思想方法在初中数学中的作用,在教学中如何渗透转化、分类讨论思想和数形结合思想的,请各举一教学片段说明(大全五篇)

时间:2019-05-12 23:19:27下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《思想方法在初中数学中的作用,在教学中如何渗透转化、分类讨论思想和数形结合思想的,请各举一教学片段说明》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《思想方法在初中数学中的作用,在教学中如何渗透转化、分类讨论思想和数形结合思想的,请各举一教学片段说明》。

第一篇:思想方法在初中数学中的作用,在教学中如何渗透转化、分类讨论思想和数形结合思想的,请各举一教学片段说明

数学思想方法是数学基础知识的重要组成部分,它反映了数学的本质特征,是对数学概念、原理和方法的本质认识,是分析和处理数学问题的指导思想。下面就分类讨论、数形结合数学思想进行探讨。

一.分类讨论思想

在解答某些数学问题时,有时会有多种情况,对各种情况加以分类,并逐类求解,然后综合求解,这就是分类讨论法。分类讨论是一种逻辑方法,也是一种数学思想。有关分类讨论思想的数学问题具有明显的逻辑性、综合性、探索性,能训练人的思维条理性和概括性,所以在试题中占有重要的位置。

分类评论的一般步骤是:明确讨论对象,确定对象的全体→确定分类标准,正确进行分类→逐步进行讨论,获取阶段性结果→归纳小结,综合得出结论。

分类讨论应遵循的原则:分类的对象是确定的,标准是统一的,不遗漏,不重复,分层次,不越级讨论。

当某个问题有多种情况出现或推导结果不唯一确定时,常运用分类讨论,再加以集中归纳。例如:对|a|要去掉绝对值符号,应讨论绝对值内部式子的符号,要分三种情况去掉绝对值符号。几何中也存在着一些数学和位置关系的分类讨论。

例1:甲、乙两人骑自行车,同时从相距75km的两地相向而行,甲的速度为15km/n,乙的速度为10km/n,经过多少小时甲、乙两人相距25km?

简析:甲、乙两人相遇前后都会相距25km。分两种情况解答。

例2:在同一图形内,画出∠AOB=60°,∠COB=50°,OD是∠AOB的平分线,OE是∠COB的平分线,并求出∠DOE的度数。简析:分∠COB在∠AOB的内部和外部两种情形总图。

二。数形结合思想

数形结合思想是指看到图形的一些特征可以想到数学式子中相应的反映,是看到数学式子的特征就能联想到在图形上相应的几何表现。如教材引入数轴后,就为数形结合思想奠定了基础。如有理数的大小比较,相反数和绝对位的几何意义,列方程解应用题的画图分析等,这种抽象与形象的结合,能使学生的思维得到训练。

数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷。

所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想,实现数形结合,常与以下内容有关:(1)实数与数轴上的点的对应关系;(2)函数与图象的对应关系;(3)曲线与方程的对应关系;(4)以几何元素和几何条件为背景建立起来的概念,如复数、三角函数等;(5)所给的等式或代数式的结构含有明显的几何意义。如等式。

纵观多年来的中考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。

例1:如图所示:比较a,-a,b,-b的大小

简析:在数轴上指出-a,-b两个数表示的点,四数大小关系就一目了 然。

例2:有一十字路口,甲从路口出发向南直行,乙从路口以西1500米处向东直行,已知甲、乙同时出发,10分钟后两人第一次距十字路口的距离相等,40分钟后两人再次距十字路口距离相等,求甲、乙两人的速度。

简析:画出“十字”图,分析表示出两人在10分钟、40分钟时的位置,由图分析从而列出方程组。

总之,在数学教学中,切实把握好上述几个典型的数学思想方法,同时注重渗透的过程,依据课本内容和学生的认识水平,有计划有步骤地渗透,使其成为由知识转化为能力的纽带,成为提高学生的学习效率和数学能力的法宝。

第二篇:在数学教学中如何渗透数形结合思想

在数学教学中渗透数形结合思想

在数学教学中,教师如果能灵活地借助数形结合思想,会将数学问题化难为易,帮助学生理解数学问题。那么,如何在初中数学教学中挖掘数形结合思想并适时地加以应用呢?下面笔者根据日常的教学实践谈谈自己的见解。

一、从有理数开始就让中学生及早体会数形结合思想

在七年级开始,数轴的引入就大大丰富了有理数的内容,对学生认识有理数、相反数、绝对值以及有理数的运算都有很大的帮助,由于对每一个有理数,数轴上都有唯一确定的点与它对应,因此,两个有理数大小的比较,是通过这两个有理数在数轴上的对应点的位置关系进行的。相反数、绝对值概念则是通过相应的数轴上的点与原点的位置关系来刻划的。尽管我们学习的是有理数,但我们要求学生时刻牢记它的形:数轴上的点。通过渗透数形结合的思想方法,帮助学生正确理解有理数的性质及其运算法则。

例如:

1、比较两个数的大小方法:数轴上两个点表示的数,右边的数总比左边的大,正数大于零,负数小于0,正数大于负数;

2、比2℃低5℃的温度是_______;

3、若|a|=2,则a=______;

4、七年级《数学》(上)的习题,一辆货车从超市出发,向东走了3千米到达小彬家,继续走了1.5千米到达小颖家,然后向西走了9.5千米到达小明家,最后回到超市。在习题中也常出现这类题目。

这些内容如果适当应用数形结合的思想就很容易理解掌握了。

二、不等式(组)内容蕴藏着数形结合思想

在进行 “一元一次不等式和一元一次不等式组”,教学时,为了加深学生对不等式解集的理解,老师要适时地把不等式的解集在数轴上直观地表示出来,使学生形象地看到,不等式有无限多个解。这里蕴藏着数形结合的重要思想方法,在数轴上表示数是数形结合思想的具体体现,而在数轴上表示数集,则比在数轴上表示数又前进了一步。确定一元一次不等式组的解集时,利用数轴更为有效,如:在分析不等式组的解集情况时,如果老师利用数轴把数转化为“形”从而找出两个不等式的公共解,教学效果会事倍功半。如果老师能结合数轴,画图表示各个不等式的解集,就很容易写出不等式组几种类型的解集。

三、应用题的内容也隐含丰富的数形结合思想。

用示意图分析数学问题,就是运用数形结合思想的充分体现。小学教师在帮助学生分析解应用题,尤其有关行程问题、工程问题等方面的内容时,都不忘用示意图。而到了中学,学生的理解分析能力都有了很大的提高,应用题的内容更为丰富了,复杂了、难度更大了,并且其难点是如何根据题意寻找等量关系布列方程,要突破这一难点,老师在教学中必须充分运用数形结合思想,根据题意画出相应的示意图,才能帮助学生迅速找出等量关系列出方程,从而突破难点。数形结合的思想,是最基本的数学思想之一,应用范围较为广泛,因此我们数学老师在教学中要注重数形结合思想方法的渗透、概括和总结,要重视数学思想方法在解题中的应用,数与形是数学中相互依赖的两个方面,在教学中要挖掘数与形的联系,从而加深对所学知识的理解和掌握。

第三篇:“转化思想”片段教学设计以及在数学教学中渗透这些教学思想SXGP055

1、课题是“圆的面积” 六年级上册

2、教学片段:尝试转化,推导公式(1).确定“转化”的策略。

师:同学们,你们想一想,当我们还不会计算平行四边形的面积的时候,是利用什么方法推导出了平行四边形的面积计算公式呢?

引导学生明确:我们是用“割补法”将平行四边形转化成长方形的方法推导出了平行四边形的面积计算公式。

师:同学们再想想,我们又是怎样推导出三角形的面积计算公式的呢? 师:对了,我们学过梯形、三角形“转化”成其它图形的方法来推导出它们的面积计算公式。(2).尝试“转化”。

师:那么,怎样才能把圆形转化为我们已学过的其它图形呢? 学生利用这种近似三角形拼组图形会有一定的难度,教师要加强巡视和有针对性的指导,既鼓励学生拼出自己想象中的图形,又要引导他们拼出最简单、最容易计算面积的图形。一般情况下,学生会拼出如下三种图形:长方形、三角形、梯形

好,各个小组都不错。现在请同学们思考一个问题:你们把一个圆形“转化”成了现在的图形之后,它们的面积有没有改变?请小组内讨论。师:谁来告诉大家,它们的面积有没有改变?

师:是的,没有改变,就是说:这个近似的长方形的面积=圆的面积。

师:虽然我们现在拼成的是一个近似的长方形,但是如果把圆等分成32份、64份、128份、256份„„一直这样下去分成很多很多份,拼成的图形就变为真正的长方形。

3、分析教学设计及渗透教学思想:在圆的面积的教学是在学生初步学会运用“转化的思想”推导平行四边形、三角形、梯形面积公式的基础上进行教学的。由于是在前学期学过,所以在课前进行“转化的思想”的重现,让学生把新知识转为旧知识,根椐直观形象的图形“转化的方法”很快在头脑中重新形成表象。这样的设计,一方面是为了激发学生的学习兴趣,另一方面是为了复习迁移,再现“转化的思想”思维,为圆转化为近似长方形等图形提前作好准备。在强烈的求知欲望驱使下,学生凭借已有的生活经验和知识经验,发挥自己地想象,从估计到公式的推导;从已有地平行四边形、长方形面积公式推导出圆面积公式等等这一系列活动引导学生参与并讨论从而形成结论这“层层递进推导方法”就是“转化的思想”在数学教学中进行渗透最理想的方式了。在这里既让学生领悟的“转化”的方法,又培养学生探索创新能力,又进而提高学生解决问题的方法。难道这不是一举多得的教学方法的体现吗?

第四篇:初中数学教学中如何渗透数形结合的思想

数学源于生活,又高于生活,要想把数学学好,就需要把它回归到生活中去,这样才能让学生对它产生兴趣,提高学习的效率。学习离不开思维,数学探索需要通过思维来实现,在初中数学教学中逐步渗透数学思想方法,培养思维能力,形成良好的数学思维习惯,既符合新的课程标准,也是进行数学素质教育的一个切入点。“数缺形,少直观;形缺数,难入微”,数形结合的思想,就是研究数学的一种重要的思想方法,它是指把代数的精确刻划与几何的形象直观相统一,将抽象思维与形象直观相结合的一种思想方法。

1、渗透数形结合的思想,养成用数形结合分析问题的意识

每个学生在日常生活中都具有一定的图形知识,如刻度尺与它上面的刻度,温度计与其上面的温度,教室里每个学生的坐位,行政地图等等,我们利用学生的这一认识基础,把生活中的形与数相结合迁移到数学教学中来,在教学中进行数形结合思想的渗透。如数与数轴,一对有序实数与平面直角坐标系,一元一次不等式的解集与一次函数的图象,二元一次方程组的解与一次函数图象之间的关系等,都是渗透数形结合思想的很好机会。让学生理解数形结合思想在解决问题中的应用。为下面进一步学习数形结合思想奠定基础。

2、学习数形结合思想,增强解决问题的灵活性,提高分析问题、解决问题的能力在教学中渗透数形结合思想时,应让学生了解,所谓数形结合就是找准数与形的契合点,根据对象的属性,将数与形巧妙地结合起来,有效地相互转化,就成为解决问题的关键所在。数形结合的结合思想主要体现在以下几种:(1)用方程、不等式或函数解决有关几何量的问题;(2)用几何图形或函数图象解决有关方程或函数的问题;(3)解决一些与函数有关的代数、几何综合性问题;(4)以图象形式呈现信息的应用性问题。

第五篇:在初中数学教学中渗透数学思想和数学方法

一、了解《大纲》要求,把握教学方法

所谓数学思想,就是对数学知识和方法的本质认识,是对数学规律的理性认识。所谓数学方法,就是解决数学问题的根本程序,是数学思想的具体反映。数学思想是数学的灵魂,数学方法是数学的行为。运用数学方法解决问题的过程就是感性认识不断积累的过程,当这种量的积累达到一定程序时就产生了质的飞

跃,从而上升为数学思想。若把数学知识看作一幅构思巧妙的蓝图而建筑起来的一座宏伟大厦,那么数学方法相当于建筑施工的手段,而这张蓝图就相当于数学思想。

1、明确基本要求,渗透“层次”教学。《数学大纲》对初中数学中渗透的数学思想、方法划分为三个层次,即“了解”、“理解”和“会应用”。在教学中,要求学生“了解”数学思想有:数形结合的思想、分类的思想、化归的思想、类比的思想和函数的思想等。这里需要说明的是,有些数学思想在教学大纲中并没有明确提出来,比如:化归思想是渗透在学习新知识和运用新知识解决问题的过程中的,方程(组)的解法中,就贯穿了由“一般化”向“特殊化”转化的思想方法。

教师在整个教学过程中,不仅应该使学生能够领悟到这些数学思想的应用,而且要激发学生学习数学思想的好奇心和求知欲,通过独立思考,不断追求新知,发现、提出、分析并创造性地解决问题。在《教学大纲》中要求“了解”的方法有:分类法、类经法、反证法等。要求“理解”的或“会应用”的方法有:待定系数法、消元法、降次法、配方法、换元法、图象法等。在教学中,要认真把握好“了解”、“理解”、“会应用”这三个层次。不能随意将“了解”的层次提高到“理解”的层次,把“理解”的层次提高到“会应用”的层次,不然的话,学生初次接触就会感到数学思想、方法抽象难懂,高深莫测,从而导致他们推动信心。如初中几何第三册中明确提出“反证法”的教学思想,且揭示了运用“反证法”的一般步骤,但《教学大纲》只是把“反证法”定位在“了解”的层次上,我们在教学中,应牢牢地把握住这个“度”,千万不能随意拔高、加深。否则,教学效果将是得不偿失。

2、从“方法”了解“思想”,用“思想”指导“方法”。关于初中数学中的数学思想和方法内涵与外延,目前尚无公认的定义。其实,在初中数学中,许多数学思想和方法是一致的,两者之间很难分割。它们既相辅相成,又相互蕴含。只是方法较具体,是实施有关思想的技术手段,而思想是属于数学观念一类的东西,比较抽象。因此,在初中数学教学中,加强学生对数学方法的理解和应用,以达到对数学思想的了解,是使数学思想与方法得到交融的有效方法。比如化归思想,可以说是贯穿于整个初中阶段的数学,具体表现为从未知到已知的转化、一般到特殊的转化、局部与整体的转化,课本引入了许多数学方法,比如换元法,消元降次法、图象法、待定系数法、配方法等。在教学中,通过对具体数学方法的学习,使学生逐步领略内含于方法的数学思想;同时,数学思想的指导,又深化了数学方法的运用。这样处置,使“方法”与“思想”珠联璧合,将创新思维和创新精神寓于教学之中,教学才能卓有成效。

二、遵循认识规律,把握教学原则,实施创新教育

要达到《教学大纲》的基本要求,教学中应遵循以下几项原则:

1、渗透“方法”,了解“思想”。由于初中学生数学知识比较贫乏,抽象思想能力也较为薄弱,把数学思想、方法作为一门独立的课程还缺乏应有的基础。因而只能将数学知识作为载体,把数学思想和方法的教学渗透到数学知识的教学中。教师要把握好渗透的契机,重视数学概念、公式、定理、法则的提出过程,知识的形成、发展过程,解决问题和规律的概括过程,使学生在这些过程中展开思维,从而发展他们的科学精神和创新意识,形成获取、发展新知识,运用新知识解决问题。忽视或压缩这些过程,一味灌输知识的结论,就必然失去渗透数学思想、方法的一次次良机。如初中代数课本第一册《有理数》这一章,与原来部编教材相比,它少了一节——“有理数大小的比较”,而它的要求则贯穿在整章之中。在数轴教学之后,就引出了“在数轴上表示的两个数,右边的数总比左边的数大”,“正数都大于0,负数都小于0,正数大于一切负数”。而两个负数比大小的全过程单独地放在绝对值教学之后解决。教师在教学中应把握住这个逐级渗透的原则,既使这一章节的重点突出,难点分散;又向学生渗透了形数结合的思想,学生易于接受。

在渗透数学思想、方法的过程中,教师要精心设计、有机结合,要有意识地潜移默化地启发学生领悟蕴含于数学之中的种种数学思想方法,切忌生搬硬套,和盘托出,脱离实际等错误做法。比如,教学二次不等式解集时结合二次函数图象来理解和记忆,总结归纳出解集在“两根之间”、“两根之外”,利用形数结合方法,从而比较顺利地完成新旧知识的过渡。

2、训练“方法”,理解“思想”。数学思想的内容是相当丰富的

下载思想方法在初中数学中的作用,在教学中如何渗透转化、分类讨论思想和数形结合思想的,请各举一教学片段说明(大全五篇)word格式文档
下载思想方法在初中数学中的作用,在教学中如何渗透转化、分类讨论思想和数形结合思想的,请各举一教学片段说明(大全五篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    在数学教学中渗透数学建模思想

    在数学教学中渗透数学建模思想,利用数型结合法解决实际问题 邹城市石墙中学 王保顺 2012年7月16日 11:06 数学可以帮助人们更好地探求客观世界的规律,并对现代社会中大量纷繁......

    浅议数学思想和方法在初中教学中的渗透(精选合集)

    浅议数学思想和方法在初中教学中的渗透 初中数学教育论文 九年义务教育全日制初级中学数学《新课程标准》中指出:教师应激发学生的学习积极性,向学生提供充分从事数学活动......

    如何在教学中渗透数学模型思想

    如何在教学中渗透数学模型思想“数学模型思想作为一种重要的数学思想方法之一, 它更多体现的是一种思维方式和品质, 相对于数学模型而言, 作为一种意识形态的模型思想更加关......

    浅谈在教学中数学思想方法的渗透

    初中数学教学论文 浅谈教学中数学思想方法的渗透 [内容摘要] 数学教学中必须重视思想方法的教学,它是数学教育教学本身的需要,是以人为本的教育理念下培养学生素养为目标的......

    在小数乘除法教学中渗透转化思想

    河池市罗城仫佬族自治县乔善乡中心小学 潘小彦 【关键词】乘除法 小学数学 转化思想 【中图分类号】G 【文献标识码】A 【文章编号】0450-9889(2015)01A-0062-01 小学数学中......

    在数学教学中渗透基本的数学思想

    美国教育心理家布鲁纳指出:掌握基本的数学思想方法,能使数学更易于理解和更利于记忆,领会基本数学思想和方法是通向迁移大道的“光明之路”。在小学数学教育中有意识地向学生......

    在小学数学教学中渗透数学建模思想

    在小学数学教学中渗透数学建模思想 从教十多年以来,深刻领悟到“授之以渔”的重要性。教师在教学过程中要采取有效措施,加强数学建模思想的渗透,提高学生的学习兴趣,培养学生用......

    数学建模思想在教学中的渗透

    数学建模思想在教学中的渗透 教学建模是一个比较复杂和富有挑战的过程,用数学建模的思想来指导小学数学教学,不同的年级、内容、学习对象应该体现出一定的差异,但也存在着很大......