第一篇:齿轮传动机构的装配(二)教案
正页
教学内容
第三节
齿轮传动机构的装配
(二)教学目的1、复习园柱齿轮机构的装配的步骤、方法及精度检验
重、难点
教法选择
教
具
教学进程
2、掌握圆锥齿轮传动机构的装配技术要求
3、掌握圆锥齿轮机构的装配方法及精度检验
1、圆锥齿轮传动机构的装配技术要求
2、园锥齿轮传动机构的装配方法及精度检验
用挂图分析讲解
挂图
由旧课引入新课:
上一次课我们学习了第三节齿轮传动机构的装配知识,使我们掌握了齿轮传动机构的装配技术要求、园柱齿轮传动机构的装配方法及精度检验等内容,这一次课我们将继续学习第三节齿轮传动机构的装配知识。
参照P163页图14.26a
讲
解
参照P163页图14.26b
讲
解
参照P16页图14.27 讲
解 参照P16页图14.24 讲
解
参照P161
第三节 齿轮传动机构的装配
(二)一、园锥齿轮机构的装配
(一)、园锥齿轮装配
装配圆锥齿轮机构的顺序和装配圆柱齿轮传动机构的顺序相似。
(二)、箱体检验
1、圆锥齿轮一般是传递互相垂直的两条轴之间的运动,装配之前需检验两安装孔轴线的垂直度和相交程度。
2、轴线在同一平面内的两孔垂直度检验方法
(1)、将百分表装在心棒1上,同时在心棒1上装有定位套筒,以防止心棒1的轴向窜动;
(2)、旋转心棒1,百分表在心棒2上L长度的两点读数差,即为两孔在L长度内的垂直度误差。
3、轴线在同一平面内的两孔相交程度检验方法
(1)、心棒1的测量端做成叉形槽,心棒2的测量端为阶台形,即为过端和止端;
(2)、检验时,若过端能通过叉形槽,而止端不能通过,则相交程度合格,否则即为超差。
4、不在同一平面内垂直两孔轴线的垂直度的检验
(1)、箱体用千斤顶3支承在平板上,用直角尺4将心棒2调成垂直位置;
(2)、此时,测量心棒1对平板的平行度误差,即为两孔轴线垂直度误差。
(三)、两圆锥齿轮轴向位置的确定
1、当一对标准的圆锥齿轮传动时,必须使两齿轮分度圆锥相切,两锥顶重合,装配时据此来确定小齿轮的轴向位置,即小齿轮轴向位置按安装距离来确定。
2、如此时大齿轮尚未装好,可用工艺轴代替,然后按侧隙要求决定大齿轮的轴向位置。
3、有些用背锥面作基准的圆锥齿轮,装配时背锥面对齐对平,就可保证两齿轮的正确装配位置。
(四)、圆锥齿轮啮合质量的检验
1、啮合质量的检验包括齿侧隙的检验和接触斑点的检验。
2、齿侧间隙的检验
①、铅丝检验法
在齿宽两端的齿面上,平行放置两条铅丝(宽齿应放置3~
4条),铅丝直径不宜超过最小间隙的4倍,使齿轮啮合挤压铅
丝,铅丝被挤压后最薄处的尺寸,即为侧隙。
②、百分表检验法
页图14.2
5Ⅰ、测量时,将一个齿轮固定,在另一个齿轮上装上夹紧杆1,讲
解
由于侧隙存在,装有夹紧杆的齿轮便可摆动一定角度,在百分
表2是得到读数差C,则此时齿侧间隙Cn为:
R
Cn=C
参照P16
4页表14.4
讲
解
课堂小结
布置作业
课后效果
分
析
L 式中
C——百分表2的读数差,mm;
R——装夹紧杆齿轮的分度圆半径,mm;
L——百分表触头至齿轮回转中心之距,mm。
Ⅱ、可将百分表直接抵在一个齿轮的齿面上,另一齿轮固定,将接触白分表触头的齿从一侧啮合迅速转到另一侧啮合,百分表上的读数差值即为侧隙。
3、接触斑点检验(1)、接触斑点检验一般用涂色法。(2)、在无载荷时,接触斑点应靠近轮齿小端,以保证工作时轮齿在全宽上能均匀地接触。(3)、满载时,接触斑点在齿高和齿宽方向应不少于40%~60%(随齿轮精度而定)。(4)、直齿圆锥齿轮涂色检验时的各种误差。
一、圆锥齿轮机构的装配
(一)、圆锥齿轮的装配
(二)、箱体检验
(三)、两圆锥齿轮轴向位置的确定
(四)、圆锥齿轮啮合质量的检验
1、齿侧间隙检验 ①、铅丝检验法 ②、百分表检验法
2、接触斑点检验
P17611、13
掌握齿轮机构的正确装配,并在实习中完成齿轮机构的装配练习
第二篇:齿轮传动机构的装配(一)教案
正页
教学内容
第三节
齿轮传动机构的装配
(一)教学目的重、难点
教法选择
教
具
教学进程
1、了解齿轮传动的概念
2、掌握齿轮传动机构的装配技术要求
3、掌握园柱齿轮机构的装配的步骤、方法及精度检验
1、齿轮传动机构的装配技术要求
2、园柱齿轮传动机构的装配方法及精度检验
用挂图分析讲解
挂图
由旧课引入新课:
上一次课我们学习了第二节链传动机构的装配知识,使我们掌握了链传动机构的装配技术要求、链传动机构的装配等内容,这一次课我们将学习第三节齿轮传动机构的装配知识。
第三节 齿轮传动机构的装配
(一)基本概念
一、齿轮传动的概述
1、定义
是依靠轮齿间的啮合来传递运动和扭矩的。
2、应用
是机械中常用的传动方式之一。
重、难点
二、齿轮传动机构的装配技术要求
比较讲解
重、难点
1、齿轮孔与轴的配合要适当,满足使用要求
(1)、空套齿轮在轴是上不得有晃动现象;(2)、滑移齿轮不应有咬死或阻滞现象;(3)、固定齿轮不得有偏心或歪斜现象。
2、保证齿轮有准确的安装中心距和适当的齿侧间隙(1)、齿侧间隙系指齿轮副非工作表面法线方向距离;(2)、侧隙过小,齿轮转动不灵活,热胀时易卡齿,加剧磨损;(3)、侧隙过大,则易产生冲击振动。
3、保证齿面有一定的接触面积和正确的接触位置
三、园柱齿轮机构的装配
(一)、园柱齿轮装配步骤
1、先把齿轮装在轴上;
2、再把齿轮轴部件装入箱体。
(二)、齿轮与轴的装配
1、在轴上空套或滑移的齿轮(1)、一般与轴为间隙配合;(2)、装配精度主要取决于零件本身的加工精度;(3)、装配较方便,应注意检查轴、孔尺寸。
2、在轴上固定的齿轮(1)、与轴的配合多为过渡配合,有少量的过盈;(2)、如过盈量不大时,用手工工具敲击装入;(3)、过盈量较大时,可用压力机装;(4)、过盈量很大的齿轮,则需采用液压套合的装配方法;(5)、压装齿轮时要尽量避免齿轮偏心、歪斜和端面未紧贴轴肩等安装误差。
3、齿轮在轴上装好后的检查(1)、对于精度要求高的应检查径向跳动量和端面跳动量;(2)、径向跳动量的检查:
将齿轮轴架在V形铁或两顶尖上,使轴与平板平行,把圆柱规放在齿轮的齿间,将百分表的触头抵在圆柱规上并读数,然后转动齿轮,每隔3~4齿检查一次,在齿轮旋转一周内,百分表的最大读数与最小读数之差,就是齿轮的径向跳动误差。(3)、端面跳动量的检查:
齿轮轴只能用顶尖顶住,并使百分表的触头抵在齿轮端面上,在齿轮旋转一周内,百分表的最大读数与最小读数之差,就是齿轮的端面跳动量。
(三)、齿轮轴装入箱体
1、装前对箱体检查
参照P159
(1)、孔距
页图14.20
相互啮合的一对齿轮的安装中心距是影响齿侧间隙的主要 讲
解
因素。
(2)、孔系(轴系)平行度检验
分别测量心棒两端尺寸L1和L2,L1-L2就是两孔轴线的平行度误差值。
参照P159
图14.21讲
参照P16页图14.2
4讲
解
参照P161
页图14.2
5讲
解
课堂小结
(3)、轴线与基面距离尺寸精度和平行度检验
①、轴线与基面的距离:
h=h1h22-
d2-a
②、平行度误差:
△=h1-h2
③、误差太大时可用刮削基面方法纠正。(4)、孔中心线与端面垂直度检验(5)、孔中心线同轴度检验
2、啮合质量检查(1)、检验齿侧间隙
①、铅丝检验法
在齿宽两端的齿面上,平行放置两条铅丝(宽齿应放置3~
4条),铅丝直径不宜超过最小间隙的4倍,使齿轮啮合挤压铅
丝,铅丝被挤压后最薄处的尺寸,即为侧隙。
②、百分表检验法
Ⅰ、测量时,将一个齿轮固定,在另一个齿轮上装上夹紧杆1,由于侧隙存在,装有夹紧杆的齿轮便可摆动一定角度,在百分
表2是得到读数差C,则此时齿侧间隙Cn为:
CRn=CL
式中
C——百分表2的读数差,mm;
R——装夹紧杆齿轮的分度圆半径,mm;
L——百分表触头至齿轮回转中心之距,mm。
Ⅱ、可将百分表直接抵在一个齿轮的齿面上,另一齿轮固定,将接触白分表触头的齿从一侧啮合迅速转到另一侧啮合,百分表上的读数差值即为侧隙。(2)、接触精度的检验
一、齿轮传动的概述
1、定义
2、应用
二、齿轮传动机构的装配技术要求
1、齿轮孔与轴的配合要适当,满足使用要求
布置作业
课后效果分
析
2、保证齿轮有准确的安装中心距和适当的齿侧间隙
3、保证齿面有一定的接触面积和正确的接触位置
三、园柱齿轮机构的装配
(一)、齿轮与轴的装配
(二)、齿轮轴装入箱体
1、装前对箱体检查(1)、孔距(2)、孔系(轴系)平行度检验(3)、轴线与基面距离尺寸精度和平行度检验(4)、孔中心线与端面垂直度检验(5)、孔中心线同轴度检验
2、啮合质量检查(1)、检验齿侧间隙 ①、铅丝检验法 ②、百分表检验法(2)、接触精度的检验
P1755、6
此讲是传动机构装配的重点,也是难点,在讲解时,参照图
进行讲解,并提示同学们,机械基础上学习的相关内容,让同学们了解基础课也很重要,它为专业理论课打基础,进行服务,所以同学们不仅只是好好学习专业课,也要好好学习基础课。
第三篇:齿轮转动机构的装配与蜗杆传动电子教案
【课题编号】
12-5.3 【课题名称】
齿轮转动机构的装配与蜗杆传动。【教学目标与要求】
一、知识目标.了解齿轮传动机构的装配要求和装配步骤。2.熟悉蜗杆传动的特点、主要参数和几何尺寸计算。3.了解蜗杆与蜗轮常用材料及失效形式。
二、能力目标.能正确安装齿轮传动机构并进行相关检测。2.能计算蜗杆传动的几何尺寸。3.能正确选择蜗杆蜗轮的常用材料。
三、素质目标.熟悉齿轮传动的安装要求。.了解蜗杆传动的主要特点和中间平面的作用。
四、教学要求.了解检测齿轮安装技术要求的方法。.熟悉蜗杆传动的主要特点、参数和几何尺寸计算。3.了解克服滑动速度过大的具体措施。【教学重点】.齿轮传动安装精度的检测。2.蜗杆传动的主要特点与几何尺寸计算。【难点分析】
1.由于学生们没有实践经验,对齿轮机构的装配及检测与维护会感到困难,只有经过拆装机器才能得到解决。
2.模数m与蜗杆分度圆值径d1的搭配不好理解。3.滑动速度过大会产生发热、胶合,理解不深。【分析学生】
缺少实践经历给学习装配要求带来很大的困难,只能从通过教具模型来帮助解决。蜗杆传动最好有教具或视频演示,给学生增加初步的感性认识。【教学思路设计】
1.对于装配内容最好先安排一次拆装练习,如无可能实习,看看装配视频或教具也能一定帮助。
2.蜗杆传动必须配教具、实物或视频,才能讲好中间平面,分析运动和啮合条件,以及作几何尺寸计算。【教学安排】
2学时(90分钟)【教学过程】
一、齿轮传动机构的装配
齿轮传动机构的装配精度与齿轮精度,齿轮与轴的配合精度,轴与轴承的配合精度,轴承的精度,轴承与孔的精度,两孔的同心度和两轴孔之间的中心距精度等因素有关。这些精度的高低,将影响到齿轮的传动精度。一般情况下,箱体轴承孔的加工精度比较高,所以传动精度也相比较高,装配比较容易。齿轮机构装配精度可用以下几个方面来检测:
1.轴与齿轮孔的配合 用径向跳动与端面跳动量的大小来衡量,可将轴与齿轮装配后,固定在可旋转支架上,如图5-22。然后用百分表测量径向和端面的跳动值,为了更准确地测量径向跳动,可 在齿槽中塞入圆柱规,圆柱规的直径为1.68 倍的模数。其最大与最小值的差为径向跳动值。为了测量方便,可将圆盘上的零线调节到与指针重合的位置。如果各零件的制造精度都在合格范围内,其传动精度一般不会有问题。
2.保证齿侧间隙和中心矩的大小 中心距的大小应在公差范围内,齿侧隙也应在精度要求之内。最简单的检测方法是在啮合面间放入几根铅条,随着齿轮的转动,啮合后的铅条厚度即为齿侧间隙。间隙大小应符合要求。
3.齿面接触面积检测 正常传动的两直齿轮,应在全齿宽上啮合,可在齿面上涂抹红丹粉的方法来检测。应注意涂抹不要过厚,以免出现假象。如果出现接触斑点偏斜,则说明两轴中心距不平行,有微小偏差,如图5-25所示。
二、蜗杆的传动
由于一般单级齿轮传动比不大于5,当齿轮传动比的值较大时,则需要多对齿轮组成齿轮系来传递运动,不仅结构复杂体积大,而且也提高制造成本。蜗杆传动具有大传动比的优点,一般在8-40之间,都能满足常用机器的传动要求,同时还具有自锁功能,但效率较低。
1.主要参数
蜗杆传动如图5-29所示,它由类似于螺纹的蜗杆与类似斜齿轮的蜗轮所组成,两轴互成空间90º,用于两轴交错的空间传递。常用的蜗杆端面成阿基米德螺线,所以称之为阿基米德蜗杆,如图5-30所示。加工时应保证刀具的基面与蜗杆的轴线平齐,如过高或过低,加工后的蜗杆将成为渐开线齿形。为了研究蜗杆的主要参数,需要借助于经过蜗杆轴线而与蜗轮轴线垂直的中间平面,在中间平面内,对于蜗杆为轴面,对于蜗轮为端面,如图5-31。
1)
模数m和压力角 一对蜗杆传动的正确啮合条件为蜗杆的轴面模数和压力角与蜗轮的端面模数和压力角分别相等,且为标准值。同时蜗杆的导程角等于蜗轮的螺旋角β。即:
mx1=m=m;x1=t2=;=β
2)蜗杆分度圆直径d1和导程角,如图5-32所示。
Tan=z1px/лd1=z1лm/лd1= z1m/d1
其中z1为蜗杆螺旋线头数,也称蜗杆齿数,与直齿轮的齿数含义略有不同。从上式可以看出,蜗杆的分度圆直径不仅与模数和头数有关,还与蜗杆的升角正切有关,即d1=mz1/tan,相同的模数和头数,取不同的升角,分度圆直径也随之变化。为了减少升角的变化而需要过多的蜗轮加工滚刀,便于刀具标准化,国家规定了蜗杆的模数和分度圆搭配值如表5-12,从表中可以看出蜗杆的最小直径为18mm,最大为315mm。
3)
蜗杆头数z1、蜗轮齿数z2和传动比i 常用z1=1—4,最大为8,以单头应用最多。常用蜗轮齿数为z2=28—80,如用于分度时,可取更大值。传用比ⅰ=n1/n2= z2 / z1,见表5-13。单头蜗杆的最小传动比为28。
2.齿面滑动速度为Vs 如图5-33所示,由于两轴交错,蜗杆的圆周速度与蜗轮的圆周速度相垂直,相对滑动速度Vs比较大,使接触表面产生很大的摩擦力,造成发热,破坏油膜的形成,以致出现胶合。
3.蜗杆蜗轮传动的几何尺寸计算。
见表5-15,这里要注意与直齿轮传动的区别。4.蜗杆传动的失效形式及材料选择
由于相对表面滑动速度大,所以摩擦发热导致胶合是蜗杆传动的主要失效形式,当然磨损、折断也可能发生,但以胶合为常见。当选择两种不同材料时,其胶合的可能性最小,所以蜗杆常选用中碳钢表面淬大,以提高齿面硬度增大耐磨性;蜗轮选用铸造锡青铜或灰口铸铁为最好的配对。
三、小结.蜗杆传动的最主要优点是传动比大,且有自锁作用,两轴呈交错状态;其最大缺点是滑动速度大,易摩檫发热产生胶合。.蜗杆常用中碳钢表面淬大,蜗轮选用铸造锡青铜。3.直齿轮传动精度检测包括载荷齿面分布状态,齿侧间隙大小和径向与端面跳动值大小。
四、布置作业
P111 5-8、9、10、15、16、17
第四篇:齿轮传动设计课程设计
机械原理大作业三
课程名称:
机械原理
设计题目:
齿轮传动设计
院
系:
机电学院
班
级:
设
计
者:
学
号:
指导教师:
设计时间:
2017年6月5日
XX大学
一、设计题目
如图所示,一个机械传动系统,运动由电动机1输入,经过机械传动系统变速后由圆锥齿轮16输出三种不同的速度。用表中第21组数据对该机构进行设计。
1.1机构运动简图
1.电动机
2,4.皮带轮
3.皮带
5,6,7,8,9,10,11,12,13,14.圆柱齿轮、15,16.圆锥齿轮
1.2机械传动系统原始参数
序号
电机转速(r/min)
输出轴转速(r/min)
带传动最大传动比
滑移齿轮传动
定轴齿轮传动
最大传动比
模数
圆柱齿轮
圆锥齿轮
一对齿轮最大传动比
模数
一对齿轮最大传动比
模数
745
≤2.5
≤4
≤4
≤4
二、传动比的分配计算
电动机转速n=745r/min,输出转速n1=40
r/min,n2=35
r/min,n3=30
r/min,带传动的最大传动比ipmax=2.5,滑移齿轮传动的最大传动比ivmax=4,定轴齿轮传动的最大传动比idmax=4。
根据传动系统的原始参数可知,传动系统的总传动比为
i1=nn1=745/40=18.625
i2=nn2=745/35=21.286
i3=nn3
=745/30=24.833
传动系统的总传动比由带传动、滑移齿轮传动和定轴齿轮传动三部分实现。设带传动的传动比为ipmax=2.5,滑移齿轮的传动比为iv1、iv2和iv3,定轴齿轮传动的传动比为if,则总传动比
i1=ipmaxiv1if
i2=ipmaxiv2if
i3=ipmaxiv3if
令iv3=ivmax=4
则可得定轴齿轮传动部分的传动比为if
=
i3ipmax×ivmax
=
24.8332.5×4=2.4833
滑移齿轮传动的传动比
iv1=i1ipmax×if
=
18.6252.5×2.4833
=3.0000
iv2=i2ipmax×if
=
21.2862.5×2.4833
=3.4287
定轴齿轮传动由3对齿轮传动组成,则每对齿轮的传动比为
id=3if=32.4833=1.3542≤idmax=4
三、齿轮齿数的确定
3.1
滑移齿轮传动齿数的确定
根据传动比符合ivi=3的要求,以及中心距必须和后两个齿轮对相同,齿数最好互质,不能产生根切以及尺寸尽可能小等一系列原则,初步确定滑移齿轮5,6为高度变位齿数分别为:z5=
18,z6=
53。变位系数x1=0.4,x2=-0.4
根据传动比符合iv2=3.4287的要求,以及中心距必须和其他两个齿轮对相同,齿数最好互质,不能产生根切以及尺寸尽可能小等一系列原则,初步确定齿轮7,8,9,10均为角度变位齿轮,齿数分别为z7=16,z8=
55,变位系数x1=0.53,x2=0.567
z9=14,z10=57,变位系数x1=0.53,x2=0.567
它们的齿顶高系数ha*=1,径向间隙系数c*=0.25,分度圆压力角α=20°,实际中心距a'=67mm。
3.2
定轴传动齿轮齿数的确定
根据定轴齿轮变速传动系统中传动比符合id的要求,以及齿数最好互质,不能产生根切以及尺寸尽可能小等一系列原则,可大致选择如下:
圆柱齿轮11、12、13和14为高度变位齿轮,其齿数:z11=z13=17,z12=z14=23。变位系数x1=0.120,x2=-0.120,它们的齿顶高系数ha*=1,径向间隙系数c*=0.25,分度圆压力角α=20°。
圆锤齿轮15和16选择为标准齿轮z15=17,z16=23,齿顶高系数ha*=1,径向间隙系数c*=0.2,分度圆压力角α=20°。
四、滑移齿轮变速传动中每对齿轮几何尺寸及重合度的计算
4.1滑移齿轮5和齿轮6
序号
项目
代号
计算公式及计算结果
齿数
齿轮5
z5
齿轮6
z6
模数
m
压力角
α
20°
齿顶高系数
ha*
顶隙系数
c*
0.25
标准中心距
a
=
(z5+z6)/2=71mm
实际中心距
a'
71mm
啮合角
α'
α'=arccosacosαa'=20°
变位系数
齿轮5
x5
0.40
齿轮6
x6
-0.40
齿顶高
齿轮5
ha5
ha5=mha*+x5-∆y=2.800mm
齿轮6
ha6
ha6=mha*+x6-∆y=1.200mm
齿根高
齿轮5
hf5
hf5=mha*+c*-x5=1.700mm
齿轮6
hf6
hf6=mha*+c*-x6=3.300mm
分度圆直径
齿轮5
d5
d5=mz5=36.000mm
齿轮6
d6
d6=mz6=106.000mm
齿顶圆直径
齿轮5
da5
da5=d5+2ha5=41.600mm
齿轮6
da6
da6=d6+2ha6=108.400mm
齿根圆直径
齿轮5
df5
df5=d5-2hf5=32.600mm
齿轮6
df6
df6=d6-2hf6=99.400mm
齿顶圆压力角
齿轮5
αa5
αa5=arccosd5cosαda5=35.591°
齿轮6
αa6
αa6=arccosd6cosαda6=23.236°
重合度
ε
ε=[z5tanαa5-tanα'+z6tanαa6-tanα']
/2π=1.559
4.2滑移齿轮7和齿轮8
序号
项目
代号
计算公式及计算结果
齿数
齿轮7
z7
齿轮8
z8
模数
m
压力角
α
20°
齿顶高系数
ha*
顶隙系数
c*
0.25
标准中心距
a
=
(z7+z8)/2=71mm
实际中心距
a'
73mm
啮合角
α'
α'=arccosacosαa'=23.943°
变位系数
齿轮7
x7
0.53
齿轮8
x8
0.567
齿顶高
齿轮7
ha7
ha7=mha*+x7-∆y=2.866mm
齿轮8
ha8
ha8=mha*+x8-∆y=2.940mm
齿根高
齿轮7
hf7
hf7=mha*+c*-x7=1.440mm
齿轮8
hf8
hf8=mha*+c*-x8=1.366mm
分度圆直径
齿轮7
d7
d7=mz7=32.000mm
齿轮8
d8
d8=mz8=110.000mm
齿顶圆直径
齿轮7
da7
da7=d7+2ha7=37.732mm
齿轮8
da8
da8=d8+2ha8=115.880mm
齿根圆直径
齿轮7
df7
df7=d7-2hf7=29.12mm
齿轮8
df8
df8=d8-2hf8=107.268mm
齿顶圆压力角
齿轮7
αa7
αa7=arccosd7cosαda7=37.161°
齿轮8
αa8
αa8=arccosd8cosαda8=26.873°
重合度
ε
ε=[z7tanαa7-tanα'+z8tanαa8-tanα']
/2π=1.553
4.3滑移齿轮9和齿轮10
序号
项目
代号
计算公式及计算结果
齿数
齿轮9
z9
齿轮10
z10
模数
m
压力角
α
20°
齿顶高系数
ha*
顶隙系数
c*
0.25
标准中心距
a
=
(z9+z10)/2=71
实际中心距
a'
啮合角
α'
α'=arccosacosαa'=23.943°
变位系数
齿轮9
x9
0.53
齿轮10
x10
0.567
齿顶高
齿轮9
ha9
ha9=mha*+x9-∆y=2.866mm
齿轮10
ha10
ha10=mha*+x10-∆y=2.940mm
齿根高
齿轮9
hf9
hf9=mha*+c*-x9=1.440mm
齿轮10
hf10
hf10=mha*+c*-x10=1.366mm
分度圆直径
齿轮9
d9
d9=mz9=28.000mm
齿轮10
d10
d10=mz10=114.000mm
齿顶圆直径
齿轮9
da9
da9=d9+2ha9=33.732mm
齿轮10
da10
da10=d10+2ha10=119.880mm
齿根圆直径
齿轮9
df9
df9=d9-2hf9=25.120mm
齿轮10
df10
df10=d10-2hf10=111.268mm
齿顶圆压力角
齿轮9
αa9
αa9=arccosd9cosαda9=38.738°
齿轮10
αa10
αa10=arccosd10cosαda10=26.67°
重合度
ε
ε=[z9tanαa9-tanα'+z10tanαa10-tanα']
/2π=1.531
五、定轴齿轮变速传动中每对齿轮几何尺寸及重合度的计算
5.1圆柱齿轮11与齿轮12
(齿轮13同齿轮11,齿轮14同齿轮12)
序号
项目
代号
计算公式及计算结果
齿数
齿轮11
z11
齿轮12
z12
模数
m
压力角
α
20°
齿顶高系数
ha*
顶隙系数
c*
0.25
标准中心距
a
=
(z11+z12)/2=60
实际中心距
a'
啮合角
α'
α'=arccosacosαa'=20°
变位系数
齿轮11
x11
0.120
齿轮12
x12
-0.120
齿顶高
齿轮11
ha11
ha11=mha*+x11-∆y=3.360mm
齿轮12
ha12
ha12=mha*+x12-∆y=2.640mm
齿根高
齿轮11
hf11
hf11=mha*+c*-x11=3.390mm
齿轮12
hf12
hf12=mha*+c*-x12=4.110mm
分度圆直径
齿轮11
d11
d11=mz11=51mm
齿轮12
d12
d12=mz12=69mm
齿顶圆直径
齿轮11
da11
da11=d11+2ha11=57.720mm
齿轮12
da12
da12=d12+2ha12=74.280mm
齿根圆直径
齿轮11
df11
df11=d11-2hf11=44.220mm
齿轮12
df12
df12=d12-2hf12=60.780mm
齿顶圆压力角
齿轮11
αa11
αa11=arccosd11cosαda11=33.916°
齿轮12
αa12
αa12=arccosd12cosαda12=29.203°
重合度
ε
ε=[z11tanαa11-tanα'+z12tanαa12-tanα']
/2π
=1.549
5.2圆锥齿轮15与16
序号
项目
代号
计算公式及计算结果
齿数
齿轮15
z15
齿轮16
z16
模数
m
压力角
α
20°
齿顶高系数
ha*
顶隙系数
c*
0.2
分度圆锥角
齿轮15
δ15
δ15=arccot(z16/z15)=36.469°
齿轮16
δ16
δ16=90°-δ15=53.531°
分度圆直径
齿轮15
d15
d15=mz15=51.000mm
齿轮16
d16
d16=mz16=69.000mm
锥距
R
R=12d152+d162=42.901mm
齿顶高
齿轮15
ha15
ha15=mha*=3.000mm
齿轮16
ha16
ha16=mha*=3.000mm
齿根高
齿轮15
hf15
hf15=mha*+c*=3.600mm
齿轮16
hf16
hf16=mha*+c*=3.600mm
齿顶圆直径
齿轮15
da15
da15=d15+2ha15cosδ15=55.825mm
齿轮16
da16
da16=d16+2ha16cosδ16=72.566mm
齿根圆直径
齿轮15
df15
df15=d15-2hf15cosδ15=45.210mm
齿轮16
df16
df16=d16-2hf16cosδ16=64.720mm
当量齿数
齿轮15
zν15
zν15=z15cosδ15=21.140
齿轮16
zν16
zν16=z16cosδ16=38.695
当量齿轮
齿顶圆压力角
齿轮15
ανa15
ανa15=arccosmzν15cosαmzν15+2ha15=30.854°
齿轮16
ανa16
ανa16=arccosmzν16cosαmzν16+2ha16=26.682°
重合度
ε
ε=[zν15tanανa15-tanα'+zν16tanανa16-tanα']
/2π=1.640
六、输出转速的检验
n1=n*iv1'*if'*ipmax'=745×1853×1723×1723×1723×12.5=40.86rmin
(要求值40r⁄min)
n2=n*iv1'*if'*ipmax'=745×1655×1723×1723×1723×12.5=35.00rmin
(要求值35r⁄min)
n3=n*iv1'*if'*ipmax'=745×1457×1723×1723×1723×12.5=29.56rmin
(要求值30r⁄min)
可以看出,当输入转速为745
r⁄min时,所设计齿轮传动机构能输出符合所要求的转速。
第五篇:齿轮传动说课
推荐
“齿轮传动”说课稿
一、说教学内容
齿轮传动是中等职业学校机械类专业《机械基础》课第七章机械传动中的重要内容,学好本课知识不仅能使学生认识齿轮的各部位名称、了解齿轮在工程实际中的应用,并且对于后续学习机械设计打下扎实基础。
二、说教学目标
根据中职生逻辑思维能力比较薄弱而实践动手能力较强的学习特点,结合《机械基础》教学大纲要求,制定本课的教学目标如下:
1.知识目标
识记齿轮传动的概念,了解齿轮传动的分类与特点,理解齿轮传动的各部件名称与参数代号。
2.能力目标
(1)会判断齿轮各部位的名称;
(2)会根据已知条件计算齿轮各部分尺寸;(3)培养良好的小组协作能力。3.思想目标
培养学生从事工程技术工作认真、严谨的工作作风。4.教学重点和难点确定
从多年的教学实践来看:齿轮传动学习的最终目标是学生能够使用齿轮相关计算公式从事工程技术计算,在教学过程中,必须以此作为教学重点与难点。
三、说教学方法:
1.说教法
瑞士著名教育学家皮亚杰的建构主义理论认为,学生是学习的主体,教师则是学习过程的引导者,而学生的学习动力则源于兴趣。因此,针对中职生的学习特点,在本课的教学方法上采用三种教学方法:
(1)情境教学法通过多媒体教学课件设置工程实际及相关职业岗位情境,激发学生学习兴趣。
(2)问题教学法
在学生进入情境、产生兴趣的接受知识的最佳状态,适时引入问题,引导学生思考、探究。
(3)案例尝试法
以具体的工程案例引导学生尝试运用相关公式解题。
2.说学法
为了更好地完成本堂课的教学任务,学生应该根据教师的教法,相应地采用下列几种学习方法:
(1)观察法
根据教师创设的情境,思考齿轮传动的概念、分类及传动特点。(2)探究法、发现法
根据教师设置的任务或问题,通过小组协作探究解决问题的答案。
(3)尝试法
根据教师提供的工程案例,在教师引导下,借助教材相关表格中的参数,小组协作尝试解决工程问题。
四、说教学过程
1.情境激趣
根据维果茨基的最近发展区理论,教师使用多媒体技术,引入工程实际或者日常生活中使用到齿轮的场景,熟悉的生活情境能很好地唤起学生的学习兴趣。使学生在愉快的学习氛围中了解齿轮传动的分类与传动特点。
2.教师设疑、学生小组思考、探究
在学生兴趣最高点,教师及时设疑,并将学生安排2人一组,参阅教材P142、143学习内容,表7-12,图7-
17、18,思考下列问题:
(1)齿轮包括哪些部位?
(2)齿轮有哪几个标准参数?
3.小组协作讨论并相互间交流
教师安排若干小组将讨论结果呈现,并在小组间相互探讨,最终获得最佳答案。
4.意义构建——案例尝试解决工程问题
结合学生在此阶段的知识,如何实现奥苏贝尔提出的认知迁移,在本环节内设置工程案例,引导学生通过小组协作,查阅表7-13内相关计算公式,开展研讨并进行计算,将计算结果填写入教师设置的相关表格内。[此环节是本堂课教学高潮,通过案例尝试教学方法,有效地激发学生的学习主动性。]
5.课堂交流
教师安排若干小组将工程案例解题结果呈现,并在课堂上,全体小组间相互交流、探讨,最后达成一致意见,获得最终正确答案,突破教学重点与难点。
6.课堂总结
安排若干学生对本堂课知识点进行归纳、总结。
7.布置作业
通常,《机械基础》教材都有配套的同步练习,根据相关知识点,要求学生完成同步练习作业,巩固新知。