六年级下数学教学设计-正比例新-北师大版【小学学科网】(最终版)

时间:2019-05-12 23:51:21下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《六年级下数学教学设计-正比例新-北师大版【小学学科网】(最终版)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《六年级下数学教学设计-正比例新-北师大版【小学学科网】(最终版)》。

第一篇:六年级下数学教学设计-正比例新-北师大版【小学学科网】(最终版)

xiaoxue.xuekeedu.com

正比例

教学内容:北师大版六年级数学下册41-42页。

教学目标:根据成正比例的意义,判断两种量是否成正比例,利用正比例的意义解决一些简单的实际问题。

教学重点: 正比例的意义。

教学难点:判断两个相关联的量是不是成正比例。教学用具:小黑板 教学过程:(一)复习准备 请同学口述三量关系:

(1)路程、速度、时间;(2)单价、总价、数量;(3)工作效率、时间、工作总量。

(二)探究新知

今天我们进一步研究这些数量关系中的一些特征,请同学们回答老师的问题。

出示小黑板

例1.:一列火车1小时行60千米,2小时行多少千米?3小时、4小时、5小时……各行多少千米?

生:60千米、120干米、180千米…… 表中有几种量?是什么? 路程是怎样随着时间变化的?

师:像这样一种量变化,另一种量也随着变化,这两种量就叫做

xiaoxue.xuekeedu.com

两种相关联的量。

(板书:两种相关联的量)师:表中谁和谁是两种相关联的量? 我们看一看他们之间是怎样变化的?

现在我们从后往前看,时间由8小时变为7小时、6小时、4小时……路程又是如何变化的?

从上面变化的情况,你发现了什么样的规律?(小组进行讨论。)师:请同学发表意见。

生:第一题,时间扩大了,行的路程也随着扩大;第二题时间缩小了,所行的路程随着缩短了。

师:根据时间和路程可以求出什么? 生:可以求出速度。

师:这个速度是谁与谁的比?它们的结果又叫什么? 生:这个速度是路程和时间的比,它们的结果是比值。师:这个60实际是什么?变化了吗?

生:这个60是火车的速度,是路程和时间的比值,也是路程和时间的商,速度不变。

师:对。这两种相关联的量的商,也就是比值一定时,它们同扩同缩。我们看着表再算一算表中路程与时间相对应的商是不是一定。

生:都是60千米,速度不变,符合变化的规律,同扩同缩。师:同学们总结得很好。时间和路程是两种相关联的量,路程是随着时间的变化而变化的:时间扩大,路程也随着扩大;时间缩小,xiaoxue.xuekeedu.com

路程也随着缩小。扩大和缩小的规律是:路程和时间的比的比值总是一样的。

(看黑板引导学生口述。)出示例2。

按题目要求回答下列问题。(1)表中有哪两种量?

(2)谁和谁是相关联的量?关系式是什么?(3)总价是怎样随着米数变化的?(4)相对应的总价和米数的比各是多少?(5)谁是定量?

(6)它们的变化规律是什么?

师:比较一下两个例题,它们有什么共同点?

生:都有两种相关联的量,一种量变化,另一种量也随着变化。师:对。两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。这就是今天我们学习的新内容。

(板书课题:正比例的意义)师:你能按照老师说的叙述一下例1中两个相关联的量之间的关系吗?

生:路程随着时间的变化而变化,它们的比值(也就是速度)一定,所以路程和时间是成正比例的量,它们的关系是正比例关系。

xiaoxue.xuekeedu.com

师:想一想例2,你能叙述它们是不是成正比例的量?为什么?(两人互相试说。)师:很好。请打开书,看书上是怎样总结的?

师:如果表中第一种量用x表示,第二种量用y表示,定量用k表示,谁能用字母表示成正比例的两种相关联的量与定量的关系?

师:你能举出日常生活中成正比例关系的两种相关联的量的例子吗?

小结:日常生活和生产中有很多相关联的量,有的成正比例关系,有的是相关联,但不成比例关系。所以判断两种相关联的量是否成正比例关系,要抓住相对应的两个量是否商(比值)一定,只有商(比值)一定时,才能成正比例关系。

(三)巩固反馈

1.出示小黑板试题,并说明理由。(1)苹果的单价一定,买苹果的数量和总价。(2)每小时织布米数一定,织布总米数和时间。(3)小明的年龄和体重。

2.圆的面积与半径是否成正比例?说明理由。.3.正方形的边长与周长成正比例吗?为什么?

(四)课堂总结 这节课你学会了什么? 板书设计

正比例

xiaoxue.xuekeedu.com

1.两种相关联的量,一种量变化,另一种量也随着变化,而且两个量相对应量的比值一定,我们就说这两个量成正比例。

2.判断方法 看比值是否一定。

第二篇:六年级下数学教学设计-比例尺新-北师大版【小学学科网】

xiaoxue.xuekeedu.com

《比例尺》教学设计

学习目标

1、让学生在实践活动中体验生活中需要比例尺。

2、通过观察、操作与交流,体会比例尺的实际意义,了解比例尺的含义。

3、运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。

学习重点 正确理解比例尺的含义。

学习难点 运用比例尺的有关知识,通过观察、操作与交流,体会比例尺的实际意义,解决生活中的一些实际问题。

教学过程

一、看图产生疑问、引入新知

二、自主探究,理解比例尺的意义

1、理解比例尺意义

师:大家请看笑笑同学根据比例尺的知识画出的平面图,你看他图中的比例尺是?(1:10000)你知道1:10000是什么意思吗?同学们思考一下,把你的想法跟同桌说一说(生思考交流)

生汇报:1表示图上距离,10000表示实际距离 图上的1厘米的线段,表示实际的10000厘米,实际距离是图上距离的10000倍。

师:对,图上的1厘米,表示实际的10000厘米,因此比例尺实际上就等于图上距离与实际距离的比(板书:比例尺=图上距离/实际

xiaoxue.xuekeedu.com

距离)生读一读。

2、揭示比例尺的含义及求比例尺的方法。比例尺1 :10000有三种不同的理解: ①图上距离是实际距离的 1/10000; ②实际距离是图上距离的10000倍;

③图上1厘米表示实际距离100米(也就是10000厘米)。

3、学生看书自学线段比例尺并利用线段比例尺求图上距离和实际距离。

4、认识比例尺特征。

(讨论)当你看到比例尺1:6000000时,你想到了什么? 通过观察,你们发现比例尺有什么相同的特征?

教师指出:为了计算简便,通常把比例尺写成前项(或后项)是1的比。

三、巩固练习

课本第22页:练一练1,2,3 板书设计

比 例 尺

图上距离 :实际距离 =比例尺(图上距离/实际距离=比例尺)1厘米 : 100米 = 1:10000(1/10000)

xiaoxue.xuekeedu.com

第三篇:六年级数学 《正比例》教学设计

《正比例》教学设计

范桥镇中心小学 李晓云

教学内容:北师大版小学数学六年级下册第41页《正比例》

教学目标:

1、通过实例,认识正比例。

2、能根据正比例的意义,判断两个相互关联的量是不是成正比例。

3、能利用正比例的知识,解决一些简单的实际问题,感受正比例关系在生活中的广泛应用。

教学重难点:

重点:判断两个相关联的量是否成正比例。

难点:理解成正比例的量的变化规律。

教学准备: 电子课本、多媒体课件、表格纸

教学过程:

一、创设情境,引入新课 1.谈话导入。2.板书课题。

二、新课教学

(一)情境一:

1、观察表格,分别把正方形的周长与边长,面积与边长的变化情况填入表格中。请根据你的观察,把数据填在表中。

2、填完表以后思考:正方形的周长与边长,面积与边长的变化是否有关系?它们的变化分别有怎样的规律?规律相同吗?说说从表格中发现了什么?

3、引导小结:

(1)正方形的周长随着边长的变化而变化。

(2)正方形的周长总是边长的4倍,也就是比值是4不变。(3)正方形的面积也随着边长的变化而变化。(4)正方形的面积和边长的比值在变,并不固定。

(二)情境二:

一辆汽车行驶的速度为90千米/小时,行驶的路程与时间见表格。

1、请把表格填写完整。

2、根据表格,你能发现什么规律?

3、引导小结:

(1)路程随着时间的变化而变化。

(2)路程与时间的比值(也就是速度)是一定的。

(三)1、总结规律,形成概念。

请同学们思考,说说以上两个例子有什么共同的特点。指名回答,共同订正。

师小结:1.两个相关联的量,一个量随着另一个量的变化而变化;2.两个量对应的数的比值(也就是商)一定。

2、出示正比例定义,齐读三遍。

指名同学找出定义中的关键信息。

板书成正比例的两个条件:1.两个相关联的量,一个量随着另一个量的变化而变化。2.两个量对应的数的比值(也就是商)一定。

(四)想一想:

情境一中正方形的周长与边长成正比例吗?面积与边长呢?为什么?

师小结:(1)正方形的周长随边长的变化而变化,并且周长与边长的比值都是4,所以正方形的周长与边长成正比例。请同学也试着说一说。(2)正方形的面积虽然也随边长的变化而变化,但面积与边长的比值是一个变化的值,所以正方形的面积和边长不成正比例。

(五)运用新知,练习巩固 书本第42页“试一试”。

学生独立思考后同桌间交流想法,指名回答,老师订正。

(六)同桌合作,共同探究。

两位同学分别举一个成正比例和一个不成正比例的例子,与同桌交流。

(七)课堂小结,知识巧记

(八)聆听童谣,完成作业 板书设计:

正比例

1.两个相关联的量,一个量随着另一个量的变化而变化。2.两个量对应的数的比值(也就是商)一定。

教学反思:

第四篇:北师大正比例教学设计(通用)

北师大正比例教学设计(通用6篇)

作为一名教职工,通常会被要求编写教学设计,教学设计是实现教学目标的计划性和决策性活动。如何把教学设计做到重点突出呢?下面是小编整理的北师大正比例教学设计(通用6篇),欢迎阅读,希望大家能够喜欢。

北师大正比例教学设计1

【教学目标】

1、使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。

2、培养学生概括能力和分析判断能力。

3、培养学生用发展变化的观点来分析问题的能力。

【教学重难点】

重点:

成正比例的量的特征及其断方法。

难点:

理解两个变量之间的比例关系,发现思考两种相关联的量之间的变化规律。

【教学过程】

一、四顾旧知,复习铺垫

商店里有两种包装的袜子,一种是5双一包的,售价为25元,一种是8双一包的,售价为32元。哪种袜子更便宜?

学生独立完成后师提问:你们是怎样比较的?

生:我先求出每种袜子的单价,再进行比较。

师:你是根据哪个数量关系式进行计算的?

生:因为总价=单价×数量,所以单价=总价÷数量。

师:如果单价不变,商品的总价和数量的变化有什么规律呢?这节课,我们就来研究正比例。(板书:正比例)

二、引导探索,学习新知

1、教学例1,学习正比例的意义。

(1)结合情境图,观察表中的数据,认识两种相关联的量。师出示自学提示:表中有哪两种量?总价是怎样随着数量的变化而变化的?学生自学并在组内交流。全班交流。

(2)认识相关联的量。明确:像这样,一种量变化,另一种量也随着变化,这两种量叫做相关联的量。

2、计算表中的数据,理解正比例的意义。

(1)计算相应的总价与数量的比值,看看有什么规律。学生计算后汇报:===…=3、5,每一组数据的比值一定。

(2)说一说,每一组数据的比值表示什么?(彩带的单价,也就是彩带的单价是一个固定的数)

(3)请学生用公式把彩带的总价、数量、单价之间的关系表示出来。

(4)明确成正比例的量及正比例关系的意义。两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。如果用字母y和x表示两种相关联的量,用字母k表示它们的比值(一定),正比例关系可以用下面的式子表示:

3、列举并讨论成正比例的量。

(1)生活中还有哪些成正比例的量?预设:速度一定,路程与时间成正比例;长方形的宽一定,面积和长成正比例。

(2)小结:成正比例的量必须具备哪些条件?哪个条件是关键?

两种量中相对应的两个数的比值一定,这是关键。

4、认识正比例图象。(课件出示例1的表格及正比例图象)

(1)观察表格和图象,你发现了什么?

(2)把数对(10,35)和(12,42)所在的点描出来,再和上面的图象连起来并延长,你还能发现什么?

无论怎样延长,得到的都是直线。

(3)从正比例图象中,你知道了什么?

生1:可以由一个量的值直接找到对应的另一个量的值。

生2:可以直观地看到成正比例的量的变化情况。

(4)利用正比例图象解决问题。

不计算,根据图象判断,如果买9m彩带,总价是多少?49元能买多少米彩带?

小明买的彩带的米数是小丽的2倍,他花的钱是小丽的几倍?预设生:因为在单价一定的情况下,数量与总价成正比例关系,小明买的彩带的米数是小丽的2倍,他花的钱也应是小丽的2倍。设计意图:先从观察图象入手,引导学生直观认识相关联的量,再结合表中的数据,引导学生发现总价与数量的比值一定,使学生理解正比例的意义,最后结合正比例图象,把数据与点联系起来,根据图象,不用计算就能找到一个量的值所对应的另一个量的值,使学生在解决问题的同时,感受数形结合思想。

三、课堂练习:

1、P46“做一做”

2、练习九第1、3~7题

北师大正比例教学设计2

【教学内容】

正比例

【教学目标】

使学生理解正比例的意义,会正确判断成正比例的量。

【重点难点】

重点:理解正比例的意义。

难点:正确判断两个量是否成正比例的关系。

【教学准备】

投影仪。

【复习导入】

1.复习引入。

用投影仪逐一出示下面的题目,让学生回答。

①已知路程和时间,怎样求速度?

板书:=速度。

②已知总价和数量,怎样求单价?

板书:=单价。

③已知工作总量和工作时间,怎样求工作效率?

板书:=工作效率。

2.引入课题:这是我们过去学过的一些常见的数量关系。这节课我们进一步来研究这些数量关系的一些特征,首先来研究这些数量之间的正比例关系。板书课题:成正比例的量。

【新课讲授】

1.教学例1。

教师用投影仪出示例1的图和表格。

学生观察上表并讨论问题。

(1)铅笔的总价和数量有关系吗?

(2)铅笔的总价是怎样随着数量的变化而变化的?

(3)铅笔的总价和数量的变化有什么规律?组织学生在小组中讨论,然后交流说一说。

根据观察,学生可能会说出:

①铅笔的总价随着数量变化,它们是两种相关联的量。

②数量增加,总价也增加;数量降低,总价也减少。

③铅笔的总价和数量的比值总是一定的,即单价一定。

教师指出:总价和数量有这样的变化关系,我们就说总价和数量成正比例关系,总价和数量叫做成正比例的量。

2.教师出示:一列火车行驶的时间和路程如下表。

引导学生观察、思考:路程和时间有关系吗?路程怎样随着时间的变化而变化?路程和时间的变化有什么规律?

组织学生分析、讨论、汇报:路程和时间是两种相关联的量,路程扩大,时间也跟着扩大;路程缩小,时间也跟着缩小;但是路程和时间的比值一定,写成关系式是=速度(一定)。

教师小结:所以说路程和时间成正比例关系,路程和时间叫做成正比例的量。

3.归纳概括正比例关系。

①组织学生分小组讨论,上面两个例子有什么共同规律?

②教师引导学生归纳总结:都是两种相关联的量,一种量变化,另一种量也随着变化;如果这两种量中相对应的两个数的比值也就是商一定,这两种量就叫做成正比例的量,它们的关系就叫做成正比例关系。

学生说一说是怎么理解正比例关系的。

要求学生把握三个要素:

第一:两种相关联的量。

第二:其中一个量增加,另一个量也增加;一个量减少,另一个量也减少。

第三:两个量的比值一定。

4.用字母表示正比例的关系。

教师:如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),比例关系可以用这样的式子表示:(一定)

5.教师:想一想,生活中还有哪些成正比例的量?

学生举例说明并说出理由如:长方形的宽一定,面积和长成正比例;每袋牛奶质量一定,牛奶袋数和总质量成正比例;衣服的单价一定,购买衣服的数量和应付钱数成正比例。地砖的面积一定,教室地板面积和地砖块数成正比例;

【课堂作业】

完成教材第46页的“做一做”(1)~(3)。

答案:

(1)。

(2)比值表示每小时行驶多少km。

(3)成正比例。理由:路程随着时间的变化而变化。

①时间增加,路程也增加,时间减少,路程也随着减少;②路程和时间的比值(速度)一定。

【课堂小结】

通过这节课的学习,你有什么收获?

【课后作业】

完成练习册中本课时的练习。

北师大正比例教学设计3

教学内容:

九年义务教育六年制小学数学第十二册P62——63

教学目标:

1、使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。

2、使学生在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。

3、使学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。

教学重点:认识正比例的意义

教学难点:掌握成正比例量的变化规律及其特征

设计理念:课堂教学中从学生的已有的生活经验出发,引导学生观察、分析,从而发现成正比例量的规律,概括成正比例量的特征。课堂教学中给学生提供探究的平台,凡是能让学生自己发现的,就让学生亲自去探究。通过数学活动,让学生把所学的数学知识应用到解决实际问题中去,进一步培养学生的观察能力和发现规律的能力。

一、复习铺垫激情促思

1、说出下列每组数量之间的关系。

(1)速度时间路程

(2)单价数量总价

(3)工作效率工作时间工作总量

2、师:这些是我们已经学过的一些常见数量关系,每组数量之间是有联系的,存在着相依关系。当其中一种量变化时,另一种量也随着变化,而且这种变化是有一定的规律的,你想知道其中的奥秘吗?今天,我们就来研究和认识这种变化规律。

学生口答,相互补充

二、初步感知探究规律1、出示例1的表格(略)

说说表中列出了哪两种量。

(1)引导学生观察表中的数据,说一说这两种量的数值分别是怎样变化的。

初步感知两种量的变化情况,得出:路程和时间是两种相关联的量,时间变化,路程也随着变化。(板书:相关联的量)

(2)引导学生观察表中数据,寻找两种量的变化规律。

根据学生交流的实际情况,及时肯定并确认这一规律,特别是有意识地从后一种角度突出这一规律。

根据发现的规律启发学生思考:这个比值表示什么?上面的规律能否用一个式子表示?

根据学生的回答,板书关系式:路程/时间=速度(一定)

(3)揭示概括成正比例的量:路程和时间是两种相关联的量,时间变化,路程也随着变化。当路程和对应时间的比的比值总是一定(也就是速度一定)时,我们就说行驶的路程和时间成正比例,行驶的路程和时间是成正比例的量,(板书:路程和时间成正比例)

2、教学“试一试”

学生填表后观察表中数据,依次讨论表下的4个问题。

根据学生的讨论发言,作适当的板书

3、抽象表达正比例的意义

引导学生观察上面的两个例子,说说它们的共同点。启发学生思考:如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用怎样的式子来表示?

根据学生的回答,板书:=k(一定)

揭示板书课题。

先观察思考,再同桌说说

大组讨论、交流

学生可能发现一种量扩大(缩小)到原来的几倍,另一种量也随着扩大(缩小)到原来的几倍。也可能发现两种量中相对应的两个数的比值不变。

学生根据板书完整地说一说表中路程和时间成什么关系

学生独立填表

完整说说铅笔的总价和数量成什么关系

学生概括

三、巩固应用深化规律

1、练一练

生产零件的数量和时间成正比例吗?为什么?

2、练习十三第1题

先算一算、想一想,再组织讨论和交流。

要求学生完整地说出判断的思考过程。

3、练习十三第2题

先独立判断,再有条理地说明判断的理由。

4、练习十三第3题

先说出把已知的正方形按怎样的比放大,放大后正方形的边长各是几厘米,再画一画。

分别求出每个图形的周长和面积,并填写表格。

讨论、明确:只有当两种相关联的量的比值一定时,它们才成正比例。

5、思考:明明三岁时体重12千克,十一岁时体重44千克。于是小张就说:“明明的体重和身高成正比例。”你认为小张的说法对吗?为什么?

讨论、交流

独立完成,集体评讲

说明判断的理由

说一说,画一画

填一填,议一议

讨论

四、总结回顾评价反思

这节课你学会了什么?你有哪些收获?还有哪些疑问?

北师大正比例教学设计4

教学内容

教科书第54页例3,练习十二5,6,7题。

教学目标

1.进一步理解正比例的意义,会运用正比例知识解决简单的实际问题。

2.通过运用正比例解决实际问题的活动,让学生体验数学的应用价值,培养学生解决问题的能力。

3.渗透函数思想,使学生受到辩证唯物主义观念的启蒙教育。

教学重、难点

运用正比例知识解决简单的实际问题。

教学准备

教具:多媒体课件。

学具:作业本,数学书。

教学过程

一、复习引入

1.判断下面各题中的两种量是不是成正比例?为什么?

(1)飞机飞行的速度一定,飞行的时间和航程。

(2)梯形的上底和下底不变,梯形的面积和高。

(3)一个加数一定,和与另一个加数。

(4)如果y=3x,y和x。

2.揭示课题

教师:我们已经学过正比例的一些知识,应用这些知识可以解决生活中的实际问题。这节课,我们就来学习“正比例的应用”。

二、合作交流,探索新知

1.用课件出示例3

教师:这幅图告诉我们一个什么事情?需要解决什么问题?

教师:先独立思考,再小组合作交流,看能想出哪些方法解决这个问题。

2.全班交流解答方法

指导学生思考出:

(1)195÷5×8=312(元),先求每份报纸的单价,再求8份报纸的总价,就是李老师应付给邮局的钱。

(2)195÷(5÷8)=312(元),先求5份报纸是8份报纸的几分之几,即195元占李老师所付钱的几分之几,最后求出李老师所付的钱。

(3)195×(8÷5)=312(元),先求出8份报纸是5份报纸的几倍,再把195元扩大相同的倍数后,结果就是李老师所付的钱。

3.尝试用正比例知识解答

如果有学生想出用正比例方法解答,教师可以直接问:“你为什么要这样解?”让学生说出解题理由后再归纳其方法;如果学生没想到用正比例知识解答,教师可作如下引导。

教师:除了这些解题方法外,我们还会用正比例方法解答吗?请同学们用学过的有关正比例的知识思考:

(1)题中有哪两种相关联的量?

(2)题中什么量是不变的?一定的?

(3)题中这两种相关联的量是什么关系?

引导学生分析出:题中有所订报纸份数和所付总钱数这两个相关联的量,它们的关系是所付总钱数÷所订报纸份数=每份报纸单价,而题中的每份报纸单价一定,因此所付总钱数和所订报纸份数成正比例关系。

随学生的回答,教师可同步板书:

教师:运用我们前面所学的正比例知识,同学们会解答吗?准备怎样列比例式?

引导学生讨论后回答,先要把李老师应付的钱数设为x元,再根据所付总钱数所订份数=每份报纸单价的关系式,列式为1955=x8。

教师:同学们会计算吗?把这个比例式计算出来。

学生解答。

教师:解答得对不对呢?你准备怎样验算?

学生讨论验算方法,教师引导:把求出的312元代入等式,左式=1955=39,右式=3128=39,左式=右式,也就是它们的比值相等,与题意相符,所以所求的解是正确的。

三、课堂活动

1.出示教科书第49页的例1图和补充条件

竹竿长(m)26…

影子长(m)39…

教师:在这个表中有哪两种量?它们相关联吗?它们成什么关系?你是根据什么判断的?

教师出示问题:小明和小刚测量出旗杆影子长21m,请问旗杆有多高呢?根据刚才我们判断的比例关系,你能列出等式吗?

学生独立思考解答,讨论交流。

2.小结方法

教师:你觉得我们在用正比例知识解决上面两个问题的时候,步骤是怎样的?(初步归纳,不求学生强记,只求理解。)

(1)设所求问题为x。

(2)判断题中的两个相关联的量是否成正比例关系。

(3)列出比例式。

(4)解比例,验算,写答语。

四、练习应用

完成练习十二的5,6,7题。

五、课堂小结

这节课我们学习了什么知识?你有什么收获?

北师大正比例教学设计5

教学要求:

1、使学生认识正比例关系的意义,理解,掌握成正比例量的变化规律及其特征,能依据正比例的意义间断两种相关联的量成不成正比例关系。

2、进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联量成不成正比例关系的方法,培养学生判断、推理的能力。

教学过程:

一、复习铺垫

1、说出下列每组数量之间的关系。

(1)速度时间路程

(2)单价数量总价

(3)工作效率工作时间工作总量

2、引入新课

我们已经学过的一些常见数量关系,每组数量中,数量之间是有联系的,存在着相依关系,这节课开始,我们就来研究和认识这种变化规律。今天,我们先认识正比例关系的意义。

二、教学新课

1、教学例1。

出示例1。让学生计算,在课本上填表。

让学生观察表里两种量变化的数据,思考。

(1)表里有哪两种数量,这两种数量是怎样变化的?

(2)路程和时间相对应数值的比的比值各是多少?这两种量变化有什么规律?

引导学生进行讨论。

提问:这里比值50是什么数量?(谁能说出它的数量关系式?)

想一想,这个式子表示的是什么意思?

2、教学例2

出示例2和想一想

要求学生按刚才学习例1的方法学习例2,然后把你学习中的发现综合起来告诉大家。

学生观察思考后,指名回答。然后再提问,这两种数量的变化规律是什么?你是怎样发现的?

比值1.6是什么数量,你能用数量关系式表示出来吗?

谁来说说这个式子表示的意思?

3、概括正比例的意义。

像例1、例2里这样的两种相关联的量是怎样的关系呢?请同学样看课本第40页最后一节。

4、具体认识

(1)提问:例1里有哪两种相关联的量?这两种量成正比例关系吗?为什么?

例2里的两种量是不是成正比例的量?为什么?

(2)做练习八第1题。

5、教学例3

出示例3,让学生思考/

提问:怎样判断是不是成正比例?

请同学们看一看例3,书上怎样判断的,我们说得对不对。

强调:关键是列出关系式,看是不是比值一定。

三、巩固练习

1、做练一练第1题。

指名学生口答,说明理由。

2、做练一练第2题。

指名口答,并要求说明理由。

3、做练习八第2题(小黑板)

让学生把成正比例关系的先勾出来。

指名口答,选择几题让学生说一说怎样想的?

四、课堂小结

这节课学习了什么内容?正比例关系的意义是什么?用怎样的式子表示Y和X这两种相关的量成正比例?判断两种相关联的量是不是成正比例,关键看什么?

五、家庭作业。

北师大正比例教学设计6

教学内容:

教科书第62~63页的例1和“试一试”,“练一练”和练习十三的第1~3题。

教学目标:

1.使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。

2.让学生在认识成正比例的`量的过程中,初步体会数量之间相依互变的关系,进一步培养观察能力和发现规律的能力。

教学重点:

结合实际情境认识成正比例的量的特点,加深对正比例意义的理解。

教学难点:

能跟据正比例的意义判断两种相关联的量是否成正比例的量。

教学准备:

教学过程:

一、导入

谈话:同学们购物问题中有单价、数量、总价,你知道它们之间的关系吗?

学生讨论,反馈。

[设计意图:本环节结合生活中的实例,引导学生体会数量之间的关系。]

二、教学例1

1、出示例1的表格。

提问:表中列出了哪两种量?(板书:时间和路程)

观察表中的数据,哪一种量的变化引起了另一种量的变化?

指名回答。

谈话:时间变化,路程也随着变化,我们就说,路程和时间是两种相关联的量。(板书:路程和时间是两种相关联的量。)

为什么说路程和时间是两种相关联的量?

学生交流。(有的学生可能发现一种量扩大到原来的几倍,另一种量也随着扩大到原来的几倍;有的学生可能会发现一种量缩小到原来的几分之几,另一种量也随着缩小到原来的几分之几。)

2、谈话:观察表中的数据,这两种量在变化中有没有什么不变的规律呢?

学生交流,教师引导:请写出几组对应的路程和时间的比,并求出比值,根据学生回答板书:=80=80=80……

提问:你能用一个式子来表示上面的规律吗?

根据学生回答,板书:=速度(一定)

3、小结:路程和时间是两种相关联的量,时间变化,路程也随着变化。当路程和对应时间的比的比值一定(也就是速度一定)时,我们就说行驶的路程和时间成正比例,行驶的路程和时间成正比例的量。(板书:正比例的意义)

[设计意图:正比例的知识在日常生活中有着广泛的应用。通过学习这部分知识,可以帮助学生加深对学过的数量关系的认识,使学生学会从变量的角度来认识两个量之间的关系,把握正比例概念的内涵和本质。]

三、教学“试一试”

1、出示“试一试”,学生自由读题。

2、让学生根据已知条件把表格填写完整。

3、请学生根据表中数据,先尝试独立完成表格下面的四个问题,再和同桌交流。

4、学生交流中,明确:总价和数量是相关联的量,=单价(一定),总价和数量成正比例。

[设计意图:让学生在认识成正比例的量的过程中,体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。]

四、归纳字母公式

1、比较例题和“试一试”的相同点。

提问:观察上面的两个例子,它们有什么相同的地方呢?

(1)都有两种相关联的量;

(2)两种相关联的量相对应的两个数的比值总是一定的;

(3)两种量都成正比例。

2、如果用字母和分别表示两种相关联的量,用表示它们的比值,正比例关系可以用怎样的式子来表示呢?

根据学生的回答,板书:=(一定)

交流:和表示两种相关联的量,比的比值一定,我们就说和成正比例。

[设计意图:文似看山,学如登高。结合实例认识成正比例的量的特点,加深对正比例意义的理解。]

五、巩固练习

1、完成第63页“练一练”。

学生独立思考并作出判断,要用完整的语言说出判断的理由。

2、完成练习十三第1题。

(1)让学生按题目要求先各自算一算、想一想。

(2)全班交流,让学生说说为什么碾米机的工作时间和碾米数量成正比例,引导学生完整地说出判断的思考过程。

3、完成练习十三第2题。

(1)让学生独立判断,并指名说说判断的理由。

(2)注意引导学生有条理地说明判断的思考过程。

4、完成练习十三第3题。

(1)先让学生说说题目中将图中的正方形按怎样的比放大,放大后的正方形的边长各是几厘米?

(2)再让学生在书上画出放大后的图形,并算出每个图形的周长和面积,并填在表中。

(3)讨论表格下面的两个问题。通过讨论使学生明确:只有当两种相关联的量的比值一定时,它们才成正比例。

[设计意图:按照新课改的理念,教学中创设开放的问题情境和宽松的学习氛围,给学生充分思考、交流的空间,进一步巩固对正比例意义的理解。]

六、全课总结

这节课你学会了什么?通过这节课的学习,你还有哪些收获?

[设计意图:引导学生进行课堂反思,进一步理解成正比例的量,为后面的学习打基础。]

七、作业

完成《练习与测试》相关作业。

板书设计

正比例的意义

时间和路程路程和时间是两种相关联的量。

=80=80=80……

=速度(一定)

=(一定)

第五篇:六年级下数学教学反思-比例尺-北师大版2014【小学学科网】

《比例尺》教学反思

xiaoxue.xuekeedu.com

《比例尺》一课是比例的应用第一课时,以比、比例为知识基础。本课时我预设的教学目标是理解比例尺的含义.会应用比例的知识求平面图的比例尺,以及根据比例尺求图上距离或实际距离。在课中我设计了这样三大板块:一:设疑:两个城市之间的距离是一定的,但是在大小不同的两张中国地图上(出示两张中国地图),这两个城市之间的距离是不一样的,这是为什么呢?有什么奥密吗?

二、学习探索中国地图。请学生量出每两个城市之间的距离,并求出图上距离和实际距离。

交流得出所求的比是1:41880000,为什么这几个比是一样的?再得出在同一幅图上,图上距离与实际距离的比是一定的,图上距离与实际距离的比叫做比例尺。

三、求比例尺和利用比例尺计算图上距离或实际距离。拓展题:上海到北京的距离是1050千米,在一幅地图上的距离是4厘米,广州到北京的距离是5880千米,在这幅地图上的距离是多少千米?这题可以依据比例尺一定写出比例计算。

一节课下来,学生参与学习的积极性很高,特别是在处理一个生成环节的时候,学生讨论得尤为激励:在第三环节计算图上距离时,如果在比例尺是1:5000000的地图上绘制两个城市的距离,与刚才这幅1:41880000的地图上比较,有什么不同?有学生说:图上距离会短一些,有学生说图上距离会长一些,这时教师适当地点拨:数据比较大,你能否举一个例子来证明自己的想法是正确的。于是,学生讲出了1:10和1:100两个比例尺,一个是图上1厘米代表实际10厘米,一个是图上1厘米代表实际100厘米,1厘米代表的实际距离越长在图上画的就越小。本节课欠缺之处:

1、教师扶得比较多,学生的活动没有充分展开。

2、课时划分应该更细化,本节课应更侧重于认识比例尺,对比例尺意义的理解上,课堂时间的分配应该更优化。

3、学习探究环节应该考虑得更为细致,同一道探究题可以给同桌两人大小不一的中国地图,造成矛盾冲突,更为深刻地理解比例尺的意义

4、学生用多种方法计算拓展题,教师逐一将这几种方法进行评价,而没有很好地将这几种方法联系起来,应该在评价反馈的过程中找到这几种方法之间的相通之处,不仅让学生进一步地理解本课时的内容,在基础之上加强拓展提升.xiaoxue.xuekeedu.com

下载六年级下数学教学设计-正比例新-北师大版【小学学科网】(最终版)word格式文档
下载六年级下数学教学设计-正比例新-北师大版【小学学科网】(最终版).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    六年级数学下册《正比例》教学设计

    六年级数学下册 《正比例》教学设计 教学目标 1.利用正比例解决一些简单的生活问题,感受正比例关系在生活中的广泛应用。 2.能根据正比例的意义,判断两个相关联的量是不是成正比......

    六年级数学下册《正比例》教学设计

    六年级数学下册《正比例》教学设计 教学目标: 、知识与技能:经历正比例意义的建构过程,通过具体问题认识成正比例的量,能找出生活中成正比例量的实例,能正确判断成正比例的量。 2......

    2016北师大六年级数学下反比例教学设计

    北师大版反比例教学设计 教学目标: 1、结合丰富的实例,认识反比例。 2、能根据反比例的意义,判断两个相关联的量是不是成反比例。 3、利用反比例解决一些简单的生活问题,感受反......

    新北师大版小学数学六年级第四单元正比例与反比例教学设计(教案)

    第四单元:正比例与反比例 1、变化的量 学习目标: 1、结合具体目标,体会生活中存在着大量互相依存的变量。 2、在具体情境中,尝试用自己的语言描述两个变量之间的关系。 学习重......

    北师大版小学数学六年级上册《正比例》说课稿

    北师大版小学数学六年级上册《正比例》说课稿 教学内容: 各位领导、各位评委,你们好!今天我说课的课题是《正比例》,这是北师大版六年级数学下期第二单元《正比例和反比例》中第......

    北师大版六年级数学下册《正比例》教学反思

    刚刚上完正比例的教学内容,有以下几点心得:1、比例是建立在比的关系的基础上的,所以必须让学生回顾明确什么是是比。两个数相除叫做这两个数的比。比有两种写法,一种是比号写法,......

    六年级数学学科(下)

    六年级数学第二单元(下) 一、轻松填一填:(1×18=18分) 1、在一幅比例尺是1:4000的学校平面图上,量得教学楼到操场的距离是4.8厘米,实际距离是米。 2、圆柱体的侧面积一定,它的底面......

    苏教版六年级下册数学《正比例》教学设计

    《正比例》教学设计 教学内容:认识成正比例的量,六年级数学下册教材第56页的例1、第57页的“试一试”和“练一练”,完成练习十的第1~3题。 教学目标: 1.使学生经历从具体实例中认......