛应用,它对Au-Cd合金及铁基的(3,10,15)马氏体中马氏体相变晶体学参数的预测与实验值相符,这证明了理论的正确性;但对Cu-Zn和Cu-Al-Ni合金则需加以发展。我们应用W-L-R理论于Cu-Zn-Al合金,求得其热弹性马氏体的惯习面为(1,7.71,9.32)与实验值(1,6.88,7.90)相差仅1.6°,吻合得较好,证明原始的表象理论有其生命力。马氏体相变过程中,新、旧相之间具有对称联系。在Cu-Zn-Al形状记忆合金中的对称关系,应尝试以群伦计算Cu-Zn-Al合金中马氏体的变态数。群论对马氏体相变晶体学的应用还有待延伸和深化。
5.总结
马氏体从其诞生到至今已有多年的历史,但人们对马氏体相变的认识还不够深入,有很多问题亟待解决。最近,将由科学出版社出版刘宗昌等人的专著《马氏体相变》一书涉及的内容包括金属整合系统,相变过程中原子的移动方式,相变热力学动力学组织学晶体学,相变机制,性能及淬火应用等该书采用继承与创新相结合的方法,综合国内外的最新研究成果,补充完善更新内容,以适应建设21世纪创新型社会,由于马氏体相变应用有重要的前景,科学界应当继续给予关注,不断提高我国相变研究工作发展我国材料科学。
参考文献
[1]徐祖耀. 马氏体相变与马氏体[M]. 北京: 科学出版社,1980. [2]陈景榕,李承基. 金属与合金中的固态相变[M]. 北京: 冶金工业出版社,1997.
[3]徐祖耀,马氏体相变与马氏体(第2版)[M]. 北京: 科学出版社,1999. [4]刘宗昌.马氏体切变学说的评价[J]. 内蒙古科技大学学报,2008,27(4):293-300.
[5]刘宗昌,王海燕,任慧平. 再评马氏体相变的切变学说[J]. 内蒙古科技大学学报,2009,28(2):99-105.
[6]刘宗昌,计云萍,林学强,等. 三评马氏体相变的切变机制[J]. 金属热处理,2010,35(2):1-6.
[7]刘宗昌,计云萍,王海燕,等. 四评马氏体相变的切变机制[J]. 金属热处理,2011,36(8):63-66.
[8]刘宗昌,任慧平,王海燕. 奥氏体形成与珠光体转变[M]. 北京: 冶金工业出版社,2010. [9]刘宗昌,计云萍,段宝玉,等. 板条状马氏体的亚结构及形成机制[J].材料热处理学报,2011,32(3):56-62.
[10]刘宗昌,计云萍,任慧平. 马氏体相变形核机制的研究[J]. 科技成果管理与研究,2011,(2):48-51.
[11]程晓农,戴启勋,邵红红. 材料固态相变[M]. 北京: 化学工业出版
社,2006 [12]姜越,尹钟大,朱景川,李明伟.超高强度马氏体时效钢的发展[J].特殊钢,2004,25(2):1-5.[13]张慧杰,李鸿美.高强度超低碳马氏体钢的强化机理[J].上海金属,2010,32(2):42-45.