线性代数与空间几何,教学大纲

时间:2019-05-12 22:54:51下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《线性代数与空间几何,教学大纲》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《线性代数与空间几何,教学大纲》。

第一篇:线性代数与空间几何,教学大纲

《线性代数与空间解析几何》A教学大纲

Linear Algebra and Analytic Geometry A

课程编码:09A00110

学分:3.课程类别:专业基础课(必修课)计划学时:56

其中讲课:56

实验或实践:0

上机:0 适用专业:信息科学与工程、机械工程、自动化与电气控制、土木建筑、资源与环境、物理科学与技术等学院理工类各专业

推荐教材:于朝霞 张苏梅 苗丽安主编.线性代数与空间解析几何(第二版).北京:高等教育出版社,2016.参考书目:

1、郑宝东主编.线性代数与空间解析几何(第三版).北京:高等教育出版社,2015.2、马柏林等主编.线性代数与解析几何.北京:科学出版社,2001.3、黄廷祝,成孝予主编.线性代数与空间解析几何(第三版).北京:高等教育出版社,2014.4、冯良贵等编著.线性代数与解析几何.北京:科学出版社,2013.5、龚冬保等主编.线性代数与空间解析几何要点与解题.西安:西安交通大学出版社,2006.6、黄廷祝,余时伟主编.线性代数与空间解析几何学习指导教程.北京:高等教育出版社,2005.课程的教学目的与任务

线性代数与空间解析几何具有较强的抽象性与逻辑性,所介绍的方法广泛地应用于各个学科,是高等学校本科各专业的一门重要的基础理论课。

通过本课程的教学,使得学生系统地获取线性代数与空间解析几何的基本知识、基本理论与基本方法,了解代数与几何的相互渗透关系,会用代数理论去解决几何方面的问题,具有较熟练的运算能力。通过本课程的学习使学生初步熟悉和了解抽象的、严格的代数证明方法,理解具体与抽象、特殊与一般的辩证关系,提高空间想象、抽象思维、逻辑推理的能力。学会理性的数学思维技术和模式,培养学生的创新意识和能力,能运用所获取的知识去分析和解决问题,并为后继课程的学习和进一步深造打下良好的基础。

课程的基本要求

通过本课程的学习,要求学生达到以下要求:

1.了解行列式的概念,熟记行列式的性质,掌握行列式的基本计算方法。2.掌握矩阵的基本运算,理解矩阵秩的概念及初等矩阵与初等变换的关系性质。

3.理解线性相关性、向量组的秩的概念,掌握线性相关性的性质及判定定理、三秩相等定理。4.掌握平面、直线、二次曲面的方程及方程所表示的曲面形状。

5.理解线性方程组解的存在定理、解的结构定理,掌握其在讨论空间平面位置关系中的应用。6.理解特征值、特征向量的概念。掌握方阵可相似对角化的条件及方法,正交变换化二次型为标准形的方法。掌握二次型理论在判别三元二次方程所表示的几何形状的应用。7.借助矩阵的初等行变换熟练掌握各类线性问题解的刻画及求解方法步骤。8.掌握线性方程组理论及二次型理论在几何上的应用。

各章节授课内容、教学方法及学时分配建议

本课程的内容按教学要求的不同,分为两个层次.其中,概念、理论用“理解”一词表述的,方法、运算用“掌握”一词表述的,属较高要求,必须使学生深入理解,牢固掌握,熟练应用;概念、理论用“了解”一 词表述的,方法、运算用“会”或“了解”表述的,也是教学中必不可少的,只是在要求上低于前者。第一章: 行列式

建议学时:8 [教学目的与要求]

1.理解n阶行列式的定义。

2.理解行列式的性质,掌握行列式的计算。3.了解克拉默(Cramer)法则。

[教学重点与难点] 行列式的性质,行列式的计算。

[授

法] 以课堂多媒体讲授为主,课堂讨论和课堂练习为辅。[授

容] 1.1 二阶与三阶行列式 1.1.1 二阶行列式 1.1.2 三阶行列式

1.2 n阶行列式的定义 1.2.1 排列与逆序数 1.2.2 n阶行列式的定义 1.3 行列式的性质与计算

1.3.1 行列式的性质 1.3.2 行列式的计算 1.4 克拉默法则习题课

第二章:矩阵及其运算

建议学时:10 [教学目的与要求]

1.理解矩阵的概念,知道某些特殊矩阵的定义及性质。2.熟练掌握矩阵的线性运算,乘法运算,转置及相关运算性质。

3.理解伴随阵概念及性质,理解逆矩阵的概念和性质、矩阵可逆充要条件。4.理解矩阵秩的概念,知道满秩矩阵及其性质。

5.理解矩阵的初等变换,熟练地用初等行变换求逆矩阵、求矩阵的秩、解矩阵方程。6.了解分块矩阵的运算,掌握准对角矩阵的运算性质。[教学重点与难点]

重点:矩阵、逆矩阵、矩阵的秩及矩阵的初等变换的概念。矩阵的各类运算及运算性质。矩阵可逆的充要条件。初等矩阵与初等变换的关系性质,用初等变换求逆矩阵、矩阵的秩、矩阵方程的解的方法。

难点:矩阵秩的概念,有关矩阵秩的性质的应用问题。

[授

法] 以课堂多媒体讲授为主,课堂讨论和课堂练习为辅。[授

容]

2.1 矩阵及其运算 2.1.1 矩阵的概念 2.1.2 矩阵的运算 2.2 逆矩阵 2.2.1逆矩阵的定义 2.2.2 方阵可逆的充要条件 2.3 分块矩阵及其运算 2.3.1 分块矩阵的概念 2.3.2 分块矩阵的运算

2.4 矩阵的初等变换与矩阵的秩 2.4.1 矩阵的初等变换 2.4.2 矩阵秩的概念与求法 2.5 初等矩阵

2.5.1 初等矩阵及其性质 2.5.2 用初等变换求逆矩阵习题课

第三章:向量与向量空间

建议学时:10 [教学目的与要求]

1.了解空间直角坐标系、几何向量的坐标表示及运算。

2.理解n维向量的概念、理解线性相关性概念。会判别向量组的线性相关性。

3.理解向量组的最大无关组、秩的概念,理解三秩相等定理。掌握用矩阵的初等变换求向量组的最大无关组及秩的方法。

4.理解n维向量空间、子空间、基、维数、坐标等概念,会求向量空间的基、维数。

[教学重点与难点]

重点:向量组的线性相关性的概念及性质,向量组的线性相关性的矩阵判别法及其推论以及上述结论的应用;向量组的最大无关组与秩的概念与求法;三秩相等定理及应用;向量空间、基底及维数的概念。

难点:向量组的线性相关性、向量组的最大无关组与秩及相关证明题。[授

法] 以课堂多媒体讲授为主,课堂讨论和课堂练习为辅。[授

容] 3.1 几何向量及其线性运算 3.1.1 几何向量的基本概念 3.1.2 几何向量的线性运算 3.2 空间直角坐标系 3.2.1 空间直角坐标系 3.2.2 几何向量的坐标表示 3.2.3 用坐标进行向量运算

3.3 n维向量及其线性运算 3.3.1 n维向量的概念 3.3.2 n维向量的线性运算 3.4 向量组的线性相关性 3.4.1 向量组及其线性组合 3.4.2 线性相关与线性无关的概念 3.4.3 线性相关性的性质 3.4.4 线性相关性的判定 3.5 向量组的秩

3.5.1 最大线性无关组 3.5.2 向量组的秩

3.5.3 矩阵的秩与向量组的秩的关系 3.6 向量空间

3.6.1 向量空间的概念 3.6.2 坐标变换习题课

第四章:欧氏空间

建议学时:8 [教学目的与要求]

1.理解向量的内积、长度、夹角等概念及性质;理解标准正交基、正交矩阵;会求几何向量的内积和外积。

2.掌握空间直线的标准式方程与平面的点法式、一般式方程。3.理解空间曲面、空间曲线的概念,会求空间曲线在坐标面上的投影。4.知道二次曲面方程及其所表示图形的形状。

[教学重点与难点] 标准正交基;直线与平面方程、曲面方程。

[授

法] 以课堂多媒体讲授为主,课堂讨论和课堂练习为辅。[授

容] 4.1 向量的内积

欧氏空间 4.1.1 R3中向量的内积

4.1.2 n维向量的内积

欧氏空间 4.2 标准正交基

4.3 R3中向量的外积和混合积

4.3.1 向量的外积 4.4 R3中的直线与平面 4.4.1平面及其方程 4.4.2 空间直线及其方程 4.4.3 位置关系 4.5 空间曲面及其方程

4.5.1 球面 4.5.2 旋转曲面 4.5.3 柱面

4.6 空间曲线及其方程 4.6.1 空间曲线的一般方程 4.6.2 空间曲线的参数方程 4.6.3 空间曲线在坐标面上的投影 4.7 二次曲面 4.7.1 椭球面 4.7.2 抛物面 4.7.3 双曲面 4.7.4 二次锥面习题课

第五章:线性方程组

建议学时:6 [教学目的与要求]

1.理解齐次线性方程组有非零解的充要条件及非齐次线性方程组有解的充要条件。2.理解齐次线性方程组的基础解系,线性方程组的通解的概念及解的结构。3.熟练掌握用行初等变换求线性方程组通解的方法。

4.掌握线性方程组解的理论在向量组的线性相关性和在几何上的应用。

[教学重点与难点] 齐次线性方程组有非零解的判断及基础解系的概念;非齐次线性方程组有解的判 断及通解结构;用矩阵的初等行变换求解线性方程组;线性方程组解的理论在几何上的应用。[授

法] 以课堂多媒体讲授为主,课堂讨论和课堂练习为辅。[授

容] 5.1 线性方程组有解的充要条件 5.2 线性方程组解的结构 5.2.1 齐次线性方程组解的结构 5.2.2 非齐次线性方程组解的结构

5.3 用初等变换解线性方程组及线性方程组的应用 5.3.1 用矩阵的初等行变换求解线性方程组

5.3.2 线性方程组应用举例(只介绍在几何中的应用)习题课

第六章:特征值、特征向量及相似矩阵

建议学时:8 [教学目的与要求]

1.理解矩阵的特征值与特征向量的概念并掌握其求法。

2.理解相似矩阵的概念与性质,理解矩阵可相似对角化的充要条件。

[教学重点与难点]

重点:矩阵的特征值与特征向量的概念、性质及求法;实对称矩阵的相似对角化。

难点:矩阵可相似对角化的条件及相关问题。

[授

法] 以课堂多媒体讲授为主,课堂讨论和课堂练习为辅。[授

容] 6.1 特征值与特征向量 6.1.1 特征值与特征向量的概念 6.1.2 特征值与特征向量的性质 6.2相似矩阵

6.2.1 相似矩阵的概念及性质 6.2.2 方阵的相似对角化问题 6.3 实对称矩阵及其对角化

6.3.1 实对称矩阵的特征值与特征向量 6.3.2 实对称矩阵的正交相似对角化习题课

第七章:二次型

建议学时:6 [教学目的与要求]

1.了解二次型及其矩阵表示、二次型的秩及二次型的标准形等概念。

2.掌握用正交变换将二次型化为标准形的方法,会用配方法化二次型为标准形。3.会用二次型理论讨论讨论一般二次曲面的形状。[教学重点与难点] 用正交变换化二次型为标准型。

[授

法] 以课堂多媒体讲授为主,课堂讨论和课堂练习为辅。[授

容] 7.1 二次型

7.1.1 二次型的定义及其矩阵 7.1.2 矩阵的合同 7.2 化二次型为标准形

7.2.1 用正交变换化二次型为标准形 7.2.2 用配方法化二次型为标准形 7.3 正定二次型 7.3.1 二次型的惯性定理 7.3.2 正定二次型

7.4 二次型在研究二次曲面中的应用 7.4.2 二次曲面方程化标准形

习题课

撰稿人:张苏梅

审核人:杨殿武

第二篇:线性代数教学大纲

《线性代数》课程教学大纲

一.课程基本信息

开课单位:数理学院

课程编号:05030034a

英文名称:linear algebra

学时:总计32学时,其中理论授课28学时,习题课4学时。学分:2.0学分

面向对象:全校工科专业

教材:

《线性代数》,同济大学教学教研室 编著,高等教育出版社,2007年5月 第五版

主要教学参考书目或资料:

1.线性代数》,奕汝书 编著,清华大学出版社

2.《线性代数》,武汉大学数学系

3.《线性代数辅导》,胡元德等 编著,清华大学出版社 4.《线性代数试题选解》(研究生试题选),魏宗宣 编著

二.教学目的和任务

线性代数是高等学校理工科有关专业的一门重要基础课。它不但是其它数学课程的基础,也是各类工程课程的基础。为适应培养面向21世纪人才的需要,要求学生比较系统理解线性代数的基本概念,基本理论,掌握线性代数的基本计算方法.要求较好地理解线性代数这门课的抽象理论,具有严谨逻辑推理能力,空间想象能力,运算能力和综合运用所学的知识分析问题和解决问题的能力。本课程所讲的理论和方法,早已被广泛应用于各个学科和各个领域。它是建立在多维空间多元素基础上的,在计算机日益普及的今天,它作用更能充分发挥出来。所以本课程的社会地位和作用也日益显得突出和重要。工科大学生必须具备本课程的知识,才能更好地适应社会主义建设的需要。

通过本课程的学习,应使学生获得在应用科学中常用的矩阵方法,线性方程解法、二次型理论等实用性极强的基础知识,使学生能用这些方法解决一些实际问题,提高学生解决实际问题能力。同时,也为学生今后扩大知识面打下必要的数学基础。

三.教学目标与要求

通过对这门课的学习,使学生了解行列式、矩阵、向量组的定义和性质,掌握行列式的计算,矩阵的初等变换,矩阵秩的定义和计算,利用矩阵的初等变换求解方程组及逆矩阵、向量组的线性相关性,利用正交变换化对称矩阵为对角形矩阵等有关基础知识,并具有熟练的矩阵运算能力和利用矩阵方法解决一些实际问题的能力,从而为学习后继课及进一步扩大知识面奠定必要的数学基础。

四.教学内容、学时分配及其基本要求

第一章 n阶行列式(6学时)

(一)教学内容

1、二阶与三阶行列式

2、全排列及逆序数

3、n阶行列式定义

4、对换

5、行列式性质

6、行列式按行列展开

7、克莱姆法则

(二)基本要求

1、知道n阶行列式定义,了解行列式性质,熟练掌握二、三阶行列式计算法。

2、了解按行(列)展开行列式的方法,掌握四阶和四阶以上行列式的计算法。

3、掌握用克莱姆法(Gramer法则)解线性方程组的方法。第二章 矩阵及其运算(4学时)

(一)教学内容

1、矩阵

2、矩阵的运算

3、逆矩阵

4、矩阵分块法

(二)基本要求

1、理解矩阵概念,知道单位阵、对角阵、对称阵、三角阵、正交阵等常用矩阵及其性质。

2、熟练掌握矩阵加法、乘法、转置、方阵行列式的运算及其运算规律。

3、理解逆矩阵概念及逆阵存在的充要条件,掌握逆矩阵的求法。

4、掌握分块矩阵的运算和分块对角阵的性质及其应用。第三章 矩阵的初等变换与线性方程组(6学时)

(一)教学内容

1、矩阵的初等变换

2、初等矩阵

3、矩阵的秩

4、线性方程组的解

(二)基本要求

1、掌握矩阵的初等变换和初等方阵的基本理论及其应用。

2、理解矩阵秩的概念,会求矩阵的秩,知道满秩矩阵的性质。

3、掌握利用系数矩阵的秩和增广矩阵的秩的大小比较及与未知元个数n的关系判别线性方程组有无解;有多少组解(即解的存在性与唯一性的判别)的基本方法

第四章 向量组的线性相关性(8学时)

(一)教学内容

1、向量组及其线性组合

2、向量组的线性相关性

3、向量组的秩

4、线性方程组的解的结构

5、向量空间

6、习题课

(二)基本要求

1、理解n维向量的概念并掌握其运算规律。

2、理解向量组的线性相关、线性无关的概念。

3、了解向量组线性相关、线性无关的几个重要性质。

4、理解向量组的秩的概念,会求向量组的秩和最大无关组,并会用最大无关组表示其余的向量。

5、了解n维向量空间中的空间、基、维数、坐标等概念,会求基,会用基来线性表示所属空间的其余向量。

第五章 相似矩阵及二次型(8学时)

(一)教学内容

1、向量的内积,长度及正交性

2、方阵的特征值与特征向量

3、相似矩阵

4、实对称阵的相似对角阵

5、二次型及其标准形

6、用配方法化二次型为标准形

7、正定二次型

8、习题课

(二)基本要求

1、理解矩阵的特征值和特征向量的概念,并掌握其求法。

2、了解相似矩阵的概念和性质。

3、了解矩阵对角化的充要条件,会求实对称阵的相似对角阵。

4、掌握将线性无关向量组正交规范化的施密特(Schmidt)法。

5、掌握二次型及其矩阵表示法。

6、掌握用正交变换法化二次型为标准形。

7、了解惯性定律、二次型的秩、二次型的正定性及其判别法。

五.教学方法及手段

采用启发式教学方法,配合多媒体教学,充分使用现代化教学手段。

六.考核方式及考核方法

考核方式为“闭卷考试”。成绩评定:平时成绩30%+考核成绩70%。

七.其它说明

如果条件允许,可以安排一定学时的数学实验课,用MATLAB语言实现一些繁琐的计算,如矩阵求逆、线性方程组求解等。

(制定人: 徐江 审定人: 章婷芳)

第三篇:《线性代数A》教学大纲

《线性代数A》教学大纲

课程中文名称:线性代数A

课程性质: 必修 课程英文名称:Linear Algebra A

总学时:48学时, 其中课堂教学48学时 先修课程:初等数学

面向对象:全校理工科学生(包括财经类等文科专业)开课系(室):数学科学系

一.课程性质、目的和要求

线性代数是理工科及财经管理类本科生必需掌握的一门基础课,通过本课程的学习使学生掌握行列式的计算、矩阵理论、向量组和向量空间基本概念,用矩阵理论求解线性方程组、及用线性方程组解的结构理论讨论矩阵的对角化并进一步研究二次型,使学生掌握本课程的基本理论和方法,培养和提高逻辑思维和分析问题解决问题的能力,并为学习相关课程与进一步扩大知识面奠定必要的、必需的基础。

二、课程内容及学时分配 1.行列式(6学时)教学要求:了解行列式的定义、掌握行列式的基本性质。会应用行列式性质和行列式按行(列)展开定理进行行列式计算。

重点:行列式性质

难点:行列式性质和行列式按行(列)展开定理的应用 2.矩阵(12学时)

教学要求:理解矩阵的概念、掌握单位矩阵、对角矩阵与对称矩阵的性质。掌握矩阵的线性运算、乘法、方阵行列式、转置的定义及其运算规律。理解逆矩阵的概念及其性质,熟练掌握逆矩阵的求法。熟练掌握矩阵的初等变换及其应用。理解矩阵秩的概念并掌握其求法。了解满秩矩阵的定义及其性质。了解分块矩阵及其运算。

重点:矩阵的线性运算、矩阵的乘法、逆矩阵的求法、矩阵的初等变换 难点:矩阵的秩,矩阵的分块 3.向量组和向量空间(10学时)

教学要求:理解n维向量的概念及其运算。理解向量组的线性相关、线性无关与线性表示等概念,了解并会用向量组线性相关、线性无关的有关性质及判别法。了解向量组的极大线性无关组和秩的概念,并会求向量组的秩。了解n维向量空间及其子空间、基、维数与坐标等概念。了解向量的内积、长度与正交等概念,会用施米特正交化方法把向量组正交规范化。了解规范正交基、正交矩阵的概念、以及它们的性质。

重点:n维向量的概念、线性相关、线性无关、极大线性无关组、向量组秩的概念 难点:线性无关的相关证明、向量组秩的概念、向量空间 4.线性方程组(8学时)教学要求:掌握克莱姆法则。理解非齐次(齐次)线性方程组有解(有非零解)的充分必要条件。理解非齐次(齐次)线性方程组解的结构与通解(基础解系与通解)等概念。熟练掌握用初等变换法解线性方程组。

重点:初等变换法解线性方程组、解结构理论 难点:解结构理论及应用

5.相似矩阵与二次型(12学时)

教学要求:理解矩阵的特征值与特征向量的概念,会求矩阵的特征值和特征向量;理解相似矩阵的概念、性质与矩阵可对角化的条件。了解实对称矩阵的特征值和特征向量的性质,掌握用相似变换化矩阵为对角矩阵的方法。了解正交变换的概念及其性质。掌握二次型的矩阵表示,掌握用正交变换化二次型为标准型的求法。了解惯性定律及二次型为正定的判别法。

重点:矩阵的特征值、特征向量,方阵的对角化,二次型化为标准型的方法 难点:方阵的对角化及相关应用

三、说明

本大纲参照原国家教委颁发的高等学校线性代数课程教学要求编制,还参考2002年全国硕士研究生入学统一考试线性代数课程考试大纲。根据不同专业的特点和需要,内容和侧重点可有所不同。教学方法以课堂教学为主,如果时间允许,可介绍用Matlab求解线性代数中某些问题的方法。课程考试以闭卷考试形式;考查课可选用其它方式。行列式、矩阵、特征值、特征向量都是非常重要的知识,在学时有限的情况下,对这些内容应该重点讲解,务使学生理解和掌握。

四、推荐教材及参考书 教材:

《线性代数简明教程》(第二版)陈维新编著 科学出版社 参考书: 《线性代数》(第一版)苏德矿 裘哲勇主编 高等教育出版社 《线性代数》(第四版)同济大学数学教研室编 高等教育出版社 《线性代数》 清华大学编 高等教育出版社 《高等代数》 北京大学编 高等教育出版社

执笔:周永华

审稿:胡觉亮

审定:浙江理工大学理学院教学委员会

2008.10 2

第四篇:线性代数教学大纲

《线性代数》教学大纲

课程名称:《线性代数》 英文名称:Linear Algebra 课程性质:学科教育必修课 课程编号:D121010 所属院部:城市与建筑工程学院 周 学 时:3学时 总 学 时:48学时 学

分:3学分

教学对象(本课程适合的专业和年级): 给排水科学与工程与土木工程专业二年级学生

课程在教学计划中的地位作用:高等学校各专业的一门重要的基础理论课 教学方法:讲授 教学目的与任务

线性代数是讨论代数学中线性关系经典理论的课程,它具有较强的抽象性与逻辑性,是高等学校本科各专业的一门重要的基础理论课。

通过本课程的教学,使得学生在系统地获取线性代数的基本知识、基本理论与基本方法的基础上,初步熟悉和了解抽象的、严格的代数证明方法,理解具体与抽象、特殊与一般的辩证关系,提高抽象思维、逻辑推理的能力,并具有较熟练的运算能力。学会理性的数学思维技术和模式,培养学生的创新意识和能力,能运用所获取的知识去分析和解决问题,并为后继课程的学习和进一步深造打下良好的基础。

课程教材:同济大学数学系编《工程数学线性代数》(第六版),高等教育出版社

参考书目:

1、上海交通大学数学系线性代数课程组编.线性代数(第二版).北京:高等教育出版社,2012.2、吴赣昌主编.线性代数(理工类.第四版).北京:中国人民大学出版社,2011.3、杨刚、吴惠彬主编.线性代数.北京:高等教育出版社,2008.考核形式:考试

编写日期:2018年9月制定

课程内容及学时分配(含教学重点、难点): 第1章 行列式(9学时)(1)教学目的和要求

了解行列式的定义和性质,掌握二、三阶列式的计算法,会计算简单n阶行列式,掌握克拉默法则。(2)主要内容

二阶与三阶行列式定义,并用它们解二元、三元线性方程组。从二阶、三阶行列式概念入手,用展开法引出n阶行列式定义,并介绍从定义出发求简单行列式的值。行列式的性质,并举例如何应用这些性质求行列式的值,行列式按某行(列)展开法则及其结论的推论,克拉默法则及其推论。(3)重点、难点

重点:二阶、三阶行列式的计算,四阶数字行列式的计算。难点:n阶行列式的计算。第2章 矩阵及其运算(9学时)(1)教学目的和要求

熟悉矩阵的概念,了解单位矩阵、对角矩阵及其性质,掌握矩阵的线性运算、乘法、转置及其运算规律,理解逆矩阵的概念,掌握逆矩阵存在的条件与矩阵求逆方法,了解分块矩阵及其运算。(2)主要内容

矩阵的定义、对角阵、单位阵、矩阵的加法及其运算规律,数与矩阵相乘及其运算规律、矩阵与矩阵的相乘及运算规律、矩阵的转置及运算规律、方阵的行列式及性质、逆矩阵定义、可逆条件、公式法求逆矩阵方法、分块矩阵定义及其运算。(3)重点、难点

重点:矩阵加、减、乘、逆的运算、逆矩阵存在条件与求逆矩阵的方法。难点:逆矩阵存在的充要条件。

第3章 矩阵的初等变换与线性方程组(6学时)(l)教学目的和要求

掌握矩阵的初等变换,熟悉矩阵秩的概念并掌握其求法,了解满秩矩阵、初等阵定义及其性质,了解线性方程组的求解方法。(2)主要内容

初等变换、行阶梯形矩阵、等价类、矩阵的秩、两矩阵等价条件、满秩矩阵、齐次线性方程组有非零解条件,非齐次线性方程组有解判别方法、求解方法、初等矩阵定义及性质、求逆矩阵的第二种方法。(3)重点、难点

重点:矩阵初等变换、求矩阵秩、利用初等变换求逆矩阵。难点:含参数的线性方程组的求解。第4章 向量组的线性相关性(12学时)(1)教学目的和要求

熟悉n维向量的概念,熟悉向量组线性相关、线性无关的定义,了解有关向量组线性相关、线性无关的重要结论,了解向量组的最大无关组与向量组的秩的概念,了解n维向量空间、子空间基底、维数等概念,理解齐次线性方程组的基础解系及通解等概念,理解非齐次线性方程组的解的结构及通解等概念,掌握用行初等变换求线性方程组通解的方法。(2)主要内容

n维向量及例子、线性组合、线性表示、向量组等价、线性相关、线性无关的概念及重要结论、最大线性无关组、有关秩的重要结论、向量空间、基、维数、齐次线性方程组的性质、基础解系概念及求法、非齐次性方程组的解的性质、解的结构.用行初等变换求线性方程组通解的方法。(3)重点、难点

重点:线性相关性、最大线性无关组、用行初等变换求线性方程组的通解的方法。难点:线性相关性证明。

第5章 相似矩阵及 二次型(12学时)(1)教学目的和要求

熟悉矩阵的特征值与特征向量的概念,会求矩阵的特征值与特征向量,了解相似矩阵的概念、性质及矩阵对角化的充要条件,会求与实对称矩阵相似的对角形矩阵,了解把线性无关的向量组正交规范化的施密特(Smidt)方法,了解正交矩阵概念及性质,了解二次型及其矩阵表示,了解二次型的秩的概念,会用正交变换法化二次型为标准型,了解二次型的正定性及其判别法。(2)主要内容

向量内积、正交向量组及性质、施密特正交化过程、规范正交基、正交变换、特征值、特征向量、特征方程、特征多项式、特征值、特征向量的性质、相似矩阵、相似变换、相似矩阵的性质、方阵的对角化条件、对称矩阵特征值性质、对称矩阵的对角化、二次型定义及矩阵表示、二次型的秩、二次型可化为标准型、配方法化二次型为标准到举例、正定二次型概念及判定。(3)重点、难点

重点:矩阵的特征值与特征向量、对称矩阵化为对角矩阵。难点:矩阵可对角化的有关结论。

第五篇:《线性代数》教学大纲06-07

《线性代数》教学大纲

英文名称:Linear Algebra

学分:2.5学分学时:40学时

先修课程:高等数学

教学对象:

理工科、管理类专业学生

教学目的:

通过本课程教学使学生获得后继课程中经常出现的矩阵、线性方程组、二次型、线性空间与线性变换等方面的理论知识,熟练掌握矩阵运算、运用初等变换求解线性方程组以及线 性无关向量组正交规范化等基本方法。

教学要求:

掌握n阶行列式,矩阵,向量组,二次型与线性空间与线性变换等概念,会计算n阶行列式,会进行矩阵的各种运算,求矩阵的秩,会判别向量组的线性相关性,求解线性方程组,判别相似矩阵,将矩阵对角化及判定二次型的正定性等。

教学内容:

第一章行列式(5课时)

§1.n阶行列式

§2.n阶行列式的性质

§3.行列式的计算

§4.克莱姆(Cramer)法则

基本要求:

要求学生掌握n阶行列式的概念与性质,并能熟练运用它们完成一些简单的n阶行列式的计算。

重点:

n阶行列式的概念、性质与应用。

难点:

用性质计算n阶行列式的值。

第二章矩阵(8课时)

§1.矩阵的概念

§2.矩阵的运算

§3.可逆矩阵

§4.分块矩阵

§5.矩阵的初等变换与初等矩阵

基本要求:

熟练掌握矩阵的运算,理解乘法运算的不可交换性。掌握逆阵概念及其存在的充分必要

条件,会用伴随矩阵法与初等变换法求逆阵。理解矩阵分块在矩阵运算中的作用,会在实际运算中利用矩阵分块的思想去解决问题。建议在讲授本章时适当结合专业知识,例如矩阵的代数运算在钢结构及测量平差中的应用,逆阵在荷载组合中的应用等等。

重点:

矩阵的乘法运算;可逆矩阵概念;初等变换与初等矩阵。

难点:

初等变换与初等矩阵关系;

第三章向量组的线性相关性与矩阵的秩(9课时)

§1.n 维向量

§2.线性相关与线性无关

§3.向量组的秩与等价向量组

§4.矩阵的秩 相抵标准型

§5.n 维向量空间

§6.向量的内积与正交矩阵

基本要求:

掌握向量组的线性相关和线性无关概念,要求学生正确理解这一概念及有关结论并能做一些简单的判断与证明题。理解向量组的极大线性无关组,矩阵的秩、向量组的秩等概念与它们之间的联系,熟练地用矩阵的初等变换方法求向量组的极大线性无关组与矩阵的秩。了解向量空间的概念。

重点:

向量组的线性相关和线性无关概念。

难点:

在理解向量组的相关性概念的基础上,会用矩阵的初等变换或方程组求解的方法判断或证明向量组的线性相关性。

第四章线性方程组(4课时)

§1.齐次线性方程组

§2.非齐次线性方程组

基本要求:

掌握对这两类线性方程组有非零解和有解的充要条件,要求学生除理解方程组有关解空间的理论外,要能在实际计算中能正确运用初等行变换的方法求解线性方程组。重点:

方程组有关解空间的理论与线性方程组求解。

难点:

方程组有关解空间的理论与性质。

第五章特征值与特征向量 矩阵的对角化(5课时)

§1.特征值与特征向量

§2.相似矩阵和矩阵的对角化

§3.实对称矩阵的对角化

基本要求:

理解矩阵的特征值与特征向量的概念及其解决工程技术问题的实际背景,会求矩阵的特征值与特征向量,并能从此出发判别矩阵是否可以对角化。

重点:

特征值与特征向量的概念;矩阵对角化的方法。

难点:

特征值与特征向量的性质和应用。

第六章二次型(5课时)

§1.二次型

§2.化二次型为标准形

§3.惯性定理

§4.正定二次型与正定矩阵

基本要求:

理解二次型、化二次型为标准形等概念。了解化二次型为标准形的两种方法,其一是配方法,其二是正交变换的方法。了解惯性定理的内容。会判别二次型的正定性。对二次型在力学系统稳定性等实际问题的讨论中起着重要作用,应给予足够的重视。

重点:

化二次型为标准形的正交变换的方法,二次型的正定性。

难点:

化二次型为标准形的正交变换的方法的应用背景。

第七章线性空间与线性变换(4课时)

§1.线性空间的定义与性质

§2.线性空间的维数、基与坐标

§3.基变换与坐标变换

§4.欧氏空间

§5.线性变换

§6.线性变换的矩阵表示

基本要求:

线性空间的定义与性质,掌握线性空间的维数、基、坐标,基变换与坐标变换等概念,了解线性变换,线性变换的矩阵表示。

重点:

线性空间与线性变换的定义与性质。

难点:

线性空间基变换与坐标变换;线性变换的矩阵表示。

参考教材:

1.教科书

《线性代数》,南京工业大学计算科学系编,化学工业出版社,2003年。

2.参考书

《线性代数学习指导》,南京工业大学计算科学系编,化学工业出版社,2006年。《线性代数》(第三版),同济大学数学教研室编,高等教育出版社,2003年。《高等数学》(第四版),同济大学数学教研室主编,高等教育出版社,2003年。

下载线性代数与空间几何,教学大纲word格式文档
下载线性代数与空间几何,教学大纲.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    线性代数课程教学大纲(范文大全)

    线性代数课程教学大纲 课程代号:13020111 学时数:32 适用专业:工科本科各专业 一、本课程的性质、目的和任务 1、本课程的性质 线性代数是讨论代数中线性关系经典理论的课程。......

    《线性代数B》教学大纲

    《线性代数B》教学大纲 课程中文名称:线性代数B 课程性质: 必修 课程英文名称:Linear Algebra B 总学时:32学时其中课堂教学32学时 先修课程:初等数学 面向对象:部分工科专业学生......

    《线性代数》课程教学大纲

    《线性代数》课程教学大纲 课程编码: 414002(A) 课程英文名称: Linear Algebra 先修课程: 微积分 适用专业: 理科本科专业 总学分:3.5 总学时:56 讲课学时 56 实验学时 0 实习学时......

    线性代数课程教学大纲

    线性代数课程教学大纲 本课程地位(作用)和任务: 线性代数是讨论代数学中线性关系经典理论的课程,它的基本概念、理论和方法具有较强的抽象性、逻辑性和广泛的适用性,是理、工、经......

    自考线性代数教学大纲

    《线性代数(经管类)》教学大纲 中文名称:《线性代数(经管类)》 英文名称:Linear Algebra 课程编号:04184 课程性质:专业课 课程类别:必修课 学 分:4 总学时数:64 周学时数:4 适用专业及......

    线性代数与空间解析几何期末考试题

    … 2011~2012学年第二学期课程考试试卷(A卷) ………课程 线性代数与空间解析几何B考试时间 2012 年7 月2 日 ……………………注:请将答案全部答在答题纸上,直接答在试卷上无效。......

    空间几何证明

    立体几何中平行、垂直关系证明的思路平行垂直的证明主要利用线面关系的转化: 线∥线线∥面面∥面性质判定线⊥线线⊥面面⊥面 线∥线线⊥面面∥面线面平行的判定: a∥b,b面,aa......

    线性代数与概率论课程教学大纲5篇

    线性代数与概率论 课程教学大纲 一、课程说明 (一)课程名称、所属专业、课程性质、学分;课程名称:线性代数与概率论所属专业:材料物理与材料化学课程属性:必修学分:4 (二)课程简介、......