平面向量共线问题的深入研究

时间:2019-05-12 18:07:47下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《平面向量共线问题的深入研究》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《平面向量共线问题的深入研究》。

第一篇:平面向量共线问题的深入研究

库尔勒市实验中学高一数学组编写人:史蕾

平面向量共线问题的深入研究

【学习目标】

1、掌握三点共线的证明方法。

2、两向量共线时,能根据题意选择合适的方法解决问题。

【前置研究】

1探究

一、假设A(1,5),B(,4),C(0,3),你能想出几种方法能证明它们三2

点共线?哪种方法最简便?

探究

二、只读题,不做题。看看下面两题三问各有几种方法解答。

1、已知a=(1,2),b=(-3,2),① 当k为何值时,ka+b与a-3b平行?

②平行时它们是同向还是反向?

2、已知a=(3,2-m)与b=(m,-m)平行,求m的值。

【我的例题】请根据以上两个探究的发现,自拟一道类似的题目并解答。

第二篇:平面向量复习题

平面 向 量

向量思想方法和平面向量问题是新考试大纲考查的重要部分,是新高考的热点问题。题型多为选择或填空题,数量为1-2题,均属容易题,但是向量作为中学数学中的一个重要工具在三角、函数、导数、解几、立几等问题解决中处处闪光。最近几年的考试中向量均出现在解析几何题中,在解析几何的框架中考查向量的概念和方法、考查向量的运算性质、考查向量几何意义的应用,并直接与距离问题、角度问题、轨迹问题等相联系。近年考纲又新增“平面向量在几何中的应用”试题进一步要求我们具备多角度、多方向地分析,去探索、去发现、去研究、去创新,而不是去做大量的模仿式的解题。一个问题解决后,不能匆匆而过,回顾与反思是非常有必要的,以充分发挥每一道题目的价值。除了要重视一题多解外,更要重视一题多变,主动探索:条件和结论换一种说法如何?变换一个条件如何?反过来又会怎么样?等等。只有这样才能做到举一反三,以不变应万变。

一、高考考纲要求

1.理解向量的概念,掌握向量的几何表示,了解共线向量的概念.

2.掌握向量的加法与减法.

3.掌握实数与向量的积,理解两个向量共线的充要条件.

4.了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算.

5.掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件.

6.掌握平面两点间的距离公式,掌握线段的定比分点和中点公式,并且能熟练运用;掌握平移公式.

二、高考热点分析

在高考试题中,对平面向量的考查主要有三个方面:

其一是主要考查平面向量的概念、性质和运算法则,理解和运用其直观的几何意义,并能正确地进行计算。其二考查向量坐标表示,向量的线性运算。

其三是和其他知识结合在一起,在知识的交汇点设计试题,考查向量与学科知识间综合运用能力。

数学高考命题注重知识的整体性和综合性,重视知识的交互渗透,在知识网络的交汇点设计试题.由于向量具有代数和几何的双重身份,使它成为中学数学知识的一个交汇点,成为联系多项知识的媒介.因此,平面向量与其他知识的结合特别是与解析几何的交汇、融合仍将是高考命题的一大趋势,同时它仍将是近几年高考的热点内容.

附Ⅰ、平面向量知识结构表

1.考查平面向量的基本概念和运算律

1此类题经常出现在选择题与填空题中,主要考查平面向量的有关概念与性质,要求考生深刻理解平面向量的相关概念,能熟练进行向量的各种运算,熟悉常用公式及结论,理解并掌握两向量共线、垂直的充要条件。1.(北京卷)| a |=1,| b |=2,c = a + b,且c⊥a,则向量a与b的夹角为

A.30°

B.60°

C.120°

D.150°

()

2.(江西卷)已知向量

A.30°

(1,2),(2,4),||

B.60°,若()

C.120°,则与的夹角为

2()

D.150°

3.(重庆卷)已知A(3,1),B(6,1),C(4,3),D为线段BC的中点,则

A.

与的夹角为()

444

4B.arccos C.arccos()D.-arccos()

2555

5

4.(浙江卷)已知向量a≠e,|e|=1,对任意t∈R,恒有|a-te|≥|a-e|,则

arccos

()

A.a⊥e B.a⊥(a-e)

C.e⊥(a-e)D.(a+e)⊥(a-e)

.(上海卷)在△ABC中,若C90,ACBC4,则BABC 2.考查向量的坐标运算

1.(湖北卷)已知向量a=(-2,2),b=(5,k).若|a+b|不超过5,则k的取值范围是

A.[-4,6]

2.(重庆卷)设向量a=(-1,2),b=(2,-1),则(a·b)(a+b)等于

A.(1,1)

B.(-4,-4)

C.-4

D.(-2,-2)

()

()

B.[-6,4]

C.[-6,2]

D.[-2,6]

()



3.(浙江卷)已知向量a=(x-5,3),b=(2,x),且a⊥b,则由x的值构成的集合是

A.{2,3}

B.{-1,6}

C.{2}

D.{6}

例4.(2005年高考·天津卷·理14)在直角坐标系xOy中,已知点A(0,1)和点B(-3,4),若点C在∠AOB的平分线上且||=2,则OC=。



5.(全国卷)已知向量OA(k,12),OB(4,5),OC(k,10),且A、B、C三点共线,则k=.6.(湖北卷)已知向量a7.(广东卷)已知向量a

(2,2),b(5,k).若|ab|不超过5,则k的取值范围是

(2,3),b(x,6),且a//b,则x.3.平面向量在平面几何中的应用



ABAC

),[0,),则1.O是平面上一定点,A,B,C是平面上不共线的三个点,动点P满足OPOA(|AB||AC|

P的轨迹一定通过△ABC

A.外心的()B.内心

C.重心

D.垂心



2.(辽宁卷)已知四边形ABCD是菱形,点P在对角线AC上(不包括端点A,C),则AP等于()

A.(ABAD),(0,1)

B.(ABBC),(0,C.(ABAD),(0,1)

D.(ABBC),(0,

3.已知有公共端点的向量a,b不共线,|a|=1,|b|=2,则与向量a,b的夹角平分线平行的单位向量是.

4.已知直角坐标系内有三个定点A(2,1)、B(0,10)、C(8,0),若动点P满足:OPOAt(ABAC),tR,则点P的轨迹方程。

4.平面向量与三角函数、函数等知识的结合当平面向量给出的形式中含有未知数时,由向量平行或垂直的充要条件可以得到关于该未知数的关系式。在此基础上,可以设计出有关函数、不等式、三角函数、数列的综合问题。此类题的解题思路是转化为代数运算,其转化途径主要有两种:

①利用向量平行或垂直的充要条件,②利用向量数量积的公式和性质.1.(江西卷)已知向量(2cos

xxxx,tan()),(2sin(),tan()),令f(x).224242

4求函数f(x)的最大值,最小正周期,并写出f(x)在[0,π]上的单调区间.2.(山东卷)已知向量



m(cos,sin)

n

sin,cos,,2

,且

mn求



cos的值.28

3.(上海卷)已知函数

f(x)kxb的图象与x,y轴分别相交于点

A、B,22(,分别是与x,y轴正半

轴同方向的单位向量),函数g(x)

x2x6.f(x)g(x)时,求函数

(1)求k,b的值;(2)当x满足

g(x)

1的最小值.f(x)

【反思】这类问题主要是以平面向量的模、数量积、夹角等公式和相互知识为纽带,促成与不等式知识的相互迁移,有效地考查平面向量有关知识、不等式的性质、不等式的解法、不等式的应用及综合解题能力。

5.平面向量与解析几何的交汇与融合由于向量既能体现“形”的直观位置特征,又具有“数”的良好运算性质,是数形结合与转换的桥梁和纽带。而解析几何也具有数形结合与转换的特征,所以在向量与解析几何知识的交汇处设计试题,已逐渐成为高考命题的一个新的亮点。

平面几何与解析几何的结合通常涉及到夹角、平行、垂直、共线、轨迹等问题的处理,解决此类问题基本思路是将几何问题坐标化、符号化、数量化,从而将推理转化为运算;或者考虑向量运算的几何意义,利用其几何意义解决有关问题。主要包括以下三种题型:

1、运用向量共线的充要条件处理解几中有关平行、共线等问题

运用向量共线的充要条件来处理解几中有关平行、共线等问题思路清晰,易于操作,比用斜率或定比分点公式研究这类问

题要简捷的多。

2、运用向量的数量积处理解几中有关长度、角度、垂直等问题

运用向量的数量积,可以把有关的长度、角度、垂直等几何关系迅速转化为数量关系,从而“计算”出所要求的结果。

3、运用平面向量综合知识,探求动点轨迹方程,还可再进一步探求曲线的性质。

1.(江西卷)以下同个关于圆锥曲线的命题中 ①设A、B为两个定点,k为非零常数,|

PA||PB|k,则动点P的轨迹为双曲线;

(),则动点P的轨迹为椭圆; 2

②设定圆C上一定点A作圆的动点弦AB,O为坐标原点,若③方程2x

5x20的两根可分别作为椭圆和双曲线的离心率;

x2y2x2

1与椭圆y21有相同的焦点.④双曲线

25935

其中真命题的序号为(写出所有真命题的序号)



2.平面直角坐标系中,O为坐标原点,已知A(3,1),B(1,3),若点C满足OC0AOB,其中,R,且

1,则点C的轨迹方程为()

A.C.3x2y110B.(x1)2(y2)25 2xy0D.x2y50

2.已知平面上一个定点C(-1,0)和一条定直线l:x=-4,P为该平面上一动点,作PQ⊥l,垂足为Q,

(PQ+2PC)(PQ-2PC)=0.(1)求点P的轨迹方程;



PC的取值范围.(2)求PQ·

第三篇:平面向量中三点共线定理的应用与推广

龙源期刊网 http://.cn

平面向量中三点共线定理的应用与推广 作者:苏庆飞

来源:《数理化学习·高三版》2013年第04期

应该说,平面向量中三点共线定理在高中阶段的应用还是比较广泛的,如果我们能够熟练掌握并能灵活运用这个定理来解题,往往能够起到事半功倍的效果.下面试举几例来说明一下平面向量中三点共线定理的应用.反思:本题解法较多,相对其它解法,运用三点共线定理来解决最为简洁,且思路直观,条理清晰,容易下手.当然,这就要求我们在审题时能够注意观察、联想,再灵活运用所学知识来解题.同样,在本例中,如果点E、F的位置发生改变,但是只要能够知道AE与AB的比例关系和AF与AC的比例关系,我们同样可以求出x,y的值.反思:解法一把问题化归了例3这类题型,化未知为已知,化不熟悉为熟悉,体现了数学中的一种重要思想——化归思想;解法二是通过△ABC面积这个桥梁,沟通R与H之间的关系,从而为建立x与x′之间的关系打下基础.总的来说,这两种解法都是紧紧抓住了“三点共线”这个中心,解法新颖,构思巧妙,不禁能让人感受到数学的内在美.平面向量共线定理的推广:

推广1:确定平面向量基底前的系数范围

推广2:空间向量四点共面定理

[江苏省灌云高级中学(222200)]

第四篇:平面向量图形结合问题

高中复习-平面向量

1.(2016•潍坊一模)在△ABC中,PQ分别是AB,BC的三等分点,且AP=AB,BQ=BC,若则A.

2.(2016•朔州模拟)点O为△ABC内一点,且满足则=(),设△OBC与△ABC的面积分别为S1、S2,=()+ B.﹣+ C.

D.﹣

=,=,A. B. C. D.

按向量=(2009,4,27)平移,3.(2009春•成都期中)已知点A(2008,5,12),B(14,2,8),将向量所得到的向量坐标是()A.(1994,3,4)B.(﹣1994,﹣3,﹣4)C.(15,1,23)D.(4003,7,31)

4.(2013秋•和平区期末)已知向量则向量为()A.(﹣3,2)B.(4,3)C.(3,﹣2)

D.(2,﹣5)

(1<x<4)的图象如图所示,A为图象与x轴的交点,过点A+)•

=(),若存在向量,使得,5.(2016•吉林三模)函数的直线l与函数的图象交于B,C两点,则(A.﹣8 B.﹣4 C.4 D.8 6.(2016•商洛模拟)在等腰△ABC中,BC=4,AB=AC,则A.﹣4 B.4 C.﹣8 D.8

=()

7.(2015•房山区一模)向量=(2,0),=(x,y),若与﹣的夹角等于,则||的最大值为()

A.4 B.2 C.2 D.

8.(2016•合肥二模)点G为△ABC的重心,设A.

9.(2016•眉山模拟)如图,在△OAB中,点P在边AB上,且AP:PB=3:2.则

=()﹣B.C.﹣2D.=,=,则

=()

A. B.C.

D.

10.(2016春•东营校级期中)点O是△ABC所在平面上一点,且满足A.外心 B.内心 C.重心 D.垂心

11.(2016•河南模拟)如图,在△ABC中,已知,则

++=,则点O为△ABC的()

=()

A. B.C.

D.,P是BN上的一点,若,则实数m的值12.(2016•衡水模拟)如图,在△ABC中,为()

A.B.C.1 D.3

13.(2016•焦作二模)在平面直角坐标系中,已知向量=(1,2),﹣∥,则x=()

=(3,1),=(x,3),若(2+)

A.﹣2 B.﹣4 C.﹣3 D.﹣1

14.(2016•嘉峪关校级模拟)已知向量A.

15.(2016•南昌校级模拟)△ABC中,∠BAC=120°,AB=2,AC=1,D是边BC上的一点(包括端点),则•B.C.D.

为非零向量,则

夹角为()的取值范围是()

A.[1,2]B.[0,1]C.[0,2]D.[﹣5,2]

16.(2016•潮南区模拟)已知平面向量与的夹角为,且||=1,|+2|=2,则||=(A.1 B.C.3 D.2

17.(2016•西宁校级模拟)已知||=1,||=,且⊥(﹣),则向量与向量的夹角为(A.B.C.D.

巩固与练习:

1.(2011•丰台区一模)已知平面向量,的夹角为60°,||=4,||=3,则|+|等于()A.37 B. C.13 D.

2.(2016•河南模拟)如图,在△ABC中,已知,则

=()))

A. B. C.

D.

3.(2016春•成都校级月考)如图,在△ABC中,线段BE,CF交于点P,设向量,则向量可以表示为()

A. B. C.

D.

4.(2016•抚顺一模)已知向量||=4,||=3,且(+2)(﹣)=4,则向量与向量的夹角θ的值为(A. B. C. D.

5.(2015春•临沂期末)如图,在△ABC中,D为边BC的中点,则下列结论正确的是()

A.+=B.﹣=C.

+

=

D.

=

6.(2015•娄星区模拟)如图,正方形中,点E是DC的中点,点F是BC的一个三等分点.那么

=(A.B.

C.

D.,))

7.(2016•湖南模拟)已知,,点C在AB上,∠AOC=30°.则向量

等于()

A.B.C.

D.

8.(2016•重庆校级模拟)若||=2,||=4且(+)⊥,则与的夹角是()A.

9.(2015春•昆明校级期中)如图,点M是△ABC的重心,则

为()B.C.D.﹣

A.B.4B.

10.(2015秋•厦门校级期中)已知平行四边形ABCD的对角线分别为AC,BD,且D的四等分点,则()

=2,点F是BD上靠近C.4D.4

A.C.

11.(2015•厦门校级模拟)如图,,,若m=,那么n=()=﹣=﹣﹣B.D.==﹣

﹣﹣

A. B.C.D.

12.(2016•嘉兴一模)如图,B、D是以AC为直径的圆上的两点,其中AB=,AD=,则

=()

A.1 B.2 C.t D.2t

答案:

1.(2016•潍坊一模)在△ABC中,PQ分别是AB,BC的三等分点,且AP=AB,BQ=BC,若则A.=()+ B.﹣+ =C..

D.﹣

=,=,【解答】解:

∵AP=AB,BQ=BC,∴∴故选:A.

2.(2016•朔州模拟)点O为△ABC内一点,且满足则=(),设△OBC与△ABC的面积分别为S1、S2,=. =

=,=

=

A. B. C. D.

【解答】解:延长OC到D,使OD=4OC,延长CO交AB与E,∵O为△ABC内一点,且满足∴=,∴O为△DABC重心,E为AB中点,∴OD:OE=2:1,∴OC:OE=1:2,∴CE:OE=3:2,∴S△AEC=S△BEC,S△BOE=2S△BOC,∵△OBC与△ABC的面积分别为S1、S2,∴=.

故选:B.

3.(2009春•成都期中)已知点A(2008,5,12),B(14,2,8),将向量

按向量=(2009,4,27)平移,所得到的向量坐标是()A.(1994,3,4)B.(﹣1994,﹣3,﹣4)C.(15,1,23)D.(4003,7,31)【解答】解:∵A(2008,5,12),B(14,2,8),∴又∵=(﹣1994,﹣3,﹣4),按向量平移后不发生变化

=(﹣1994,﹣3,﹣4),∴平移后故选B

4.(2013秋•和平区期末)已知向量则向量为()A.(﹣3,2)【解答】解:设∵B.(4,3)C.(3,﹣2),,D.(2,﹣5),若存在向量,使得,∴,解得x=3,y=﹣2,∴=(3,﹣2). 故选:C.

5.(2016•吉林三模)函数的直线l与函数的图象交于B,C两点,则((1<x<4)的图象如图所示,A为图象与x轴的交点,过点A+)•

=()

A.﹣8 B.﹣4 C.4 D.8 【解答】解:由题意可知 B、C两点的中点为点A(2,0),设B(x1,y1),C(x2,y2),则x1+x2=4,y1+y2=0 ∴(+)•=((x1,y1)+(x2,y2))•(2,0)=(x1+x2,y1+y2)•(2,0)=(4,0)•(2,0)=8 故选D.

6.(2016•商洛模拟)在等腰△ABC中,BC=4,AB=AC,则A.﹣4 B.4 C.﹣8 D.8

=

cosB=|BC|=8.

2=()

【解答】解:在等腰△ABC中,BC=4,AB=AC,则故选:D.

7.(2015•房山区一模)向量=(2,0),=(x,y),若与﹣的夹角等于A.4 B.2 C.2 D.,则||的最大值为()

【解答】解:由向量加减法的几何意义可得,(如图),=,=∠OBA 故点B始终在以OA为弦,∠OBA=为圆周角的圆弧上运动,且等于弦OB的长,由于在圆中弦长的最大值为该圆的直径2R,在三角形AOB中,OA==2,∠OBA=

由正弦定理得,解得2R=4,即||的最大值为4 故选A

8.(2016•合肥二模)点G为△ABC的重心,设=,=,则

=(A.﹣B.C.﹣2D.【解答】解:由题意知,+=,即+=,故=﹣2=﹣2,故选C.)

9.(2016•眉山模拟)如图,在△OAB中,点P在边AB上,且AP:PB=3:2.则

=()

A.B.C.,D.

【解答】解:∵AP:PB=3:2,∴又∴===+,=,+

故选:B.

10.(2016春•东营校级期中)点O是△ABC所在平面上一点,且满足

+

+

=,则点O为△ABC的()

A.外心 B.内心 C.重心 D.垂心

【解答】解:作BD∥OC,CD∥OB,连结OD,OD与BC相交于G,则BG=CG,(平行四边形对角线互相平分),∴又∵∴++=﹣=+,=,可得:+

=﹣,∴A,O,G在一条直线上,可得AG是BC边上的中线,同理:BO,CO的延长线也为△ABC的中线. ∴O为三角形ABC的重心.

故选:C.

11.(2016•河南模拟)如图,在△ABC中,已知,则

=()

A.B.=,得+,=3(C.)D.

【解答】解:∵∴由已知化简=故选:C

12.(2016•衡水模拟)如图,在△ABC中,为(),P是BN上的一点,若,则实数m的值

A.B.C.1 D.3 【解答】解:∵∴设=λ,(λ>0)得且==

+

,∴m=故选:A,解之得λ=8,m=

13.(2016•焦作二模)在平面直角坐标系中,已知向量=(1,2),﹣∥,则x=()

A.﹣2 B.﹣4 C.﹣3 D.﹣1 【解答】解:由=(1,2),﹣

=(3,1),得

=(3,1),=(x,3),若(2+)=(1,2)﹣(3,1)=(﹣2,1),则,∴2+=(2,4)+(﹣4,2)=(﹣2,6),又(2+)∥,∴6x+6=0,得x=﹣1. 故选:D.

14.(2016•嘉峪关校级模拟)已知向量A.B.C.D.

;,;

; ;

=

为非零向量,则

夹角为()

【解答】解:∴∴∴∴∴∴夹角为.

故选:B.

15.(2016•南昌校级模拟)△ABC中,∠BAC=120°,AB=2,AC=1,D是边BC上的一点(包括端点),则的取值范围是()

A.[1,2]B.[0,1]C.[0,2]D.[﹣5,2]

【解答】解:∵D是边BC上的一点(包括端点),∴可设∵∠BAC=120°,AB=2,AC=1,∴∴=•=[+﹣+]•

=

+

(0≤λ≤1).

=2×1×cos120°=﹣1.

=﹣(2λ﹣1)﹣4λ+1﹣λ =﹣7λ+2. ∵0≤λ≤1,∴(﹣7λ+2)∈[﹣5,2]. ∴•的取值范围是[﹣5,2].

故选:D.

16.(2016•潮南区模拟)已知平面向量与的夹角为A.1 B.C.3 D.2 2,且||=1,|+2|=2,则||=()

【解答】解:由已知,|+2|=12,即故选D.

17.(2016•西宁校级模拟)已知||=1,||=A.B.C.D. ;,所以||+4||||×+4=12,所以||=2;

2,且⊥(﹣),则向量与向量的夹角为()

【解答】解:∵;

∴∴∴向量与的夹角为故选B. ; . ;

巩固与练习:

1.(2011•丰台区一模)已知平面向量,的夹角为60°,||=4,||=3,则|+|等于()A.37 B. C.13 D.

【解答】解:由题意得 •=||•||cos60°=4×3×=6,∴||==

=

=,故选B.

2.(2016•河南模拟)如图,在△ABC中,已知,则

=()

A. B.=,得+,=3(C.)

D.

【解答】解:∵∴由已知化简=故选:C

3.(2016春•成都校级月考)如图,在△ABC中,线段BE,CF交于点P,设向量,则向量可以表示为(),A. B. C.

D.

【解答】解:因为F,P,C三点共线,∴存在实数λ,使由已知同理,=,所以=,,∴解得

所以故选C.

4.(2016•抚顺一模)已知向量||=4,||=3,且(+2)(﹣)=4,则向量与向量的夹角θ的值为()A. B. C. D.

【解答】解:向量||=4,||=3,且(+2)(﹣)=4,∴﹣2+•=4,即16﹣2×9+4×3×cosθ=4,解得cosθ=; 又θ∈[0,π],∴θ=;

即向量与向量的夹角θ的值为.

故选:B.

5.(2015春•临沂期末)如图,在△ABC中,D为边BC的中点,则下列结论正确的是()

A.+=B.﹣=C.

+

=

D.

=

【解答】解:由已知及图形得到,故A错误;

;故B错误;

;故C 正确;

故D 错误;

故选C.

6.(2015•娄星区模拟)如图,正方形中,点E是DC的中点,点F是BC的一个三等分点.那么=()

A.B.

C.

D.

【解答】解:∵,∴,∵,∴,∵,∴==,∵=,∵,∴=

. 故选D.

7.(2016•湖南模拟)已知,,点C在AB上,∠AOC=30°.则向量

等于(A.B.C.

D.

【解答】解:过点c做CE∥OA CF∥OB 设OC长度为a 有△CEB∽△AFC ∴(1)

∵∠AOC=30° 则CF==OE OF=CE=)

∴BE=2﹣AF=2﹣

=OB,代入(1)中化简整理可解:a=OF=∴故选B.

==OA

OE=8.(2016•重庆校级模拟)若||=2,||=4且(+)⊥,则与的夹角是()A.B.C.D.﹣

【解答】解:设与的夹角是θ. ∵||=2,||=4且(+)⊥,∴(+)•=∴cosθ=.

. =2+2×4cosθ=0,2∵θ∈[0,π],∴故选:A.

9.(2015春•昆明校级期中)如图,点M是△ABC的重心,则为()

A.B.4C.4D.4

【解答】解:设AB的中点为F ∵点M是△ABC的重心 ∴故为C

10.(2015秋•厦门校级期中)已知平行四边形ABCD的对角线分别为AC,BD,且D的四等分点,则()

=2,点F是BD上靠近

A.=﹣﹣B.=﹣ C.=﹣D.=﹣

【解答】解:∵=2,点F是BD上靠近D的四等分点,∴=,=,∴==+,∵,∴=+

=﹣.

故选:C.

11.(2015•厦门校级模拟)如图,,,若m=,那么n=(A.B.C.D. 【解答】解:∵,故C为线段AB的中点,故==2,∴=,由,∴,∴=,∵M,P,N三点共线,故=1,当m=时,n=,故选:C)

12.(2016•嘉兴一模)如图,B、D是以AC为直径的圆上的两点,其中AB=,AD=,则

=()

A.1 B.2 C.t D.2t 【解答】解:连结BC,CD.则AD⊥CD,AB⊥BC. ∴=AB×AC×cos∠BAC=AB=t+1. =AD×AC×cos∠CAD=AD=t+2.

∵∴•=,=

=1. 22故选:A.

第五篇:平面向量说课稿

平面向量说课稿

我说课的内容是《平面向量的实际背景及基本概念》的教学,所用的教材是人民教育出版社出版的普通高中课程标准实验教科书数学必修四,教学内容为第74页至76页.下面我从教材分析, 重点难点突破,教学方法和教学过程设计四个方面来说明我对这节课的教学设想.一 教材分析

1地位和作用

向量是近代数学中重要和基本的概念之一,有着深刻的几何背景,是解决几何问题的有力工具.向量概念引入后,全等和平行(平移),相似,垂直,勾股定理等就可以转化为向量的加(减)法,数乘向量,数量积运算(运算率),从而把图形的基本性质转化为向量的运算体系.向量是沟通代数,几何与三角函数的一种工具,有着极其丰富的实际背景,在数学和物理学科中具有广泛的应用.平面向量的基本概念是在学生了解了物理学中的有关力,位移等矢量的概念的基础上进一步对向量的深入学习.为学习向量的知识体系奠定了知识和方法基础.2教学结构

课本在这一部分内容的教学为一课时,首先从实际例子出发,抽象出向量的概念,并重点说明了向量与数量的区别.然后介绍了向量的几何表示,向量的长度,零向量,单位向量,平行向量,共线向量,相

等向量等基本概念.为使学生更好地掌握这些基本概念,同时深化其认知过程和探究过程.在教学中我将这样安排教学:将本节教学中认知过程的教学内容适当集中,以突出这节课的主题;例题,习题部分主要由学生依照概念自行分析,独立完成.3教学目标

根据本课教材的特点,新大纲对本节课的教学要求,学生身心发展的合理需要,我从三个方面确定了以下教学目标:(1)基础知识目标:理解向量,零向量,单位向量,共线向量,平行向量,相等向量的概念,会用字母表示向量,能读写已知图中的向量.会根据图形判定向量是否平行,共线,相等.(2)能力训练目标: 培养学生观察、归纳、类比、联想等发现规律的一般方法,培养学生观察问题,分析问题,解决问题的能力。(3)情感目标:让学生在民主、和谐的共同活动中感受学习的乐趣。

重点难点突破

由于本节课是本章内容的第一节课,是学生学习本章的基础.为了本章后面知识的学习,首先必须掌握向量的概念,要抓住向量的本质:大小与方向.所以向量,相等向量的概念,向量的几何表示是这节课的重点.本节课是为高一后半学期学生设计的,尽管此时的学生已经有了一定的学习方法和习惯,但根据以往的教学经验,多数学生对向量的认识还比较单一,仅仅考虑其大小,忽略其方向,这对学生的理解能力要求比较高,所以我认为向量概念也是这节课的难点.而解决这一难点的关键是多用复杂的几何图形中相等的有向线段让学生进

行辨认,加深对向量的理解.三 教学方法

本节课我采用了“启发探究式”的教学方法,根据本课教材的特点和学生的实际情况在教学中突出以下两点:(1)由教材的特点确立类比思维为教学的主线.从教材内容看平面向量无论从形式还是内容都与物理学中的有向线段,矢量的概念类似.因此在教学中运用类比作为思维的主线进行教学.让学生充分体会数学知识与其他学科之间的联系以及发生与发展的过程.(2)由学生的特点确立自主探索式的学习方法

通常学生对于概念课学起来很枯燥,不感兴趣,因此要考虑学生的情感需要,找一些学生感兴趣的题材来激发学生的学习兴趣,另外,学生都有表现自己的欲望,希望得到老师和其他同学的认可,要多表扬,多肯定来激励他们的学习热情.考虑到学生思维较为活跃,对自主探索式的学习方法也有一定的认识,所以在教学中我通过创设问题情境,启发引导学生运用科学的思维方法进行自主探究.将学生的独立思考,自主探究,交流讨论等探索活动贯穿于课堂教学的全过程,突出学生的主体作用.四 教学过程设计

Ⅰ知识引入阶段---提出学习课题,明确学习目标(1)创设情境——引入概念

数学学习应该与学生的生活融合起来,从学生的生活经验和已有的

知识背景出发,让他们在生活中去发现数学、探究数学、认识并掌握数学。

由生活中具体的向量的实例引入:大海中船只的航线,中国象棋中”马”,”象”的走法等.这些符合高中学生思维活跃,想象力丰富的特点,有利于激发学生的学习兴趣.(2)观察归纳——形成概念

由实例得出有向线段的概念,有向线段的三个要素:起点,方向,长度.明确知道了有向线段的起点,方向和长度,它的终点就唯一确定.再有目的的进行设计,引导学生概括总结出本课新的知识点:向量的概念及其几何表示。(3)讨论研究——深化概念

在得到概念后进行归纳,深化,之后向学生提出以下三个问题: ①向量的要素是什么? ②向量之间能否比较大小? ③向量与数量的区别是什么? 同时指出这就是本节课我们要研究和学习的主题.Ⅱ知识探索阶段---探索平面向量的平行向量.相等向量等概念(1)总结反思——提高认识

方向相同或相反的非零向量叫平行向量,也即共线向量,并且规定0与任一向量平行.长度相等且方向相同的向量叫相等向量,规定零向量与零向量相等.平行向量不一定相等,但相等向量一定是平行向量,即向量平行是向量相等的必要条件.(2)即时训练—巩固新知

为了使学生达到对知识的深化理解,从而达到巩固提高的效果,我特地设计了一道即时训练题,通过学生的观察尝试,讨论研究,教师引导来巩固新知识。下列命题正确的是()

A.a与b共线,b与c共线,则a与c也共线

B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点

C.向量a与b不共线,则a与b都是非零向量

D.有相同起点的两个非零向量不平行 III 知识应用阶段---分析解决问题,归纳解题方法(1)分析解决问题

先引导学生分析解决问题.包括向量的概念,:向量相等的概念.抓住相等向量概念的实质:两个向量只有当它们的模相等,同时方向又相同时,才能称它们相等.进而进行正确的辨认,直至最终解决问题.(2)归纳解题方法

主要引导学生归纳以下两个问题:①零向量的方向是任意的,它只与零向量相等;②两个向量只要它们的模相等,方向相同就是相等向量.一个向量只要不改变它的大小和方向,是可以任意平行移动的,即向量是自由的.Ⅳ 学习,小结阶段---归纳知识方法,布置课后作业

本阶段通过学习小结进行课堂教学的反馈,组织和指导学生归纳知识,技能,方法的一般规律,为后续学习打好基础.(1)知识方法小结 在知识层面上我首先引导学生回顾本节课的主要内容,提醒学生要抓住向量的本质:大小与方向,对它们进行类比,加深对每个概念的理解.在方法层面上我将带领学生回顾探索过程中用到的思维方法和数学方法如:类比,数形结合,等价转化等.(2)布置课后作业

整理课堂笔记,习题2.1第1,2,3题.

下载平面向量共线问题的深入研究word格式文档
下载平面向量共线问题的深入研究.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    平面向量概念教案(范文大全)

    平面向量概念教案 一.课题:平面向量概念 二、教学目标 1、使学生了解向量的物理实际背景,理解平面向量的一些基本概念,能正确进行平面向量的几何表示。 2、让学生经历类比方法......

    平面向量教案(精选五篇)

    平面向量教案 课 件www.xiexiebang.com二、复习要求 、向量的概念; 2、向量的线性运算:即向量的加减法,实数与向量的乘积,两个向量的数量积等的定义,运算律; 3、向量运算的......

    平面向量的应用

    平面向量的应用平面向量是一个解决数学问题的很好工具,它具有良好的运算和清晰的几何意义。在数学的各个分支和相关学科中有着广泛的应用。下面举例说明。一、用向量证明平面......

    平面向量教案(精选5篇)

    平面向量的综合应用 执教人: 执教人:易燕子 考纲要求: “从学科的整体高度和思维价值的高度考虑问题,在知识网络交汇点设计试题,使 考纲要求: 对数学基础知识的考查达到必要的深......

    平面向量中的三角形四心问题(定稿)

    平面向量中的三角形四心问题 向量是高中数学中引入的重要概念,是解决几何问题的重要工具。本文就平面向量与三角形四心的联系做一个归纳总结。在给出结论及证明结论的过程中,......

    高中数学 2.3.4《平面向量共线的坐标表示》教案 新人教A版必修4

    第二章平面向量 本章内容介绍 向量这一概念是由物理学和工程技术抽象出来的,是近代数学中重要和基本的数学概念之一,有深刻的几何背景,是解决几何问题的有力工具.向量概念引入......

    《平面向量》单元教学设计范文

    《平面向量》单元教学设计 武都区两水中学 王斌 向量是近代数学中重要和基本的数学概念之一,有深刻的几何背景,是解决几何问题的有力工具。向量概念引入后,全等和平行(平移)、相......

    平面向量基本定理教案

    §2.3.1平面向量基本定理教学设计 教学目的: (1)了解平面向量基本定理; (2)理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步掌握应用向量解决实际问题的重要思想方......