第一篇:几何解析思路
数学几何解题思路分析
一、审题
二、掌握几种常见辅助线的做法
三、证明题多用反证法,根据结论来证明过程
四、在理清思绪之后开始答题
五、注意时间的安排
学好立体几何的关键有两个方面:
1、图形方面:不但要学会看图,而且要学会画图,通过看图和画培养自己的空间想象能力是非常重要的。
2、语言方面:很多同学能把问题想清楚,但是一落在纸面上,不成话。需要记的一句话:
几何语言最讲究言之有据,言之有理。也就是说没有根据的话不要说,不符合定理的话不要说。
至于怎样证明立体几何问题可从下面两个角度去研究:
1、把几何中所有的定理分类:按定理的已知条件分类是性质定理,按定理的结论分类是判定定理。
如:平行于同一条直线的两条直线平行,既可以把它看成是两条直线平行的性质定理,也可以把它看
成是两条直线平行的判定定理。
又如如果两个平面平行且同时和第三个平面相交,那么它们的交线平行。它既是两个平面平行的性质定理
又是两条直线平行的判定定理。这样分类之后,就可以做到需要什么就可以找到什么,比如:我们要证明直线
和平面垂直,可以用下面的定理:
(1)直线和平面垂直的判定定理
(2)两条平行垂直于同一个平面
(3)一条直线和两个平行平面同时垂直
2、明确自己要做什么:
一定要知道自己要做什么!在证明之前就要设计好路线,明确自己的每一步的目的,学会大胆假设,仔细推理。
第二篇:初中几何证明题思路
学习总结:中考几何题证明思路总结
几何证明题重点考察的是学生的逻辑思维能力,能通过严密的“因为”、“所以”逻辑将条件一步步转化为所要证明的结论。这类题目出法相当灵活,不像代数计算类题目容易总结出固定题型的固定解法,而更看重的是对重要模型的总结、常见思路的总结。所以本文对中考中最常出现的若干结论做了一个较为全面的思路总结。
一、证明两线段相等
1.两全等三角形中对应边相等。
2.同一三角形中等角对等边。
3.等腰三角形顶角的平分线或底边的高平分底边。
4.平行四边形的对边或对角线被交点分成的两段相等。
5.直角三角形斜边的中点到三顶点距离相等。
6.线段垂直平分线上任意一点到线段两段距离相等。
7.角平分线上任一点到角的两边距离相等。
8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。
9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。
10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。
11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。
12.两圆的内(外)公切线的长相等。
13.等于同一线段的两条线段相等。
二、证明两角相等
1.两全等三角形的对应角相等。
2.同一三角形中等边对等角。
3.等腰三角形中,底边上的中线(或高)平分顶角。4.两条平行线的同位角、内错角或平行四边形的对角相等。5.同角(或等角)的余角(或补角)相等。6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。
7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。
8.相似三角形的对应角相等。
9.圆的内接四边形的外角等于内对角。10.等于同一角的两个角相等
三、证明两直线平行
1.垂直于同一直线的各直线平行。
2.同位角相等,内错角相等或同旁内角互补的两直线平行。
3.平行四边形的对边平行。
4.三角形的中位线平行于第三边。
5.梯形的中位线平行于两底。
6.平行于同一直线的两直线平行。
7.一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。
四、证明两直线互相垂直
1.等腰三角形的顶角平分线或底边的中线垂直于底边。
2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。
3.在一个三角形中,若有两个角互余,则第三个角是直角。
4.邻补角的平分线互相垂直。
5.一条直线垂直于平行线中的一条,则必垂直于另一条。
6.两条直线相交成直角则两直线垂直。
7.利用到一线段两端的距离相等的点在线段的垂直平分线上。
8.利用勾股定理的逆定理。
9.利用菱形的对角线互相垂直。
10.在圆中平分弦(或弧)的直径垂直于弦。
11.利用半圆上的圆周角是直角。
五、证明线段的和、差、倍、分
1.作两条线段的和,证明与第三条线段相等。
2.在第三条线段上截取一段等于第一条线段,证明余下部分等于第二条线段。
3.延长短线段为其二倍,再证明它与较长的线段相等。
4.取长线段的中点,再证其一半等于短线段。
5.利用一些定理(三角形的中位线、含30度的直角三角形、直角三角形斜边上的中线、三角形的重心、相似三角形的性质等)。
六、证明角的和、差、倍、分
1.作两个角的和,证明与第三角相等。
2.作两个角的差,证明余下部分等于第三角。
3.利用角平分线的定义。
4.三角形的一个外角等于和它不相邻的两个内角的和。
七、证明两线段不等
1.同一三角形中,大角对大边。
2.垂线段最短。
3.三角形两边之和大于第三边,两边之差小于第三边。
4.在两个三角形中有两边分别相等而夹角不等,则夹角大的第三边大。
5.同圆或等圆中,弧大弦大,弦心距小。
6.全量大于它的任何一部分。
八、证明两角不等
1.同一三角形中,大边对大角。
2.三角形的外角大于和它不相邻的任一内角。
3.在两个三角形中有两边分别相等,第三边不等,第三边大的,两边的夹角也大。
4.同圆或等圆中,弧大则圆周角、圆心角大。
5.全量大于它的任何一部分。
九、证明比例式或等积式
1.利用相似三角形对应线段成比例。2.利用内外角平分线定理。3.平行线截线段成比例。4.直角三角形中的比例中项定理即射影定理。
5.与圆有关的比例定理--相交弦定理、切割线定理及其推论。
6.利用比利式或等积式化得。
以上九项是中考几何证明题中最常出现的内容,只要掌握了对应的方法,再根据题目中的条件进行合理选择,攻克难题不再是梦想!
第三篇:几何证明思路与方法
对于初中数学的教学而言,不存在太多的难点,按照南京中考数学试卷的难易比例7:2:1来看,90%都属于基本知识点的考察和运用,剩余的10%则是分配在平面几何的证明和一元二次函数的动点问题上。接下来我就简单分享一下如何应对平面几何证明这个问题!按照以下的思路来走,可以使我们最大程度地拿到平面几何证明题的分数!
平面几何证明一般按以下三个思路来解决:
(1).“顺藤摸瓜”法
该类问题特点:条件很充分且直观,一般属于A级难度的题目,直接求解即可。
(2).“逆向思维”法
该类问题特点:一般已知条件较少。从正常思维难以入手,一般属于B或C级难度题目。该类问题从求证结论开始逆向推导,一步一步追溯到已知条件,从而进行求解。
(3).“滇猴技穷”法
该类问题特点:题目很简明,表面上看不出条件和结论存在什么关系。也就是在自己苦思冥想,死了几百万脑细胞之后依然无解。该类问题属于你痛不欲生的C级难度的题目。
方法:①从已知条件入手,看能得到什么结果就写出什么结果,与结论相关的辅助线能作就作;
②再从结论入手,运用逆向思维,看能推导出什么结果就写什么结果;③合理联想,看看两次推导结果之中有没有关系紧密的,如果发现则以此为突破点解题;若发现不了,马上放弃,绝不浪费时间!
注:该类问题在写出各种推导结果是需注意条理性,忌杂乱无章!这样能保证我们如果“瞎蒙”对了某一正确步骤后者推导出一个重要条件时,能拿到相应的分数!所以考试时遇见不会做的题目,不能留“天窗”!
第四篇:初中几何证明题思路总结
几何题证明思路总结
几何证明题重点考察的是学生的逻辑思维能力,能通过严密的“因为”、“所以”逻辑将条件一步步转化为所要证明的结论。这类题目出法相当灵活,不像代数计算类题目容易总结出固定题型的固定解法,而更看重的是对重要模型的总结、常见思路的总结。所以本文对中考中最常出现的若干结论做了一个较为全面的思路总结。
一、证明两线段相等
1.线段中点的定义。
2.线段垂直平分线上任意一点到线段两段距离相等。
3.角平分线上任一点到角的两边距离相等。
4.两全等三角形中对应边相等。
5.同一三角形中等角对等边(等腰三角形两腰相等)。
6.等腰三角形顶角的平分线或底边的高平分底边。
7.等边三角形的三边都相等。
8.直角三角形斜边的中点到三顶点距离相等。
9.过三角形一边的中点且平行于另一边的直线分第三边所成的线段相等。
10.平行四边形的两组对边分别相等,对角线互相平分。
11.菱形的四条边都相等。
12.等腰梯形的两腰相等。
13.垂径定理及其推论。
14.圆心角定理及其推论。
15.圆外一点引圆的两条切线,两条切线长相等。
16.两圆的内(外)公切线的长相等。
17.等量代换:等于同一线段的两条线段相等。
18.等量加等量,其和相等。
19.等量减等量,其差相等。
20.等量的同倍量相等。
21.等量的同分量相等。
22.比例线段的比例(分数)换算。(知识清单P275)
二、证明两角相等
1.角平分线的定义。
2.对顶角相等。
3.两条平行线的同位角相等,内错角相等。
4.同角(或等角)的余角(或补角)相等。
5.全等三角形的对应角相等。
6.相似三角形的对应角相等。
7.等腰三角形两底角相等:同一三角形中等边对等角。
8.等腰三角形中,底边上的中线(或高)平分顶角。
9.平行四边形的对角相等。
10.矩形的四个角都相等。
11.等腰梯形同一底上的两底角相等。
12.同弧或等弧(同弦或等弦)所对的圆心角相等,圆周角相等。
13.弦切角等于它所夹的弧对的圆周角。/
314.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。
15.圆的内接四边形的外角等于内对角。
16.等量代换:等于同一角的两个角相等。
17.等量加等量,其和相等。
18.等量减等量,其差相等。
19.等量的同倍量相等。
20.等量的同分量相等。
三、证明两直线平行
1.平行线定义:在同一平面内,不相交的两条直线叫做平行线。
2.垂直于同一直线的各直线平行。
3.平行于同一直线的两直线平行。
4.同位角相等,内错角相等或同旁内角互补的两直线平行。
5.平行四边形的对边平行。
6.三角形的中位线平行于第三边。
7.梯形的中位线平行于两底。
8.一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。
四、证明两直线互相垂直
1.定义:两条直线相交成直角则两直线垂直。
⑴证夹角为90°.⑵证二直线的夹角与一直角相等。
⑶将夹角分成两个角,证明两角互余。
⑷证明二直线的夹角是直角三角形的直角。
2.一条直线垂直于平行线中的一条,则必垂直于另一条。
3.到线段两端的距离相等的点在线段的垂直平分线上。
4.邻补角的平分线互相垂直。
5.等腰三角形的顶角平分线或底边的中线垂直于底边。
6.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。
7.在一个三角形中,若有两个角互余,则第三个角是直角。
8.利用勾股定理的逆定理。
9.利用菱形的对角线互相垂直。
10.在圆中平分弦(或弧)的直径垂直于弦。
11.利用半圆上的圆周角是直角。
五、证明线段的和、差、倍、分
1.作两条线段的和,证明与第三条线段相等。(补短法)
2.在第三条线段上截取一段等于第一条线段,证明余下部分等于第二条线段。(截长法)
3.延长短线段为其二倍,再证明它与较长的线段相等。
4.取长线段的中点,再证其一半等于短线段。
5.利用一些定理(三角形的中位线、含30度的直角三角形、直角三角形斜边上的中线、三角形的重心、相似三角形的性质、等腰三角形的性质等)。
六、证明角的和、差、倍、分
1.作两个角的和,证明与第三角相等。
2.作两个角的差,证明余下部分等于第三角。
3.利用角平分线的定义。
4.三角形的一个外角等于和它不相邻的两个内角的和(等腰三角形顶角的外角等于底角的2倍)。
七、证明两线段不等
1.同一三角形中,大角对大边。
2.垂线段最短。
3.三角形两边之和大于第三边,两边之差小于第三边。
4.在两个三角形中有两边分别相等而夹角不等,则夹角大的第三边大。
5.同圆或等圆中,弧大弦大,弦心距小。
6.全量大于它的任何一部分。
八、证明两角不等
1.同一三角形中,大边对大角。
2.三角形的外角大于和它不相邻的任一内角。
3.在两个三角形中有两边分别相等,第三边不等,第三边大的,两边的夹角也大。
4.同圆或等圆中,弧大则圆周角、圆心角大。
5.全量大于它的任何一部分。
九、证明比例式或等积式
1.利用相似三角形对应线段成比例。
2.利用内外角平分线定理。
3.平行线截线段成比例。
4.直角三角形中的比例中项定理即射影定理。
5.与圆有关的比例定理--相交弦定理、切割线定理及其推论。
6.利用比利式或等积式化得。
以上九项是中考几何证明题中最常出现的内容,只要掌握了对应的方法,再根据题目中的条件进行合理选择,攻克难题不再是梦想!
第五篇:几何证明题思路
学习总结:中考几何题证明思路总结
几何证明题重点考察的是学生的逻辑思维能力,能通过严密的“因为”、“所以”逻辑将条件一步步转化为所要证明的结论。这类题目出法相当灵活,不像代数计算类题目容易总结出固定题型的固定解法,而更看重的是对重要模型的总结、常见思路的总结。所以本文对中考中最常出现的若干结论做了一个较为全面的思路总结。
一、证明两线段相等
1.两全等三角形中对应边相等。
2.同一三角形中等角对等边。
3.等腰三角形顶角的平分线或底边的高平分底边。
4.平行四边形的对边或对角线被交点分成的两段相等。
5.直角三角形斜边的中点到三顶点距离相等。
6.线段垂直平分线上任意一点到线段两段距离相等。
7.角平分线上任一点到角的两边距离相等。
8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。
9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。
10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。
11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。
12.两圆的内(外)公切线的长相等。
13.等于同一线段的两条线段相等。
二、证明两角相等
1.两全等三角形的对应角相等。
2.同一三角形中等边对等角。
3.等腰三角形中,底边上的中线(或高)平分顶角。
4.两条平行线的同位角、内错角或平行四边形的对角相等。
5.同角(或等角)的余角(或补角)相等。
6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。
7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。
8.相似三角形的对应角相等。
9.圆的内接四边形的外角等于内对角。10.等于同一角的两个角相等
三、证明两直线平行
1.垂直于同一直线的各直线平行。
2.同位角相等,内错角相等或同旁内角互补的两直线平行。
3.平行四边形的对边平行。
4.三角形的中位线平行于第三边。
5.梯形的中位线平行于两底。
6.平行于同一直线的两直线平行。
7.一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。
四、证明两直线互相垂直
1.等腰三角形的顶角平分线或底边的中线垂直于底边。
2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。
3.在一个三角形中,若有两个角互余,则第三个角是直角。
4.邻补角的平分线互相垂直。
5.一条直线垂直于平行线中的一条,则必垂直于另一条。
6.两条直线相交成直角则两直线垂直。
7.利用到一线段两端的距离相等的点在线段的垂直平分线上。
8.利用勾股定理的逆定理。
9.利用菱形的对角线互相垂直。
10.在圆中平分弦(或弧)的直径垂直于弦。
11.利用半圆上的圆周角是直角。
五、证明线段的和、差、倍、分
1.作两条线段的和,证明与第三条线段相等。
2.在第三条线段上截取一段等于第一条线段,证明余下部分等于第二条线段。
3.延长短线段为其二倍,再证明它与较长的线段相等。
4.取长线段的中点,再证其一半等于短线段。
5.利用一些定理(三角形的中位线、含30度的直角三角形、直角三角形斜边上的中线、三角形的重心、相似三角形的性质等)。
六、证明角的和、差、倍、分
1.作两个角的和,证明与第三角相等。
2.作两个角的差,证明余下部分等于第三角。
3.利用角平分线的定义。
4.三角形的一个外角等于和它不相邻的两个内角的和。
七、证明两线段不等
1.同一三角形中,大角对大边。
2.垂线段最短。
3.三角形两边之和大于第三边,两边之差小于第三边。
4.在两个三角形中有两边分别相等而夹角不等,则夹角大的第三边大。
5.同圆或等圆中,弧大弦大,弦心距小。
6.全量大于它的任何一部分。
八、证明两角不等
1.同一三角形中,大边对大角。
2.三角形的外角大于和它不相邻的任一内角。
3.在两个三角形中有两边分别相等,第三边不等,第三边大的,两边的夹角也大。
4.同圆或等圆中,弧大则圆周角、圆心角大。
5.全量大于它的任何一部分。
九、证明比例式或等积式
1.利用相似三角形对应线段成比例。
2.利用内外角平分线定理。
3.平行线截线段成比例。
4.直角三角形中的比例中项定理即射影定理。
5.与圆有关的比例定理--相交弦定理、切割线定理及其推论。
6.利用比利式或等积式化得。
以上九项是中考几何证明题中最常出现的内容,只要掌握了对应的方法,再根据题目中的条件进行合理选择,攻克难题不再是梦想!
1过两点有且只有一条直线两点之间线段最短同角或等角的补角相等同角或等角的余角相等过一点有且只有一条直线和已知直线垂直直线外一点与直线上各点连接的所有线段中,垂线段最短平行公理经过直线外一点,有且只有一条直线与这条直线平行如果两条直线都和第三条直线平行,这两条直线也互相平行同位角相等,两直线平行内错角相等,两直线平行同旁内角互补,两直线平行
12两直线平行,同位角相等两直线平行,内错角相等两直线平行,同旁内角互补定理三角形两边的和大于第三边推论三角形两边的差小于第三边三角形内角和定理三角形三个内角的和等于180°推论1 直角三角形的两个锐角互余推论2 三角形的一个外角等于和它不相邻的两个内角的和推论3 三角形的一个外角大于任何一个和它不相邻的内角全等三角形的对应边、对应角相等
22边角边公理有两边和它们的夹角对应相等的两个三角形全等角边角公理有两角和它们的夹边对应相等的两个三角形全等推论有两角和其中一角的对边对应相等的两个三角形全等边边边公理有三边对应相等的两个三角形全等斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等定理1 在角的平分线上的点到这个角的两边的距离相等定理2 到一个角的两边的距离相同的点,在这个角的平分线上角的平分线是到角的两边距离相等的所有点的集合等腰三角形的性质定理等腰三角形的两个底角相等
推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
等腰三角形的顶角平分线、底边上的中线和高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°
等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
推论1 三个角都相等的三角形是等边三角形
推论 2 有一个角等于60°的等腰三角形是等边三角形
在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半
定理线段垂直平分线上的点和这条线段两个端点的距离相等
逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形
定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c
47勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形
48定理四边形的内角和等于360°
49四边形的外角和等于360°
50多边形内角和定理n边形的内角的和等于(n-2)×180°
51、等腰三角形 三线合一
全等三角形 性质 对应角相等,对应变相等
判断 hl 直角三角形中用sasasasssaas
直角三角形一条直角边为斜边的一半,那么那条直角边所对的角为30°,这有逆定理斜边上的中线为斜边的一半没有逆定理
52、矩形四角90°,对角线相等且互相平分,为轴对称和中心对称图像
53、菱形对角线分别平分一组对角,对角相等,对角线垂直
54、平行四边形对角相等,对边相等,对角线互
55.函数的定义
(1)函数的传统定义:设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与它对应,那么就称y是x的函数,x叫做自变量.(2)函数的近代定义:设A,B都是非空的数的集合,f:x→y是从A到B的一个对应法则,那么从A到B的映射f:A→B就叫做函数,记作y=f(x),其中x∈A,y∈B,原象集合A叫做函数f(x)的定义域,象集合C叫做函数f(x)的值域.上述两个定义实质上是一致的,只不过传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发,侧重点不同.函数实质上是从集合A到集合B的一个特殊的映射,其特殊性在于集合A、B都是非空数集.自变量的取值集合叫做函数的定义域,函数值的集合C叫做函数的值域.这里应该注意的是,值域C并不一定等于集合B,而只能说C是B的一个子集.(3)函数的三要素
定义域A,值域C以及从A到C的对应法则f,称为函数的三要素.由于值域可由定义域和对应法则唯一确定,所以也可以说函数有两要素:定义域和对应法则.两个函数当且仅当定义域与对应法则分别相同时,才是同一函数.