第一篇:用导数求切线方程 教案
用导数求切线方程
一、教学目标:(1)知识与技能:
理解导数的几何意义.能够应用导数公式及运算法则进行求导运算.(2)过程与方法:
掌握基本初等函数的导数公式及运算法则求简单函数的导数.(3)情感态度与价值观:
通过导数的几何意义的探索过程,掌握计算简单函数的导数,培养学生主动探索、勇于发现之间的联系的精神,渗透由特殊到一般的思想方法.二、重点、难点
重点:能用导数的几何意义求切线方程.难点:用导数求切线方程.三、学情分析
学生在前面已学习导数的概念,能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,本节课进一步研究和学习导数的几何意义与切线方程之间的联系。根据学生好动、观察能力强的特点,让他们采用小组合作、讨论的形式归纳本节课的知识,突出本节课的重点、难点。
四、教学过程: 【知识回顾】 1.导数的概念
函数yf(x)在xx0处的导数是 _____________________.2.导数的几何意义
函数yf(x)在点x0处的导数的几何意义就是曲线yf(x)在点(x0,f(x0))处的切线的斜率,即k________.3.基本初等函数的导数公式: 1)若f(x)c(c为常数),则f'x________; 2)若f(x)x,则f'x________;3)若f(x)sinx,则f'x________; 4)若f(x)cosx,则f'x________;5)若f(x)ax,则f'x________; 6)若f(x)ex,则f'x________;
x7)若f(x)loga,则f'x________; 8)若f(x)lnx,则f'x________.4.导数的运算法则
____________ 2)fxgx'__________1)fxgx'__________
fxcfx'________ '_______________________ 4)3)g(x)
【新课引入】
1.用导数求切线方程的四种常见的类型及解法:
类型一:已知切点,求曲线的切线方程
此类题较为简单,只须求出曲线的导数f(x),并代入点斜式方程即可.,1)处的切线方程为()例1 曲线yx33x21在点(1A.y3x4
B.y3x
2C.y4x
3D.y4x5
类型二:已知斜率,求曲线的切线方程
此类题可利用斜率求出切点,再用点斜式方程加以解决.
例2 与直线2xy40的平行的抛物线yx的切线方程是()A.2xy30
C.2xy10
B.2xy30 D.2xy10 类型三:已知过曲线外一点,求切线方程
此类题可先设切点,再求切点,即用待定切点法来求解.
0)且与曲线y例3 求过点(2,1相切的直线方程. x类型四:已知过曲线上一点,求切线方程
过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法.,1)的切线方程. 例4 求过曲线yx32x上的点(1【课堂练习】
1211.曲线f(x)x在点(1,)处的切线方程为___________________.222.已知函数f(x)lnxax的图像在x1处的切线与直线2xy10平行,则实数a的值是__________.33.已知函数f(x)x3x,若过点A(0,16)的直线yax16与曲线yf(x)相切,则实数a的值是__________.134yx.4.已知曲线33(1)求曲线在点P(2,4)处的切线方程.(2)求曲线过点P(0,)的切线方程.(3)求斜率为4的曲线的切线方程.23
五、课堂小结:
曲线yf(x)“在点P(x0,y0)的切线”与“过点P(x0,y0)的切线”的区别:前者P(x0,y0)为切点,后者P(x0,y0)不一定是切点。前者的解法是设方程为yy0f(x0)(xx0);后者的解法是待定切点法,先设切点,再根据题意求切点处导数(即该点的切线的斜率)。
六、作业布置: 三维设计P55 P86
第二篇:求轨迹方程教案
求轨迹的方程
娄底一中 刘瑞华
教学目标:
1、掌握和熟练运用求轨迹方程的常用方法.2、培养思维的灵活性和严密性.3、进一步渗透“数形结合”的思想 教学重点和难点:
重点:落实轨迹方程的几种常规求法。
难点:教会学生如何审题,选用适当的方法求轨迹的方程。教学方法:
讨论法、类比法. 教具准备: 多媒体投影. 教学设计:
求曲线的轨迹方程是解析几何最基本、最重要的课题之一,是用代数方法研究几何问题的基础。这类题目把基本知识、方法技巧、逻辑思维能力、解题能力融于一体,因而也是历届高考考查的重要内容之一。
一、知识回顾
求曲线轨迹方程的基本步骤
在求曲线的轨迹方程时,要经历审题、寻找和确定求解途径、分清解答步骤、逐步推演、综合陈述、完整作答或给出恰当的结论等多个不可缺少的环节,其基本步骤是:
(1)建系设点:建立适当的坐标系,设曲线上任一点坐标M(x,y);
(2)列式:写出适合条件的点的集合PMP(M),关键是根据条件列出适合条件的等式;
(3)代换:用坐标代换几何等式,列出方程f(x,y)0;(4)化简:把方程f(x,y)0化成最简形式;
(5)证明:以化简后的方程的解为坐标的点都是曲线上的点。
二、基础训练
1、已知向量OP与OQ是关于y轴对称,且2OPOQ1则点Px,y的轨迹方程是____________
2.△ABC中,A为动点,B、C为定点,B(-则动点A的轨迹方程为_________.aa1,0),C(,0),且满足条件sinC-sinB=sinA,222x2y21上的动点,则F1F2P重心的轨迹方程为
3、点P是以F1,F2为焦点的椭圆
259___________________.4、已知点Px,y满足xy4,则点Qx,yx22的y轨迹方程为_____________________ 解答与分析:
1、yx221 方法为:直译法即是如果动点满足的几何条件本身就是一些几何量的等量2关系,则只需直接把这些关系“翻译”成x,y的等式,由此得到曲线的方程.
x2y21 方法为:定义法就是若动点的轨迹的条件符合某一基本轨迹(如:圆,椭2、43圆,双曲线,抛物线)的定义,则可以根据定义直接写出动点的轨迹方程.
9x2y21y0方法为:代入法就是若动点P(x,y)依赖于已知方程的曲线上另一个动3、25点C(x0,y0)运动时,找出点P与点C之间的坐标关系式,用(x,y)表示(x0,y0)再将x0,y0代入已知曲线方程,即可得到点P的轨迹方程。
4、y22x42x2方法为:所谓参数法就是在求曲线方程时,如果动点坐标x,y关系不易表达,可根据具体题设条件引进一个(或多个)中间变量来分别表示动点坐标x,y,间接地把x,y的关系找出来,然后消去参数即可得到动点的轨迹方程.
小结:
一、由以上几个题目可以看出求动点的轨迹方程常用的方法有: 1.直译法;2.定义法
3.相关点法(代入法);4.参数法
二、求动点的轨迹方程中的注意点:
1.注意方程的纯粹性和完备性即不多不少。2.注意平面几何知识的运用。3.注意要求是求轨迹方程还是轨迹
三、例题讲解
22例1.已知定点A(2,0),点Q是圆x+y=1的动点,∠AOQ的平分线交AQ于M,当Q点在圆上移动时,求动点M的轨迹方程。的性质,知 分析1:由三角形的内角平分线|AM|2,|MQ||AM||OA|
|MQ||OQ| 而|OA|2,|OQ|1,故 即点M分AQ成比为2,若设出M(x,y),则由分点坐标公式,可表示出点Q的坐标,因Q、M为相关点,(Q点运动导致点M运动),可采用相关点法求点M的轨迹方程。
解法1:设M(x,y),由三角形内角平分线性质定理,得 ∵M在AQ上,∴点M分AQ成比为2,|AM||AO|2,|MQ||OQ|22·x0x120)若设点Q的坐标为(x0,y0),则 又A(2,02·y0y123x2x02 y3y0222而点Q(x0,y0)在圆x2y21上
3x223y24)()21,化简,得(x)2y2 22392242 点M的轨迹方程为(x)y。
x0y01,即(性质,知 分析2:由三角形的内角平分线|AM||AO|2,|QM||QO| 若过M作MN∥OQ交OA于N,则|AN||AM|2,|ON||QM|0),而 从而N(,|MN| 23|MN||AM|2,|OQ|1,|OQ||AQ|3222|OQ|为定值,可见动点M到定点N的距离为定值。3332 因此M的轨迹是以N为圆心,半径为的圆,32242 其方程为(x)y,39 而当∠AOQ=180°时,其角分线为y轴,它与AQ交点为原点O,显然,该点也满足上述轨迹方程。
注:此种解法为定义法。例
2、设过点A1,0的直线与抛物线x24y交于不同的两点P,Q,求线段PQ中点M的轨迹方程。
解:法一:设Mx,y,Px1,y1,Qx2,y2,又由已知可设直线PQ的方程y为:ykx1,则由
ykx1消去x24yy得: x24kx4k0
x1x24k,x1x24k
x222y1x2x1x22x1x21y2444k22k
xx1x22k2消去k得:y1x2x
yy1y2222k22k又直线PQ与抛物线有两个交点
16k216k0即k1或k0
x2或x0点M的轨迹方程为:y12x2x,x2或x0
法二:设Mx,y,Px1,y1,Qx2,y2,由P,Q在抛物线上得
x214y1两式相减得:x2x221x24y1y2 24y2变形得x1x1y224yxx4kPQ
122x4kyPQ又kPQx1,消去k12PQ得y2xx。又由y12x2x得其交点坐标为0,0,2,1 x24yQPoAx因为中点必须在抛物线内,由图可知x2或x0
点M的轨迹方程为:y
四、小结
略。
五、作业
12xx,x2或x0
21、过抛物线x24y的焦点的弦PQ的中点的轨迹方程?
2、过点A1,0的直线与圆xy221交于不同的两点P,Q则PQ的中点的轨迹方程? 4
第三篇:“用二分法求方程的近似解”教案
“用二分法求方程的近似解”教案
一、教学目标
1.让学生掌握二分法,并能利用计算器或计算机用二分法求方程的近似解; 2.培养和加强函数与方程思想和数形结合思想的运用.
二、教学重点
通过用二分法求方程的近似解,使学生体会函数的零点与方程根的联系,初步形成用函数的观点处理问题的意识.
三、教学难点
1.理解方程实根的本质及几何意义; 2.对方程近似解精确度的把握.
四、教具
以几何画板课件为主.
五、教学过程
1.问题情境(旨在引导学生感知寻求新方法解方程之必要性——为什么)
【问题1】求方程x3x3x10的实根. 【解析】由配方可得(x1)0,所以x1. 【问题2】解方程x1.1x0.9x1.40.
教师:方程左边无法配方,所以我们暂时还无法解此方程.以前数学家也有像解一元二次方程那样去寻找一元三次方程的求根公式,但因其推导过程比较复杂且公式不易记忆,所以中学课本
图1
一般都不作介绍.当然,我们现在可以利用几何画板来求解.在几何画板上绘出函数
32332x31.1x20.9x1.40的图象,在图象上选取一个点并度量其横坐标以及纵坐标.当移动该点时,函数值就会相应地改变.当函数值为0或接近0时,这个横坐标的值(0.67066)就是此方程的(近似)解(见图1).
学生:这方法简单,又易操作,很好!
教师:此法虽简单,但其精度无法估算.能否寻找一种比较通用的、特别是可以利用程序让计算机自动求解的其它方法呢?
【问题3】孔子(前551-前479),名丘,字仲尼,鲁国人.中国春秋末期伟大的思想家和教育家,儒家学派的创始人.全世界300万姓孔的人都可能被认为是孔子的后代.孔子的族人传承2550年至今,已繁衍有82代.假设三代同堂的话,那么一个父母每个世代平均繁衍的数量是多少?
【解析】设一个父母每代平均繁衍的数量为x个,则x79x80x813000000.此方程现在我们也无法解.类
似地,我们用几何画板先绘出函数yx79x80x81的图
图2 象,然后利用度量功能,估算出当函数值等于或接近3000000时方程的近似解x1.18836(见图2).由于指数太大,曲线几乎是垂直上升,所以操作起来很不方便.为了使移动点更方便些,也可把点选在x轴上,而不是在曲线上,然后再计算其函数值.
一般地,高于4次的一元高次方程就不再有求根公式可寻了,(有兴趣的学生可以自己去阅读有关高次方程解的书籍或上网查找相关的网页)这就更加使得寻找一种新的求解方程方法的必要.(利用二分法解此方程,可得x1.1883个)
2.新课引入(旨在引导学生怎样寻求一种恰当的方法——怎么样)【问题1】人们常说“天下乌鸦一般黑”,如果有人对此有怀疑,想要否定它,他该如何做?
教师:当结论只有成立或不成立两种情形时,可用反证法.譬如,我们找到了一只或几只(换句话说就是至少有一只)白乌鸦,那么就可以否定“天下乌鸦一般黑”.
【问题2】当电灯不亮的时候,若要寻找原因,我们是如何做的? 教师:我们一般会检查电灯或开关是否坏了,抑或是保险丝烧了、外部线路坏了,等等.如果是外部线路坏了,而线路又很长(譬如几千米甚至几十千米以上),我们要进一步确定线路究竟坏在那里时,一般有经验的电工总是先根据停电的范围来确定断路的可能区间,再采用对分法来逐段排除,从而很快地找到线路究竟坏在何处.这种方法叫做分类归缪法.
引导:解决问题的途径一般有两种,一是从已知条件→结论(演绎推理),二是从问题的结论→已知信息→与已知条件矛盾.后一种方法又常采用归缪法,它又可细分为:(1)反证法.当结论只有成立或不成立两种情形时.譬如,我们要说明平面内两条直线的位置关系——平行或相交时,即可用反证法.譬如,两直线不相交,它们就必平行;反之,如果它们不平行,它们就必相交.(2)选择法.供选择的结论不多.
【例】下列那一项是三次方程x4x7x100的解?
A.-
2B.-
5C.
4D.3
(3)分类归缪法.供选择的结论很多.譬如,要证明有关三角形的某个定理,我们并不是对每个三角形进行论证的,而是分别从锐角三角形、直角三角形以及钝角三角形等三种情形加以证明.
思考:分类归缪法与方程的解有关系吗?(类比法难在要找出似乎毫无关联的两类事物之间的相同之处)
引导:从前一节我们了解了方程的根与函数零点的关系,事实上,零点就是对应方程的实根,它是方程的精确解.但在实际问题中,这个解一般不易求出,在应用上,我们更多地是求满足一定精确度的近似解.很显然,要找到零点,就像电工师傅一样,可用分类归缪法来寻找,即在一个单调区间内,若两端点处的函数值同号,那么区间内对应方程必定无实根;反之,若两端点处的函数值异号,那么区间内对应方程必定有一实根(为方便起见,一般取其中点作为近似解).通过逐个排除,从而逐渐缩小区间的范围,直到找出满足精确度的近似解.为了便于计算机计算,在求方程的近似解时,可采用二分法.(其实,如果我们借助几何画板寻找零点时就不一定要用二分法)
3.新课(怎么做)
让学生陈述课前预习时所掌握的二分法的原理以及解题步骤.教师在黑板上作纪录,并
逐步补充完整.
注意:(1)从几何上看,求方程的解其实是找相应函数图象与x轴交点或两个函数图象交点的横坐标,而二分法并不是直接寻找交点,而是寻找函数值变号的一个尽可能小的区间中的某个值;
(2)求方程的近似解时,精确解(m)是未知的.当相邻两个近似解满足|xi1xi|(iN*)时,由f(xi1)f(xi)0,说明精确解介于xi1和xi之间,故有|xi1m|(iN*)或|xim|(iN*),所以xi1和xi都已满足精确度,均可作为近似解.所以通过比较相邻两个的近似解可以确定精确度;
(3)如果方程有整数解,那么用二分法解方程反而有可能得不到此解;同样地,如果方程有重根,即相应函数在区间端点的函数值不变号,曲线与x轴相切时,这个解也可能求不出.
【例1】用二分法求方程x1.1x0.9x1.40在0与1之间的实根的近似值,使误差不超过0.001.
为方便起见,可借助几何画板的计算功能进行演示(见图3).
操作过程:①根据精确度要求,通过参数选项选择精确度(如万分之一); ②绘制函数图象;
③利用函数计算函数值,同时计算区间中点的值; ④计算误差,并确定近似解. 由计算可知,此方程的近似解为x0.670或x0.671.(事实上,从函数值来看,x0.671会更精确些.显然,要得到一个比较精确的值,其计算次数是比较大的.(说明其收敛速度慢,所以在实际应用中比较少用)
练习:
(1)求方程
lnx2x60的近似解,使误差不超过0.01.
(为了减少计算量,可先作出函数ylnx和y2x6的图象,确定其交点横坐标的大概值.
图3 练习时,可让同桌同学合作,一个计算,另一个纪录)
(2)借助计算器用二分法求方程23x7的近似解(精确度0.1). 4.拓展探究(从几何画板方面)
【例2】利用几何画板求方程23x7的近似解(精确度0.0001).
【解析】几何画板中用解析式绘制的函数图象与坐标轴不能构造交点,但利用不是用解析式绘制的图形,那是可以构造交点并度量其坐标的.既然是求方程的近似解,所以我们可
xx32
以在零点附近构造一条线段(弦),然后构造弦与x轴的交点并度量其横坐标.接着,一端固定(此点的选择与函数的单调性以及凹性有关,如此题的A点),另一端在曲线上找一点(其横坐标等于交点的横坐标),两端点连成新的弦,再构造交点,依次进行下去,直到求出满足精确度的近似解为止(见图4).显然,x1.4332满足要求.
5.课堂小结
(1)二分法是分类归谬法的一种具体表现形式(体现方法的通性);
(2)引导学生回顾二分法,明确它是一种求一元方程近似解的通法(仅适用于单调区间上端点函数值异号的情形);
(3)利用估值或根据函数图象(简图)确定初始区间;
(4)近似解精确度的估算:|xi1xi|(iN*);
图4(5)揭示算法定义,了解算法特点.
算法定义:算法一般是指求解某个问题的长度有限的指令序列,每条指令都是确定的、简单的,机械的,可执行的.对于任一属于这个问题的实例的有效输入,应在有限步(一步执行一条指令)内给出结果(输出),并中止.算法语言就是比较高级的程序设计自动化语言,它与数学公式非常接近而与计算机的内部逻辑结构无关.
用二分法求方程的近似解,由于计算量较大,而且都是程式化的步骤,因此二分法可以利用计算机程序,借助计算机解题.
6.布置课外作业(1)精选课本上的习题;
(2)收集并阅读有关资料,写一篇古今中外数学家关于方程求解问题探索历程的文章.
报名表
第四篇:“用二分法求方程的近似解(一)”教案说明.
“用二分法求方程的近似解(一”教案说明 山东临沂市郯城美澳学校杨明
本节课是《普通高中课程标准实验教科书数学1必修本(A版》3.1.2用二分法求方程的近似解(下面简称‘二分法’,为更好地把握这一课时内容,对本课时教案给予以下说明.一、授课内容的数学本质
本课时的主要任务是结合3.1.1中的例1,介绍二分法的基本操作思路,在此基础上又从算法思想的角度归纳了二分法的一般操作步骤,并使学生尝试用二分法按给定的精确度、借助计算器或计算机等,求一个具体方程的近似解.借以体验从具体到一般的认识过程,渗透运动变化(逐步逼近和极限思想(无限逼近,初步体会“近似是普遍的、绝对的,精确则是特殊的、相对的”辩证唯物主义观点,树立追求真理、崇尚科学的信念.函数与方程是中学数学的重要内容之一,又是初等数学和高等数学的衔接的枢纽,其实质是揭示了客观世界中量的相互依存又互有制约的关系,因而函数与方程思想的教学,有着不可替代的重要位置。二分法的设置是通过研究函数的某些性质,把函数的零点与方程的解等同起来,加强了函数与方程的联系,突出函数的应用,这又是本节课要渗透的一个数学思想
所以本节课的本质是向学生渗透函数与方程的思想、近似的思想、逼近的思想和初步感受程序化地处理问题的算法思想。
二、教学目标定位
本节课在教学内容上衔接了上节函数的零点与方程的根的联系,学生在学习了上一节的内容后,已初步理解了函数图象与方程的根之间的关系,具有一定的数形结合思想,这为理解函数零点附近的函数值符号提供了直观认识。但学生对于函数与方程之间的联系的认识还比较薄弱,对于函数的图象与性质的应用、计算机的使用
尚不够熟练,这些都给学生在联系函数与方程、发现函数值逼近函数零点时造成了一定的困难。
所以根据教材的要求,学生的实际情况,我将本课的教学目标设定如下:知识与技能――通过具体实例理解二分法的概念及其适用条件,了解二分法是求方程近似解的常用方法,会用二分法求解具体方程的近似解,从中体会函数与方程之间的联系及其在实际问题中的应用,体会程序化解决问题的思想.过程与方法――借助计算器求二分法求方程的近似解,让学生充分体验近似的思想、逼近的思想和程序化地处理问题的思想及其重要作用,并为下一步学习算法做准备.情感、态度、价值观――通过探究体验、展示、交流养成良好的学习品质,增强合作意识。通过体会数学逼近过程,感受精确与近似的相对统一.三、本课内容的承前启后、地位作用
“二分法”所涉及的主要是函数知识,其理论依据是“函数零点的存在性(定理”,本课“承前”是上节学习内容《方程的根与函数的零点》的自然延伸。
算法作为一种计算机时代最重要的数学思想方法,将作为新课程新增的内容安排在数学必修3中进行教学,“二分法”是数学必修3教学的一个前奏和准备,“启后”是渗透近似思想、逼近思想和算法思想的重要内容。
四、与其他知识、其他学科的联系及应用
“二分法”不仅是求一元方程近似解的常用方法,利用“二分法”还可以帮助我们解决不等式、一元二次方程根的分布及最值等一些相关的问题。它与“优选法”也有本质联系。在物理学、逻辑学、统计学、计算机等学科及生活实践中只要是与查找有关,都能体现到它的重要作用,如查找线路、水管、气管等管道线路故障及实验设计、资料查询等.五、教学诊断分析
“二分法”的思想方法简单易懂,所需的数学知识较少,算法流程比较简洁,又利用计算器和多媒体辅助教学,直观明了,学生也在生活中有相关体验,所以易于被学生理解和掌握。但“二分法”不能用于求方程偶次重根的近似解、精确度概念与区间长度既有区别又有联系,这些都容易被误解误算。
六、教学方法和特点
本节课采用的是问题导学、数学探究的教学方式:通过问题引导、师生互动,并辅以多媒体教学手段,创设问题情景,学生自主探究二分法的原理与步骤。
本节课主要表现在以下几方面特点:
1、教学方式体现了以学生为主的教学理念。
2、创设贴近学生生活的情境,激发兴趣,让学生在活动中体会数学思想 本节课开始,老师从学生猜商品价格及解决实际问题中引出课题,通过这样来创设情境,不仅对学生产生很强的吸引力,学生也在猜测的过程中体会二分法思想。
3、重视合作交流,重视探究过程
本节课中的每一个问题都是在师生交流中产生,在学生合作探究中解决,使学生经历了完整的学习过程,培养了学生思维能力。
4、恰当地利用信息技术,帮助学生探究数学本质
本节课中利用计算器进行了多次计算,逐步缩小实数解所在范围,精确度的确定就显得非常自然,突破了教学上的难点,提高了探究活动的有效性。借助《几何画板》动态显示这个实数解的范围逐步缩小的过程,直观逼真,有利于学生观察函数零点的大致范围。整个课件都以PowerPoint为制作平台,界画活泼,充分体现了信息技术与数学课程的有机整合。
七、预期效果分析
有函数与方程的知识作基础,通过本节课探究讨论,使学生主动参与数学实践活动,又采用多媒体技术,大容量信息的呈现和生动形象的演示,一定能提高学生学习兴趣、激活学生思维、加深知识理解,掌握二分法的本质,完成教学目标。
但可能有部分学生易受课堂上活动和讨论而分散注意力,从而影响其对知识的更深层的理解和掌握,因此,在教学时,要注意组织和协调。另外尽管使用了科学计算器,求一个方程的解也是很费时的,学生容易出现计算错误和产生急躁情绪。
第五篇:圆的切线方程公式证明
已知:圆的方程为:(xb)² = r², 圆上一点P(x0, y0)解:圆心C(a, b)
直线CP的斜率:k1 =(y0a)
因为直线CP与切线垂直, 所以切线的斜率:k2 =-1/k1 =a)/(y0y0 = k2(xy0 = [-(x0b)](xx0)(x0y0)(y0ax + ax0 + y0yx0²a)² +(y02ax0 + a² + y1²x0²2by0 + a² + b²ax + ax0 + y0y2by0 + a² + b²axyba)(xb)(y(x0 + D/2)/(y0 + E/2)
根据点斜式, 求得切线方程:
yx0)
yx0)
整理得:x0x + y0y + Dx/2 + Ey/2Ey0/2-x0²x0²Dx0/2a)² +(yMC²)
(根据勾股定理)
= √ [(x0b)²MC²)
(根据勾股定理)
= √ [(x0 + D/2)² +(y0 + E/2)²-((√(D²+E²-4F))/2)² ]
(半径:r=(√(D²+E²-4F))/ 2)
= √(x0² + y0² + Dx0 + Ey0 + F)