第一篇:小学数学教学中的几种思维训练方法
小学数学简便运算教学中的几种思维训练方法
黄尾中心学校常维俊
认知心理学家指出:“学生思维能力的发展是寓于知识发展之中的。”课堂教学是对学生进行思维训练的主要阵地,所以,要把思维训练贯穿于数学教学的各个方面。在小学数学的简便运算教学中,教师要精心设计习题,把常见的简便运算梳理成口算、凑、分、估、合、转、变、略、消等方法,能有效地培养学生思维品质,促进学生思维能力和教学质量的提高。
一、抓口算,培养学生思维的敏捷性
准确迅速的解题思维活动是思维敏捷性的重要表现。抓口算基本训练,能提高学生应用法则的能力。口算时应注意两点:其一,不动笔,动笔计算不利于提高口算能力,亦不利于培养学生思维的敏捷性。其二,计算时要有速度的要求,使学生有一种紧迫感。
二、抓凑整,培养学生思维的灵活性
思维的灵活性反映了思维活动在选择角度、运用方法、展开过程诸多方面的灵活程度。主要抓以下几方面的训练。(1)凑。就是把数凑成整
十、整百等,再进行计算。即用凑整法,多加再减或多减再加。如25×48=25×4×1225×48=25×(50-2)25×48=25×(40+8)(2)分。就是把运算中的一个数拆开,分别与另一个数运算,便于凑整运算。如(2+5)+3=(2+3)+5,先把2和3加在一起再同5相加,与先把2和5加在一起再同3相加,结果相同。(3)估。估算能提高学生的自检能力,提高速算的正确率,有利于培养学
生思维的灵活性。估算,一般地把某些数估成与它最接近的整
十、整百等,先估结果大约是多少,再精确做答。其次用估算检验。
三、勤归纳,培养学生思维的深刻性
思维的深刻性,是指思维活动的抽象程度与逻辑水平。主要抓住以下几方面训练。(1)合。根据凑整的特点,把两个数或两个以上的数合并,便于口算、心算。(2)转。转化运算方法,化繁为简,促使心算。引导学生总结规律,加深对知识的理解和记忆。(3)变。就是改变运算思路、顺序,变型不变值。如学习“比和比例”的知识后,我设计了这样一道题:甲、乙两车合运77吨货物,甲车比乙车多运了1/3,甲、乙两车各运多少吨货物?我要求学生先分析这是一道什么类型的应用题,然后选择适当的策略进行解答。当大部分学生都把它归入分数应用题来解答后,我提醒学生能否从其他思路去深思。学生经过分析,概括出这是一道“把一个总量分成两个部分量”的题目,可以用按比例分配的策略来解答。接着要求学生说出按比例分配题目的特点,即“已知总量和两个部分量的比,求两个部分量”,让学生根据“甲车比乙车多运了1/3”得出“甲车与乙车所运货物的比是(1+3)∶3”,从而用按比例分配的策略来解答。
四、精设题,培养学生思维的独创性
思维的独创性一般表现为多思善想,新颖独特等特点。主要抓以下几个训练。
1、略。根据0和1在运算中的特殊性,使计算步骤省略,从而培养学生独特的创新思维。
2、消。把两个相对应的数(如+3与-3)对消,减少运算步骤,培养学生创新思维。
综上所述,在小学数学教学中,有目的、有计划地对学生实施思维训练,有利于提高数学教学质量,有利于发展学生思维能力,从而全面提高学生的素质。
第二篇:论文浅谈小学数学思维训练方法
浅谈小学数学思维训练方法
数学是思维的体操,学数学离不开思维,没有数学思维,就没有真正的数学学习。数学教学就是数学思维活动的教学,数学教学实质上就是学生在教师指导下,通过数学思维活动,学习数学家思维活动的成果,并发展数学思维,使学生的数学思维结构向数学家的思维结构转化的过程。数学教师不仅要教知识,更要启迪学生思维,交给学生一把思维的金钥匙。因此,在数学教学中如何发展学生的数学思维,培养学生的数学思维能力是一个值得探讨的课题。
在小学数学教学中,为培养学生的思维能力,许多专家、教师著文论述其经验,值得借鉴。我在教学时也进行了实践和探索。以下浅谈自己的一些培养方法。
一、单向延展法
即以某一知识为端点,将若干项知识经过联想活动纵向组合起来,形成有
层次有过程、动态发展的思维的方法,体现出逻辑递进关系。
(一)由因导果演化延展
以果为因演化延展。如要求学生口述平面几何图形的演化过程;平面几何
图形(长方形、平行四边形、梯形、三角形)面积计算公式的推演过程。比如问:长方形的一边延长时,变成怎样的几何图形?当此几何图形的一个底逐渐缩小到一点时,变成了什么样的几何图形?
(二)由易到难逐层延展
如:⑴一班40人,二班比一班多10人,二班有多少人? ⑵一班有40人,二班比一班多10人,两班共有多少人? ⑶一班二班共有90人,二班比一班多10人,两班各有多少人? ⑷一班二班共有90人,从二班调5人到一班后,两班人数相等,两个班原来各有多少人? ⑸一班二班共有90人,从二班调3人到一班后,二班比一班多4人, 两个班原来各有多少人? ⑹两个班共有90人,二班调给一班8人后,二班比一班少6人,两个班原来各有多少人?
这样的练习思考题,有目的,有针对性地训练学生的思维能力,同时,练习也能够让学生在掌握书本知识的基础上起到“举一反三”的作用,是书本知识的巩固和延伸。这种方法是依照思维递进的程序性和数学的逻辑性的统一,以及学生的认识水平,对学生思维能力的培养应由浅入深,由易到难的原则。
(三)注重逻辑推理延展。
数学运算、证明以及数学发现活动都离不开推理,教学中注重逻辑推理能力的培养,就是很好的思维能力的培养。
如:甲车从A城到C城,乙车从B城到C城,两车共行使1620千米, 甲车行了4/5,乙车行了3/4后,没走的路程相等。甲乙两车各行了多少千米?根据甲车行了4/5推想到甲车所行的路程平均分成了5份,行了4份,没行1份;从乙车行了3/4推想到乙车所行的路程平均分成了4份,行了3份,没行1份。从没行的路程相等推想到乙车所行路程的1份相当于甲车所行路程的1份,可知两车所行路程的和恰有这样(5+4)份。从总路程和总份数可以推想到1份的路程S1=1620÷(5+4)(千米),所以甲车所行路程是5S1,乙车所行路程是4S1。
二、多向延展法
即以某一知识为中心,向四面八方自由的扩展开,形成多方面、多角度的思维活动方式。平时有些学生思维狭窄,只知其一,不知其二,稍有变化,就不知所云。我注意引导学生沟通前后单元、此单元和彼单元的知识联系,打破知识单元的框框,促使学生在多思的过程中培养思维的灵活性和发散性。
(一)叙述理解延展
如根据:“甲相当于乙的3/5”我要求学生改变角度叙述:“甲相当于乙的60℅”、“甲与乙的比是3:5 ”、“ 乙相当于甲的5/3倍”、“甲比乙少2/5”、“ 甲与乙的和相当于乙的8/5”、“甲与乙的差相当于乙的2/5”。
(二)转化基准多向延展
如“乙筐西瓜的个数是甲筐的3/5”:以甲筐为单位“1”,则乙是甲的几分
之几?(3/5),以乙为单位“1”,则甲是乙的几分之几?(5/3),甲比乙多多少?(5/3-1=2/3),总数是乙的几分之几?(1+5/3);如果以总数为单位“1”,则甲是总数的5/5+3,乙是总数的3/5+3等。
(三)思路辐射延展
感受解决问题策略的多样化与灵活性,并比较不同方法的特点,来培养学生的数学思维。如“有两人各自骑自行车行走。当甲车轮滚动40圈时,乙车轮在同样的距离中滚动了30圈,如果乙车轮的周长比甲车轮的周长长0.32米,求这段距离。”
解法一:用归一法解。先求出甲车轮旋转一周的距离,再求总距离。
0.32×30÷(40-30)×40.解法二:用倍比法解。先求出甲车轮旋转10圈的距离,再求出总距离。
0.32×30×〔40÷(40-30)〕.解法三:用分数法解。以这段距离为单位“1”。
0.32÷(1/30-1/40)。
解法四:用列方程求解。根据车轮滚动的距离相等关系,设甲车轮的周长为X米,那么可以列出这样的方程:
40x=30(x+0.32).解法五:运用比例来解。根据距离一定,车轮周长与周数成反比例关系,设甲车轮的周长为X米,则
30:40=x:(x+0.32)。
解法六:根据求最小公倍数方法解。
有30和40的最小公倍数=2×5×3×4=120,0.32×120=38.4(米)。
这样不仅在于传授知识,让学生学习、理解、掌握数学知识,让学生多掌握解题方法,更重要的是要培养学生灵活多变的解题思维,从而既提高教学质量,又达到培养能力、发展智力的目的。
三、反思延展法
许多教育者认为如果我们的学生有了解题后反思的良好习惯,就能很好地促进思维能力的提高,从而学好数学。解题后反思是指解题后对审题过程和解题方法及解题所用知识的回顾与思考。我在平时的教学中学习他人经验,指导学生解题后反思,在反思中训练学生思维,发展思维水平。
如:“给你一段20厘米长的细铁丝做成不同的长方形或正方形,你能做几个?它们的面积分别是多少?”学生通过思考,有以下几种:
长方形 长 9厘米 宽1厘米 面积9平方厘米
长8厘米 宽2厘米 面积16平方厘米
长7厘米 宽3厘米 面积21平方厘米
长6厘米 宽4厘米 面积24平方厘米
正方形 边长5厘米 面积25平方厘米
学生做到这一步都停住了,觉得问题解决了,不再深究。如果这样,学生得到的仅仅是这道题的答案,对学生来说,思维并没有一个提高的过程。这时,老师引导学生反思:这道题里还隐藏着秘密,你有发现吗?学生通过观察、比较,发现了长方形长、宽、面积之间的新的关系。“在周长相等的情况下,长与宽的差越小,面积反而越大。”“周长相等的情况下,正方形的面积一定比长方形大。”为了思维的再深入延展,教师可以进一步引导学生再次反思:这条规律是不是只在这道题目里适用?学生通过举例、小组交流,得出了这是一条普遍存在的规律。解题后如此反思,既有利于沟通知识间的纵横联系,也使思维得到了提高。
四、破思维定势训练法
就是教师以一组一组的题目呈现,通过题组训练,打破思维定势的一种思维
训练方式。学生在用某种思维模式多次解决同类问题而形成思维定势后,再遇到相类似的新问题时,往往会出现机械套用以前思维模式的倾向,而且同一方法使用次数越多,这种倾向越明显。思维有了较多的定势,就会阻碍数学思维的发展。我常采用题组进行教学,选取的题型一般为基本题与变式题整体出现。
如基本题:甲车间一月份加工食品240吨,二月份比一月份多加工1/4,二月份加工多少吨?
变式题:去年,甲厂收入比乙厂多1/5,乙厂收入1000万元,甲厂收入多少万元?
结构变式题:甲车间一月份加工食品240吨,二月份比一月份少加工1/4,二月份加工多少吨?
叙述变式题:甲车间一月份加工食品240吨,二月份如果再多加工一月份加工吨数的1/4,就和一月份一样多,二月份加工多少吨?
通过这样的题组练习,训练学生思维,提高思维能力,使学生不因结构的定型化而产生思维定势。
五、常规求异法
我所讲的常规求异法,不是指一题多解的求异思维训练,是指摆脱常规思维的支配,独辟溪径,既在意料之外,又在情理之中,引导学生从新的思维角度去思考问题,以求得问题的解决的思维训练方式。
如在培养学生空间想象能力时,我出示下题:“用12根火柴棒摆6个相等的正方形,你能摆出来吗?”按习惯思路,学生往往在平面上摆弄,显然是无法达到题目要求的。我引导学生联想已学过的正方体的特征(12条棱的长度相等,六个面的面积相等),学生的思路打开了,很快解决了问题,都摆出了一个正方体,找到了六个相等的正方形。
又如在新授结束后进行复习时我出了这样一道题:张师傅要加工一批零件,每小时加工240个,7小时完成。如果要在6小时完成,平均每小时应加工多少个?学生都是这样做的:240×7÷6=280(个)。觉得容易,不再思维。我在学生不再思维时,在黑板上写了这样一个算式:240+240÷6=280(个)。问:你认为这样做对吗?请说明你的理由。许多学生傻眼了。我就引导学生思考、合作讨论。通过讨论、交流学生终于知道了这样做正确的理由,而且简便。经过一番思维,体验到了常规求异法的精彩。
综上所述,在小学数学教学中,有目的、有计划地对学生实施思维训练,有利于提高数学教学质量,有利于发展学生思维能力,从而全面提高学生的素质。
第三篇:浅析小学数学教学中的思维训练
浅析小学数学教学中的思维训练
数学教学主要是数学思维活动的教学。学生初步的逻辑思维能力的发展需要有一个长期的培养和训练过程。数学教学的思维训练,是根据学生的思维特点,结合教学内容在教学过程中实现的。课堂教学是对学生进行思维训练的主阵地,所以,要把思维训练贯穿于数学教学的各个方面。
一、激发学生思维动机
教师如何才能激发学生思维动机呢?这就要求教师必须在教学中充分发挥主导作用,根据学生心理特点,教师有意识地挖掘教材中的知识因素,从学生自身生活需要出发,使其明确知识的价值,从而产生思维的动机。例如:在教学“按比例分配”这一内容时,首先要使学生明确学习这一知识的目的:在平均分不合理的情况下,就产生了按比例分配这种新的分配方法。教学时可设计这样一个问题:一个车间把生产1000个零件的任务交给了张师傅和李师傅,完成任务后要把500元的加工费分给他们。结果张师傅加工了600个零件,李师傅加工了400个零件。这时把500元的加工费平均分给他们合理吗?从而引发出学生探求合理的分配方法的思维动机。
这样设计教学既渗透了“知识来源于生活”的数学思想,又使学生意识到学习知识的目的是为了解决生活和生产中的实际问题。学生的学习动机被激发起来了,自然会全身心地投入到后面的教学活动之中。
可见,创设思维情境,激发学生的思维动机,是对其进行思维训练的重要环节。
二、理清学生思维脉络 认知心理学家指出:“学生思维能力的发展是寓于知识发展之中的。”在教学中,对于每一个问题,既要考虑它原有的知识基础,又要考虑它下联的知识内容。只有这样,才能更好地激发学生思维,并逐步形成知识脉络。我们教学的关键在于使学生的这种思维脉络清晰化,而理清思维脉络的重点就是抓住思维的起始点和转折点。
1.引导学生抓住思维的起始点。数学知识的脉络是前后衔接、环环紧扣的,并总是按照发生—发展—延伸的自然规律构成每个单元的知识体系。学生获得知识的思维过程也是如此,或从已有的经验开始,或从旧知识引入,这就是思维的开端。从学生思维的起始点入手,把握住思维发展的各个层次逐步深入直至终结。如果这个开端不符合学生的知识水平或思维特点,学生就会感到问题的解决无从下手,其思维脉络就不会在有序的轨道上发展。
例如:在教学“按比例分配”这一内容时,从学生已有知识基础—平均分入手,把握住平均分与按比例分配的关系,即把一个数量平均分就是按照1:1的比例进行分配,从而将学生的思维很自然地引入按比例分配,为学生扫清了认知上的障碍。
再如:解答按比例分配应用题时,从问题入手逐步深化认识,不但能够解决学生思维过程中无从下手的问题,而且有利于使学生的思维沿着起点发展,培养其思维的流畅性。
当然,不同知识、不同学生的思维起点不尽相同,但不管起点如何,作为数学教学中的思维训练必须从思维的“发生点”上起步,以旧知识为依托,并通过“迁移”、“转化”,使学生的思维流程清晰化、条理化、逻辑化。
2.引导学生抓住思维的转折点。学生的思维有时会出现“卡壳”的现象,这就是思维的障碍点。此时教学应适时地加以疏导、点拨,促使学生思维转折,并以此为契机促进学生思维发展。
例如:甲乙两人共同加工一批零件,计划甲加工的零件个数是乙加工的2/5。实际甲比计划多加工了34个,正好是乙加工零件个数的7/9。这批零件共有多少个?
学生在思考这道题时,虽然能够准确地判断出2/5和7/9这两个分率都是以乙加工的零件个数为标准量的,但是,这两个标准量的数值并不相等,这样,学生的思维出现障碍。教师应及时抓住这个机会,引导学生开拓思路:“甲加工的零件个数是乙的2/5”,这说明甲、乙计划加工零件的个数是几比几?“正好是乙加工零件个数的7/9”又说明甲、乙实际加工零件个数是几比几?这样,就将以乙标准量的分率关系转化为以总个数为标准量的分率关系,直至解答出这道题。
总之,教师帮助学生理清思维脉络,注意思维过程中的起始点和转折点,才是小学数学教学中思维训练的重点所在。
三、培养学生思维方法
学生在解决数学问题时,常常需要把面对的问题通过转化、分析、综合、假设等变化成已知的数学问题。在这个思维过程中,要依据具体情况恰当地运用分析与综合、具体与抽象、求同与求异、一般与特殊等思维方法。
1.分析与综合。总起来说,思维就是通过分析、综合来进行的。所谓分析就是把已经认识到的事物之间的联系在认识中分解开来。分析的方法应用在数学教学中,就是由问题入手,逐层确定解决问题的条件。所谓综合就是把原来还没有认识到的事物之间的联系,在认识中建立起来。综合的方法应用在数学教学中,就是由条件入手,逐层确定能够解决的问题。
例如:一位工人师傅要加工一批零件,计划每天加工60个,需30天完成。实际每天加工了90个,照这样计算,可提前几天完成? 由此可见,恰当地采用分析或综合的思维方法,有利于沟通条件与问题的联系,建立起清晰的思维脉络。当然,根据具体问题将分析与综合结合起来进行分析,更会提高思维的效果。
2.具体与抽象。小学生的思维特点是从具体形象思维逐步向抽象逻辑思维过渡。发展学生思维的“着眼点”应放在逐步过渡上。教学中,结合知识内容,精心组织操作活动,可以帮助学生将抽象的事物具体化。例如:在教学“圆柱体侧面积”时,让学生将准备好的圆柱模型侧面剪开,并观察剪开后的四边形与圆柱各部分之间的关系,从而概括出圆柱体侧面积的计算公式。通过这一系列的操作、观察、思考、概括,不仅使学生理解并掌握了圆柱体侧面积公式,而且也提高了操作能力,更培养了学生变抽象为具体的思维方法。
3.求同与求异。有些数学知识之间既有差别又有千丝万缕的联系。恰当地运用求同与求异的思维方法,通过对相关知识的比较,能够有效地促进学生思维发展。
(1)对同一知识进行变式比较,即求同。例如:在教学“平行四边形的认识”这一内容时,将平行四边形变换不同的位置进行比较。
通过观察比较,学生认识到几种图形尽管摆放的位置不同,但其本质属性是相同的,即“对边分别平行的四边形”,因为它们都是平行四边形。
(2)对易混知识不同点的比较,即求异。例如:解答“按比例分配”应用题经常要运用“求一个数的几分之几是多少”的方法。但是,按比例分配和分数乘法这两类应用题又存在着一定的区别,即前者要通过总份数把比转化成各个部分量是总量的几分之几,再用乘法计算;而后者通常是直接或间接具备所求问题的分率。
显然,通过运用求同与求异的思维方法,不但使学生构建了完整的知识体系,而且也发展了学生多极化的思维方法,有利于克服思维定势。
4.一般与特殊。唯物辩证法认为,任何事物都存在着共性与个性。在教学中教师应注意引导学生观察、思考数学知识的一般性与特殊性,以促进学生思维能力的提高。例如:在教学长方形周长的计算方法后,教师通过引导学生比较长方形和正方形周长的计算方法,从而得出:这两种图形的周长都是将每个图形的四条边的长相加,这是它们的一般性。而正方形四条边长度相等,它的周长等于它的边长的4倍;长方形对边长度相等,它的周长等于它的长加宽和的2倍,这是它们的特殊性。最后得出结论:正方形是特殊的长方形。
教师通过引导学生感知一般与特殊的关系,从而使学生树立起具体问题具体分析的思维方法,培养学生灵活处理实际问题的能力。
综上所述,在小学数学教学中,有目的、有计划地对学生实施思维训练,有利于提高数学教学质量,有利于发展学生思维能力,从而全面提高学生的素质。
第四篇:小学数学解决问题教学中常见的类型和训练方法
小学数学解决问题教学中常见的类型和训练方法
解决问题,就是我们常说的解答应用题。由于解决问题反映了周围环境中常见的数量关系和各种各样的实际问题,需要用不同的数学知识同实际生活和一些简单科学技术知识联系起来,所以成为小学阶段学生最难以掌握的,最灵活多样的题目类型之一。
应用题的内容来自于生活,与生活中的数学问题有着密切的联系。在教学中,个别教师埋怨学生的基础差,理解能力不强,常常苦于不知怎样才能引导学生正确地理解题意,遇到一些数学术语时兜兜转转地总是比较含糊地给学生解释。这样,就造成学生们难以理解题意、又或是一知半解,下次遇到类似的题目时不会类推进行思考解答。那么怎样才能避免出现这样的情况呢?这就要求我们在课堂教学中结合生活与学生的认知规律,正确地遵循应用题教学的一般规律,这样既可让学生学得轻松、易掌握,又能发展学生的思维能力。
让我们先来看看解决问题的几种类型和在教学时应该注意些什么。根据知识基础可以分为以下三类:
一、与计算相结合的解决问题。
从学生初步学习加减乘除的计算开始,课本上就出现了以各类计算为主的解决问题。例如在教学二年级乘法的初步认识:每个秋千上有2位小朋友,有4个秋千上,一共有几位小朋友?在教学这类题目时,就需要老师充分的让学生理解每个秋千几个人,有几个秋千,就是求几个几是多少,要用乘法,而且在教学这类练习的时候也要反复的说题意。对于二年级的老师来说会注意到这点,训练很到位。可是
到了三年级学习多位数乘一位数时,这类的分析就会少很多,老师们的精力会大部分集中在让学生掌握多位数乘一位数的计算方法的理解上,这使得学生对于乘法这类题目的理解上没有形成思维定势,所以到了五年级学习小数乘法和六年级的分数乘法时,学生就更加难以理解,也就容易出现学生对于分数应用题难于掌握的问题了。
在“乘法的初步认识”这章节里,学生已理解了“求几个相同加数的和用乘法计算比较简便”的含义。那么,在学乘法应用题前先把这一知识点复习好,然后出示例题并提出问题让小组讨论:题中哪个数量是表示“相同加数”。学生一般不容易找出,更谈不上真正的理解和掌握了。那么,乘法中的“相同加数”这个数量在应用题的条件中有特征可判断吗?答案是肯定的,但我们不宜直接告诉学生方法,而应出示多几道,引导学生开展小组讨论、逐渐总结出判断方法。其实,通过这样一系列判断练习,我们不难发现有这样的情况:这个“相同加数”在乘法应用题的条件中常以“每每„„有(是)„„个(千克等)的语言出现,为了使学生理解好“每份有(是)几”的要概念,在堂上练习时我们还可以进行以下练习操作,再用语言表述:
1、投影:(图片内容)
几个小朋友在田地里种葵花,每行种了5棵,种了4行。让学生认真观察图中内容,数一数图画里每一行分别有葵花多少棵,各行的棵数是否一样多?之后再让学生说出:每行种有葵花5棵。
2、(直接利用教科书)拿出几本数学教科书,让学生看看书本后面的标价是否一样后说出:每本数学教科书的价格是4.45元(学生
不一定会读出4.45这个数,教师可作适当的引导)。
通过类似以上的练习,多做几道不同的习题,让学生互相讨论、表术,这样对表示“相同加数”的语言、“每份有(是)几”的说法学生就有了具体的认识,并由认识转入到理解。最后师生一起探究小数乘法应用题也就轻松多了。
这类题目需要学生通过对整数、小数、分数加减乘除法的意义的充分理解来,而不能单纯作为巩固计算的题目。虽然对各类运算的意义的新教材中淡化了不少,可是我们在教学中千万不要把这个关键点放松掉,这是学生解决应用题的最基本的知识点。
二、以常见数量关系为基础的解决问题。
认识和概括数量关系要从感性到理性、从具体到抽象。我们知道数学应用题里都含有一定的数量关系,而数量关系都是带有一定抽象性的。抽象的程度越高,它能解的应用题的适用范围也就越广;而越抽象的数量关系也是越难理解的。要使学生对数量关系真正理解和掌握,在教学引导中必须密切要注意学生的思维特点,心理学告诉了我,让我认识到小学生的思维特点是以具体形象的思维为主,而抽象逻辑思维有待于在学习中发展和提高。对于低年级,学生的数学概念更是从白纸一张起逐渐积累的,早期掌握的数学概念大部分是比较具体的、可以直接感知的。因此,在教学中按照应用题的文字叙述形式给学生概括出怎样的应用题用加法、减法或乘法等是十分不可取的;而是应该在教学时选择接近学生实际生活的、或熟悉的事物作为应用题的内容,在指导他们解题时也要尽量利用直观教具或创设情景使他们
能够用实物或看图进行数一数、摆一摆,让学生通过自己的操作在脑中形成表象,使题目的内容成为他们可以感知的。这样,解一题就学会一点知识,逐渐积累起一些经验。再从具体的题目、具体的数量中发现一些带有共同特征的东西,在教师的引导和帮助下让学生自己尝试概括出一些数量关系,例如:探讨“速度×时间=路程”这一数量关系,先让学生理解“速度就是指每天(每小时、每分钟、每秒)所走路的长度”,“时间是指一共走了几小时(几天、几分钟、几秒)”,“路程是指在这几小时里(几天里、几分钟里、几秒里)一共走了多长路”。然后,我便借助小车模拟行驶的过程,先表示行驶第一分钟所走的路程(即速度),跟着表示行驶第二分钟、第三分钟„„通过小车模拟行驶,找出每一个时间段里的速度、时间与路程三者间的关系,最后总结出关系式:速度×时间=路程。总结出关系式后,学生的认识还是不深的,为此,我认为在巩固练习一环节里,还要出一定数量的相关习题,先让学生指出各习题里哪个数量是“速度”、哪个数量是“时间”、哪句话是指“路程”的,然后让学生说说已知“速度”和“时间”怎样求路程,最后才让学生动手计算、写答。这样通过说、练的训练,学生既掌握好了知识,又能培养学生的说理辨析能力。
在教学工作效率×工作时间=工作总量、单产量×面积=总产量这类题目时,我们还可以联系学生的实际,向学生提出一些专题调查任务,或为课堂教学收集材料,或作为课堂教学的一种补充。例如:我向学生布置下列一些研究课题:
1、了解你的父母(工人)每天工作的时间和生产产品的数量。
2、调查山东省粮食面积和产量。
3、记录自己每天口算的时间和做题的数量。
通过这些小调查,学生能够从中分析总结数量之间的关系,为得出数量关系提供了大量的生活经验。但是在教学中,要注意切不可让学生死记硬背概念或死记数量关系式。
三、利用数学思想策略解决的问题。
还有一类题目,利用现有的解题方法不容易解决。但是如果利用数学的思想策略,就可以轻松解决。例如:
121418116132如果利用通分的方法来计算,就十分繁琐。但是如果把这个算式转化为图形来分析,就会看到其实所有部分相加的和可以转化为单位“1”-的差。
***6132解决问题的策略是在解决问题的活动中形成和积累的,以有条理地整理信息、发现数量之间的联系作为策略教学的切入口。通过整理信息,明确和把握数量关系,形成解决问题的思路。小学阶段常见的数学思想策略有:
1、列表的策略。这个策略适用于信息复杂,信息之间关系模糊的问题,把信息以表格形式列出来,容易观察和理顺问题的条件,发现解题的方法。
2、画图的策略。画图是解决问题时经常使用的策略,这种策略能直观地显示题意,有条理地表示数量,便于发现数量之间的关系,从而形成解题思路。
3、一一列举的策略。即把事情发生的各种可能逐个罗列,并用某种形式进行整理,从而找到问题的答案。生活中有许多实际问题,列式计算往往比较困难,如果联系生活经验,用列举的方法就能比较容易地解决问题。
4、假设、替换的策略。对条件关系复杂,没有直接的方法可解的问题,就可尝试按问题中的条件去假设、替换,得到一个答案,然后把答案代入问题中去验证。
5、转化的策略。转化是指把一个数学问题变更为一类已经解决或比较容易解决的问题,从而使原问题得以解决的一种策略。所以,转化是一种常见的、极其重要的解决实际问题的方法。通过转化能把较复杂的问题变成简单的问题,把新颖的问题变成已经解决的问题。掌握转化策略不仅有利于问题的解决,更有益于思维的发展
在教学这些解决问题的策略中,苏教版的教材给了我们很大的启示。苏教版实验教材中,从四年级开始每册都有一个研究的专题,对含有一类数学思想的题目进行专门的研究。但是我们人教版教材中缺少了对这些数学思想的总结和提升,所以我们的教师也在努力研究、改进。但是由于缺少资料,我们对解决问题策略的研究变成了总结式提炼式,也就是把以前学过的知识、题目拿过来再回顾,从中提炼思想,让学生发现原来这么多问题都是用了这种思想。但是我感到这样的教学没有使学生经历数学思想产生的过程和对一类问题的指导作用,一节课下来学生还是不知道什么时候该用这类思想,指导的意义也就不强了。
根据解决问题的步骤,我们可以把应用题分为:
一、简单的解决问题(一步)
对简单的解决问题结构特征的认识是应用题教学的重要一环。对一个问题与相关联的两个条件的逻辑联系的认识教学,是简单的解决问题教学的重要组成部分。教师在教学中必须充分利用这个关系,培养学生的初步逻辑推理方法与能力。既要让学生熟练掌握依据已知的两个相关联的条件说出可求出的哪一个问题,还要让学生从低年级开始就逐渐学会从所求问题入手去寻找必须知道的哪两个条件的推理思维方法。要在教学中注意两种思路的并列训练,以提高学生的认知水平。
为了让学生更好地掌握简单的解决问题的结构特征,在教学中还必须注意加强如下四种形式的训练:(1)进行使应用题完整的练习。此项训练的重要一点是要学生补充相关联的条件,培养学生的逻辑思维能力。(2)改变问题的练习。问题与条件具有依存关系,但改变了问题而有时所要的条件却相同。这样的变题练习将使学生不至于产生慢性的解题思路,有利于培养学生思维的灵活性。(3)依算式编题练
习。此项训练的抽象思维水平要求很高,既有利于提高学生对应用题结构特征的认识水平,又有利于促进学生思维抽象化。(4)对比性的说理训练。从低年级开始就注意让学生日头叙说应用题的结构特征(具体到指定题目问题与条件),将有利学生结构特征认识上升到内化阶段,以至于掌握。对比性的说理,则指让学生从相同的条件与所求不同问题的题目中说出相同与不同点,从而使学生真正达到熟练掌握水平。
二、稍复杂的解决问题(两步或两步以上)
学习解答稍复杂的解决问题,是学生个体思维水平发展过程的重要阶段。从不同点来看,最主要的是寻找问题与已知条件的联系线上的中间问题,即教育心理学上所说的心理中介因素。但不管是简单的解决问题还是稍复杂的解决问题的教学,不管是学习整数应用题还是学习分数(小数、百分数)应用题,也不管是一般应用题还是典型的应用题,都要紧紧抓住数学思维的整体性这一核心进行教学,否则学生解题技能的形成便会受影响。学生即使懂得某些应用题的解答,也仅是“散件”,难以纳入个体解题认识结构,而稍复杂的解决问题的教学更要从注重整体性这一角度去进行。所以,稍复杂的解决问题的教学必须坚持“三主”的原则----即教师为主导、学生是主体、思维整体性。
不管是两步解答的稍复杂的解决问题入门教学,还是多步复杂的解决问题的学习,间接推理能力总是学生解答应用题的心理中介因素。在教学中,教师必须十分重视这一能力的培养,并要注意在教学
中运用不同形式、不同途径,以使学生的这种能力得以形成与提高。以两步应用题的入门教学为例,我认为教学中必须着重于问题与条件对应关系的分析探索方法的指导,以勾联问题与条件的中间问题为瞄准点(教学时可打破原教材的“一课一例一练”的类型束缚,第一教时即可出现运用“加减”或“减加”,甚至是“连加”、“连减”运算的两步应用题)进行探寻与表述说理训练,从而让学生从大量的中间问题的探索中“悟”出解题的关键,以促进个体的解题心理中介因素的形成,并逐渐使个体的间接推理能力得以培养与发展。
学生从两步应用题的入门课题的学习逐渐扩展到多步稍复杂的解决问题的学习这一 阶段,教学的实质是为学生自身良好的认知结构的形成而展开教学,所以教学的总体安排必须有利于学生思维整体性的培养与形成。在教学中要注意抓好“两大步、三小步”的整体思维训练。“两大步”,指把稍复杂的解决问题分为两步与多步应用题的解题分析能力训练,先抓好两步应用题的分析解题及综合训练,再注意逐渐拓展上升到多步。“三小步”,是指在每大步内必须按“整体----部分----整体”的呈现程序安排好思维训练,以达到思维整体的发挥。
在稍复杂的解决问题教学中应重视学生的迁移能力的培养,注意及时抽象概括,这将有利于学生解题认知结构的形成。小学生在应用题的学习中,解题技能的迁移水平是十分重要的,尽管情节的变化与语词结构的变式给学生的解题带来障碍,但在克服了这些困难后进入实质性的解题思维活动,更需要学生能应用已掌握的基本数量关系来解决新问题,也需要学生解题的迁移能力。学生学到众多的基本数量
关系后,必须在教学的适当阶段引导学生去进行转化、简缩、抽象概括。
针对解决问题教学中出现的问题,我们在进行教学时既要有的放矢更要适时而教、因材施教。
一、解答应用题训练。
在应用题的基本训练中,我认为解答应用题是最基本的,也是最大量的训练。在应用题教学中培养学生良好的学习习惯,提高学生的思维能力及解决实际问题的能力,主要是通过解答应用题来实现的。下面就思维训练举个例子:
“一桶煤油重12千克,用去了,还剩下多少千克?”这是一
43道分数的稍复杂的解决问题,在训练中,可以根据以往的知识理解出“剩下的千克数=原有的千克数-用去的千克数”这一数量关系,而“用去的千克数”的具体数量题中是没有直接给出,而是给出了一个分率(分数),这就要首先引导学生理解“用去了”就是说“用去
43了这一桶油的”,从而判断出题中表示单位“1”的量就是“一桶油43的重量(即12千克)”,再根据分数的意义求出12千克的是多少便
43是求出“用去的千克数”是:12×=9(千克),然后根据“剩下的43千克数=原有的千克数-用去的千克数”的数量关系求出“剩下的千克数”是:12-9=3(千克),这是一般的思维方法。如果再细细分析题意,还可以从另一思维方向去分析。由于这是一道分数应用题,这里是把“一桶油的重量12千克”看作单位“1”,已知“用去了 ”,就可以求出剩下了单位“1”的几分之几:1-=,再求出12千
克的是多少就是题目的问题所求了。通过这样的训练,不仅使学生41对表示单位“1”的量的判断方法加深了理解,而且对“求一个数的几分之几是多少”类型的应用题的解题能力也得到了一个提高;而不同的思维方法就能很好地培养了学生思维的灵活性。
二、条件与问题搭配的训练。
这个训练我一般是出示题目后,要求学生先进行连线搭配,再进行列式计算、写答。经过具体的解答,学生对条件与问题的搭配有了一个自我检查过程。通过这样的训练,很大程度上提高了学生的辨析能力。
三、补充条件或问题的训练。
给出一个条件和问题(或两个条件)要求学生补充另一个条件(或问题),使之成为完整的应用题。例如:一批货物,运走了10.5吨。这批货物原来有多少吨?学生通过已学的数量关系知识并由题中问题展开思维可知条件中缺少了“剩下货物的吨数”,于是便可以补充上一个条件“还剩
吨”。又如:修路队要修一条长3.5千米的公路,修了7天完成。
?这是要求学生补充问题的训练,通过分析,题中有工作总量,有工作时间,欠缺的是工作效率。那么,可以把求工作效率“平均每天修渠多少米”作为问题来补充到题中。
四、改编应用题的训练。
改编应用题的训练,不但能提高学生的解题能力,而且还加强了学生对数量关系的横向联系的理解。在训练中,我较常用的方法是这
样的:
按要求改变原题的某个条件与问题:
如:原题是:学校食堂运来1吨煤,计划烧40天。由于改进炉灶后,每天节省5千克,这批煤可以烧多少天?要求学生解答后把原题的第三个已知条件和问题改成“改进炉灶后,这批煤比原计划多烧10天,每天实际烧煤多少千克?”,改编后再解答。
把简单的应用题改编成稍复杂的解决问题。
如:原题是:少先队员采集标本152件,其中 是昆虫标本。昆虫标本有多少件?要求学生以小组为单位,合作把它改编成稍复杂的解决问题。各小组的讨论结果可能会有:①少先队员采集标本152件,其中 是植物标本。昆虫标本有多少件?②少先队员采集标本152件,其中 是植物标本。植物标本比昆虫标本多多少件?③少先队员去采集标本,其中 是植物标本,植物标本比昆虫标本多38件。少先队员共采集了多少件标本?„„
通过以上几种训练,可以使学生加深对应用题的数量关系的认识,同时也向学生渗透了综合的思维方法和分析的思维方法。
总之,在应用题课堂教学中,作为教师摆正角色—做数学学习的组织者、引导者与合作者,让学生主动地发现问题、研究问题、解决问题。这样才能有效增强学生分析问题、解决问题等能力,使我们的学生变得“聪明些、精明些”,从而促进学生素质的整体提升。
第五篇:浅议小学数学教学中如何巧用思维导图
浅议小学数学教学中如何巧用思维导图
【摘要】结合教学实际,将思维导图引入小学数学教学中,使之成为一种教与学的策略,不仅能提供有效的思考框架,而且能记录和引导思维过程,还可以通过图形和色彩激发学生更多的想象,培养学生的创新思维能力,有利于优化学生的学习方法,有利于调动学生的积极性,有利于突出学生的主体地位。
【关键词】小学数学
思维导图
巧用
思维导图(Mind Map)又称“心智图”或“脑图”,是一种知识可视化的思维工具。最初是由英国东尼·博赞提出的,他在《思维导图》一书中这样对思维导图进行描述:“思维导图是放射性思维的表达,因此也是人类思维的自然功能。它是一种非常有用的图形技术,是打开大脑潜力的万用钥匙。”
针对当前小学数学教学中存在的弊端,结合教学实际,将思维导图引入小学数学教学中,使之成为一种教与学的策略,不仅能提供有效的思考框架,而且能记录和引导思维过程,还可以通过图形和色彩激发学生更多的想象,培养学生的创新思维能力,有利于优化学生的学习方法,有利于调动学生的积极性,有利于突出学生的主体地位。
下面结合笔者的教学实践,从各个环节来谈谈教师如何在教学中有效应用思维导图。
一、巧用思维导图进行备课 对于教师来说,备课是教学的关键。如何才能提高备课的效果呢?除了教师自己认真研读教材、教学大纲、查阅有关资料之外,教师之间的讨论也是提高备课效果的重要方式,这样可以做到集思广益,智慧大家共享。然而在通常的备课过程中由于缺乏及时有效的记录和整理,集体讨论效果不好,而且容易跑题。如果我们按照思维导图的方法,利用一些思维导图软件记录备课过程,然后进行必要的整理,就避免了上述情况。在整个讨论过程中,大家仅仅围绕讨论内容展开话题,由一名教师负责记录下每个教师的观点,通过讨论确定各个部分的教学内容和教学方法。然后将讨论结果进行整理,分别复制给各位教师,这样大家就得到了一份凝聚着集体智慧的教学设计了。这种方式特别对青年教师适用,这样可以使他们尽早的熟悉教学规律和教学内容。
二、巧用思维导图进行课前预习
课前预习是学生提高听课效果的重要环节。如何才能让学生们的预习能达到较好的效果呢?可尝试指导学生运用思维导图进行预习。学生在预习新课内容时,可以采用思维导图的方式。可以在原有知识的基础上延伸出新的知识,这个时候,思维导图就能清晰地展现了新旧知识间的关系,可以促进学生的有效学习。因为学校条件所限,学生制作思维导图时都是手工制作为主。先让学生在白纸的中央以一个常用的习惯的图像(例如一个太阳或一朵云)为中央主题,在绘制草稿图形时能让大脑一下子进入快速思考的步骤,此动作会接着产生一系列的学习步骤。至于之后要修改中央主题图案,就随学生自己高兴去做。画上一朵云后,在云朵中央用一两个词的形式写下预习的主要内容,同时从云朵中央向外画上4条曲线作为4个主要分支(视内容定分支数),在主要分支的基础上可以有更小的分支。在预习时快速阅读每一小节内容,圈选出该节的关键词,选择每节的主要关键词,填到主要分支的线上。当该主要分支上还有更细小的分支时,则继续重复上述操作。完成所有关键词填写后,接着在思维导图上做好相关的标记。例如,在各分支上用色笔标注上“已明白”、“有疑惑”、“完全不明白”等等。
三、巧用思维导图突破教学难点
由于小学生知识有限,所以对抽象性的数学概念和一些思维逻辑性较强的理论知识的理解、掌握具有一定的困难。如果教师仍然采用传统的“满堂灌”的填鸭式教学方法,就很难让学生理解和掌握这些数学概念,且容易把概念弄混淆,教学效果不理想。为有效解决这一教学难点,教师可以采用思维导图法进行教学,将那些容易产生混淆的知识点进行导图设计。通过图文并茂的方式,可直观解决教学难点,提高学生的自主认知能力和辨析能力。
例如,在教学“认识多边形”时,由于本节课涉及的新图形较多,性质和特征存在一定的异同点,学生很难理解和掌握,所以教师在教学之初可以在黑板上画出每一种图形,边画边告知学生该图形的名称,再将这些图形之间的关系进行导图设置,使学生直观理解每种图形之间的关系,进而有助于学生理解多边形的概念和联系,不至于出现混淆现象,提高学生自主认知和辨析能力。
又例如在《分数的认识》单元教学时,结合生活中的实例引出分数的概念以及分数加减法的计算法则,通过思维导图对分数概念及分数加减法的计算法则的归类和整理,不仅能够让学生将相关的概念与生活中的实例相结合,加深对概念的理解,同时也能够促进学生建立系统思维,将每一部分的知识点结合起来,形成系统的知识结构。
四、巧用思维导图进行知识整理和复习
新课标强调在小学数学教学中要注重联系实际,提高对数学整体的认识,使学生体会知识之间的关系,感受数学的整体性。整理和复习恰恰体现了这一点,很多知识表面上看起来毫不相干,其实存在着千丝万缕的关系,把它们联系在一起的就是“数学思想与方法”。通过融人思维导图,学生可以从散杂、片断的机械式学习变为注重关系主动探究的有意义学习。整理和复习是数学教学中的一个重要环节,具有容量大、时间紧、密度高的特点。数学知识呈现出一定的规律性,一个单元中往往会包含许多小的知识点,而这些小的知识又是在不同的课时中学习的。学生往往在学完一个单元或者一册教材时,头脑中的知识比较杂乱,教师要及时引导学生对所学知识进行系统归类、综合、整理,使得学生在脑海中对学过的知识形成一个系统的网络体系。在小学复习课中借助思维导图能帮助学生整理笔记,准确清晰地表达自己的思维,形成自己的知识体系,从而对整个单元进行复习,查漏补缺,大大节约学习时间,提高了学习效率。
比如,在进行“两位数乘两位数的乘法”的教学中,课程中涉及不同形式的口算乘法、笔算乘法及其应用,还有常见的数量关系。教师通过例题板演、不同题型训练等方式进行每一个知识点的讲解,但由于知识点较多,教师出示的例题也相应增多,致使部分学生理解上有一定困难。教师在讲完本节课的基础知识后,可利用思维导图的方法进行总结,给学生直观、全面的知识展示,提高学生对两位数乘两位数的乘法的算理的理解能力,为学生提供自主学习的方法。
五、巧用思维导图建立数学错题集
对于小学生来说,对知识的求知欲较高,但对知识的整理、总结以及反思的能力较差,所以教师要求学生自己整理数学错题时,很多学生都表现得不以为然,简单地认为就是将正确的答案抄一遍,然后交给老师检查,有的学生甚至还表现出不耐烦、反感的态度。所以小学数学教师要让学生乐意并主动去抄写数学错题,首先要转变学生的抄题态度,耐心地向学生讲解让其整理错题的原因。其次要巧妙的运用思维导图帮助学生建立数学错题册,便于学生的复习和巩固。对于作业中的错题,可以集中成册,按题型、知识点等方式分门别类进行整理,便于我们复习和巩固。学习这些方法,就可以使自己的学习效率、效果更加明显。练习考试是对我们效果检测的门槛,平时在训练时,我们可以把重点题、难点题整理在一本“蓝题库”上,做错的题目或者自己易错误理解的题目整理在“红题库”上,这样方便自己复习。巧用思维导图建立数学错题册实际上是帮助学生构建知识体系,明确数学知识之间的联系,提高学生的复习效率与质量,促进学生数学思维能力的提高,激发学生对数学学习的兴趣。思维导图是一种学习和思维的有效工具。可以训练和发展学生的形象思维和逻辑思维,可以极大地刺激学生的求知欲望,活跃课堂氛围,提高学生的理解和归纳等能力,更有利于提高学生的思维能力和自主学习能力,全面提高小学生的数学素养。因此,在今后的小学数学教学中,我们应结合实际教学实践,巧妙地运用思维导图,促进学生数学思维能力的发展,提高学生的综合素质,为学生今后的学习与发展奠定坚实的基础。
参考文献:
[1]【英】伯赞著.叶刚译.思维导图[M].中信出版社,2009。
[2]袁学新.关于小学数学教学中有效应用思维导图的分析探讨[J].教师,2011(14):21. [3]徐婷婷,杨成.思维导图在大学生知识管理中的应用探究[J].江苏开放大学学报,2014,12(6):16-20.[4]陈莉.巧用思维导图提高教学效率[J].中小学电教,2014,(11):25-26 [5]权广仁.思维导图助力学习和教学方式的重构与优化[J].中国教育技术装备,2014,(15):11-13 [6]唐玉玲.重视思维导图提升复习质量——小学数学复习课中借助思维导图辅助教学的调查报告[J].中国科教创新导刊.2014(03).[7]迟丽敏,陈兴华,李雨霖.思维导图在小学高年级数学课堂教学中的应用——以西师版《角》为例[J].中小学电教.2011(Z2)。