第一篇:无机材料的性能特点分类
无机非金属材料性能
一、绪论(2学时)
1、无机非金属材料的特点
(1)化学组成上为无机化合物或非金属元素单质,包括传统的氧化物、硅酸盐、碳酸盐、硫酸盐等含氧酸盐、氮化物、碳化物、硅化物、硼化物、氟化物、硫系化合物、硅、锗及碳材料等。
(2)形态与形状上包括多晶、单晶、非晶、薄膜、纤维、复合材料等。(3)晶体结构复杂。单个晶格可能包含多种元素的原子,晶格缺陷种类多。(4)原子间结合力丰要为离子键、共价键或者离了—共价混合键,具有高的键能、大的极性。
(5)制备上通常要求高纯度、高细度原料,并在化学组成、添加物的数量和分布、晶体结构和材料微观结构上能精确控制。
(6)性能多样。具有高熔点高强度、耐磨损、高硬度、耐腐蚀及抗氧化,宽广的导电性能、导热性、透光件以及良好的铁电性、铁磁性和压电性等待殊性能;但大多数无机材料拉伸强度低,韧性差,脆性大。
(7)应用极其广泛。几乎在所有的领域都有无机材料的应用,尤其新型无机材料更是现代技术的发展基础、在电子信息技术、激光技术、光纤技术、光电子技术、传感技术、超导技术以及空间技术的发展中占有十分重要的地位。
2、传统无机非金属材料与新型无机非金属材料
传统无机材料一般是指以天然的硅酸盐矿物(粘土、石英、长石等)为主要原料,经高温窑烧制而成的一大类材料。故又称窑业材料,主要有陶瓷、玻璃、水泥和耐火材料四种,其化学组成均为硅酸盐,因此也称为硅酸盐材料。新型无机材料则是指应用于高科技领域的用氧化物、氮化物、碳化物、硼化物、硫化物、硅化物以及各种无机非属化合物经持殊的先进工艺制成的具有优异性能的无机新材料,包括特种陶瓷、特种玻璃、特性水泥、新型耐火材料、人工晶体、增导体材料等。
3、无机非金属材料的分类
无机材料种类繁多、性能各异。从传统硅酸盐材料到新型无机材料,众多门类的无机材料已经渗透到人类生活、生产的各个领域,需从多个角度对无机材料进行分类。无机材料按成分特点、可分为单质和化合物两大类;按结构特征,可 分为单晶、多晶、玻璃、无定形材料、复合材料等;按形态,可分为体相材料、薄膜材料、纤维、粉体等;按性能特征和使用效能,又可分为结构材料和功能材料两大类;按合成制备工艺,还可分为烧结成材、湿法合成材料、涂镀材料、水硬材料等。
4、无机材料的应用和发展
无机材料的制造和使用合着悠久的历史。早在远古旧石器时代人们就使用经过简单加工的石器作为工具。到新石器时期已经出现粗陶器;我国商代开始出现原始瓷和上釉的彩陶;东汉时期的青瓷,经过唐、宋、元、明、清不断发展,已达到相当高的技术和艺术水平。青铜器时代的金属冶炼中已经开始使用粘土质和硅质材料作为耐火材料。从青铜器时代、铁器时代到近代钢铁工业的兴起,耐火材料都起着关键的作用。距今五六千年前的古埃及文物中就发现有绿色玻璃殊饰品,我国的白色玻璃珠亦有近3000年的历史;17世纪以来,由于用工业纯碱代替天然草木灰与硅石、石灰石等矿物原料生产钠钙硅酸盐玻璃,各种日用玻璃和技术玻璃迅速进人普通家庭、建筑物和工业业领域:在距今五六千年的古代建筑中已开始大量使用石灰和石膏等气硬性胶凝材料,到公元初期水便性的石灰和火山灰胶凝材料也开始被应用到建筑工业中,但是用人工方法合成硅酸盐水泥制品还只有100多年的历史;19世纪初,英国人阿斯普丁发明用硅酸盐矿物和石灰原料经高温煅烧制成波特兰水泥(又称硅酸盐水泥),从而开始了高强度水硬性胶凝材料的新纪元。
20世纪40年代以后(第二次世界大战后期)。无机材料的发展进人了一个新的阶段;在原料纯化、工艺进步、材料理论的发展、显微分析技术的提高、性能研究的深入、无损评估技术的成就以及相邻学科的推动等因素的作用下,传统无机材料的成分、结构、性能和应用得到了空前的延伸。人们发展了包括结构陶瓷、功能陶瓷、复合材料、半导体材料、新型玻璃、非晶态材料、人工晶体、炭素材料、无机涂层及高性能水泥和混凝土等一系列高性能先进无机材料,特别是具有电、磁、声、光、热、力等信息的存储、转换功能的新型无机功能材料,正在日益广泛地被应用在现代高技术领域,如微电子、航天、能源、计算机、激光、通信、光电了、传感、红外、生物医学和环境保护等领域,成为现代高新技术、新兴产业和传统工业的主要物质基础。如半导体材料的出现,对电子工业的发展具 2 有巨大的推动作用,计算机小型化和功能的提高,与硅、锗等半导体材料密切相关;涂覆SiC热解碳—碳结合等复合材料在空间技术的发展中产生了巨大作用;人工晶体、无机涂层、无机纤维等先进材料已逐渐成为近代尖端科学技术的重要组成部分;各种矿物材料也因其电、光、磁、热、摩擦、密封、填充、增强、表面效应以及胶体性:、化学活性与惰性、吸附性、载体与催化性等在工业、农业、国防及民用等领域起着不可替代的作用。
20世纪90年代以来,人类对无机材料的需求量越来越大,对其性能要求越来越高。无机材料的研究与应用近进入了一个更新的发展阶段。纳米材料与技术的发展,引起了无机材料从原料合成、制备工艺、材料科学、性能表征以及材料应用的革命性进步。复合技术、材料设计等相关理沦与技术的进步,大大扩充了新型无机材料发展与创造的空间。基于材料学、物理、化学、电子、冶金等基础学科的新型无机材料呈现空前活跃的发展前景,在近代高新技术领域发挥着日益重要的作用。
5、无机材料在国民经济中的地位和作用
不仅是人民生活、工业生产和基础建设所必需的基础材料,也是传统工业技术改造、新兴产业和高新技术发展中不可缺少的重要物质基础和先导。可以预测,先进无机材料将是未来人类社会科技进步与社会文明发展的重要物质基础与支柱。
6、无机材料的研究内容
无机材料工艺学的任务是不断利用材料科学及其他相邻学科的发展成就,研究如何选择合适的原料,通道各种工艺过程生产出附合各种性能要求的材料,并能达到低投入高产出,实现按使用性能要求来设计和制造无机材料的目标。由于基础科学和实验技术的进步,材料科学研究水平不断提高,已经从宏观进人微观,从定性进入半定量或定量,从静态进入动态,从而为更合理、更有效地使用现有材料和发展新材料提供了依据,为逐步实现按预想性能设计和制备材料创造了条件。
未来高新技术的发展,对各种无机材料提出了更多、更高和更新的要求。特种陶瓷要求从原料的多相结构到趋向于单相结构,又趋向于更复杂的多相复合结构;纳米陶瓷的研究正向纵深发展,有望得到性能更好的纳米陶瓷制品;陶瓷强 3 化与增韧的研究取得了明显的成就。新发展的纳米陶瓷和陶瓷的晶界应力设计可望成为解决陶瓷脆性问题的有效途径;先进功能陶瓷的精细复合原理及其工艺的研究为人们所瞩目。无机材料逐步向多功能和良好的环境协调性方向发展;兼 具感知和驱动功能于一身的敏感陶瓷研究正在启动。多功能和敏感无机涂层的研究具有极大的发展前景;生物陶瓷和仿生研究将为人类自身造福。
7、陶瓷
陶瓷是人类生活和生产中不可缺少的材料之一。陶资产品的应用范围涉及国民经济的各个领域,其生产和发展经历了由简单到复杂、由粗糙到精细、从无釉到施釉、从低温到高温的过程。随着生产力的发展和技术水平的提高,各个历史阶段赋予陶瓷的含义和范围也不断发生变化。
8、陶瓷在国民经济建设中的作用
数千年前,彩陶与黑陶的出现是人类两种史前文化—仰韶文化和龙山文化的标志。陶瓷器皿的出现使人类日常生活方式发生巨大变化,并逐步成为生活必需品。日用陶瓷在发展对外贸易,加强文化交流,促进祖国建设发挥厂巨大的作用。
电了技术、空间技术、激光技术、计算技术、红外技术等的出现是基于新型材料的研制与生产的基础上才得到有效保证的、而陶瓷也正是上述新型材料的一类。陶瓷作为结构材料和功能材料,已广泛应用于利学技术和工业生产领域中。新型结构陶瓷、功能陶瓷在高温下具有高强度、高硬度、抗氧化、耐磨损、耐烧蚀等特性,为先进热机的耐热、耐磨部件的应用开辟了良好的前景,使其在热学、力学、化学等性能耍求苛刻条件下取代金属、有机材料成为可能,并产生巨大经济效益和社会效益。为了提高电压的等级和增大输配的电容量,要求有高机械强度和高介电强度的电瓷,以供线路、电器和电站使用。耐腐蚀、耐磨损、热稳定性高的化工陶瓷是发展各种化学工业不可缺少的一种结构材料。电子技术从晶体管到厚、薄膜电路及大规模集成电路也和压电陶瓷、铁电陶瓷、磁性材料、半导体材料及器件的研制成功是分不开的。开发新能源是当前重大的科学技术课题之一,正在研究的新能源(如核能发电、磁流体发电、地热发电等)所需的结构材料和导电材料,往往都由陶瓷来承担。许多国家正在研究用氧化物固溶体及碱金属阴离子导体(如β-Al2O3)作高温燃料电池及高能量、高密度蓄电池的固体电解质隔膜。一些宇宙技术中的运载工具(如火箭、人造卫星、飞船等)所使用的高温结 4 构材料、烧蚀材料和涂层都属于陶瓷的范围。超导陶瓷的出现成为现代物理学和材料科学的重大突破。生物陶瓷由于其优良的生物相容和生物活性等特殊性能,已广泛应用于生物医学工程中。
9、玻璃在国民经济建设中的作用
玻璃具有许多其他材料所不具备的特性,从玻璃的本质结构和性质来看,最显著的四个特性为:(1)各向异性;(2)无固定熔点:(3)介稳性;(4)性质变化的连续性与可逆性。此外,玻璃材料还具有一些良好的理化性能,如良好的光学和电学性能,较好的化学稳定性,较高的抗压强度、硬度、耐蚀性及耐热性等:从工艺的角度来看,玻璃的特点在于:(1)可以通过化学组成的调整,并结合各种再加工工艺方法(表而处理、热处理)来大幅度、连续调整玻璃的物理和化学性能,以适应范围很广的实用要求;(2)可用多种多样的热成型(吹、拉、压、延、浇铸)方法,制成各种形状单件的(空心或实心)和延续的(板片、管棒、丝绵)制品。还可以通过冷加工(磨砂、抛光、钻、削)、粉末烧结和焊接等加工方法制成型状复杂、尺寸严格的器件。因此玻璃作为结构和功能材料已被广泛应用于建材、轻工、交通、医药、化工、电子、航空、航天和原子能工业等方面。
日用玻璃,包括瓶罐、器皿、保温瓶、工艺美术品等,已成为人们牛活用品的一部分:其中玻璃瓶罐也是食品工业、化学工业、医药工业、文教用品工业大量采用的包装容器、窗玻璃,平板玻璃,空心玻璃砖,饰面板和隔声、隙热的泡沫玻璃,在现代建筑中得到了普遍的采用。钢化玻璃、磨光玻璃、夹层玻璃、高质量的平板玻璃,用来装配各种运输工具的风挡和门窗。各种颜色信号玻璃在海、陆、空交通中起着“指挥员”的作用、电真空玻璃和照明玻璃,充分利用了玻璃的气密、透明、绝缘、易于密封和容易抽真空等特性,是制造电子管、电视机、电灯等不可取代的材料;光学玻璃是国防、高科技及工业生产不可缺少的精密光学仪器与设备的核心部件,广泛地应用于显微镜、望远镜、照相机、光谱仪和各种复杂的光学仪器,大大地改变了科学研究的条件和方法;电影放映机、高质量的眼镜片都是用光学玻璃制造的。玻璃化学仪器、温度计是化学、生物学、医学、物理学工作者必备的实验用具。大型玻璃设备及管道,是化学工业上耐腐蚀、耐高温的优良器材。玻璃纤维、玻璃棉及其纺织品,是电器绝缘,化工过滤和隔声、隔热、耐热的优良材料。它们与各种树脂制成的玻璃钢,质量轻、强度高、耐腐 5 蚀、耐热,用以制造绝缘器件和各种壳体。随着科学技术的发展,玻璃新品种不断出现,例如感光照相和印刷版玻璃,耐热性好、硬度大、强度高的微晶玻璃,高折射、低色散或低折射高色散的光学玻璃,透紫外线和透红外线玻璃等等。玻璃的应用日益扩大,愈来愈成为重要的材料。据20版纪末的统计,全世界的玻璃产量约为8000万T/年,其中美国为25%,前苏联为9%,日在为8%、德国为7%;各类玻璃制品分别为:瓶罐玻璃60%,平板玻璃25%,特种玻璃10%,玻璃纤维5%。随着时代的发展,各类玻璃制品的品种系统、应用范围和生产规模也逐步形成和扩大。
10、水泥在国民经济建设中的作用
水泥的发展大大改善了人类居住和环境条件,已成人各种基础设施建设必需的基本材料,其性能的任何改进都将带来巨大的经济效益。近一二十年通过改变水泥组成和调整微结构的办法使水泥的性能,如耐压强度、抗冻性、抗腐蚀件等获得显著的提高,开发出一系列高技术水泥品种,对水泥与混凝土工业的技术改造产生重大的影响。
水泥是使用面最广的建筑材料。据我国近几年的统计,每完成1亿元的基本建设投资,就需要水泥6.3万T,美国在新建筑物中所用的建筑材料内,水泥混凝土约占76%。生产水泥需要较多能源,为耗能大户之一,但水泥与砂、石等集料所制成的混凝土则是一种低能耗型建筑材料,其单位重量的能耗只有钢材的1/5一1/6,铝合合的1/25,比红砖还低35%。在今后相当长的一段时间内,水泥与泥凝土仍将是主要的建筑材料。
水泥粉末与水拌和后,在其表面的熟料矿物立即与水发生水化反应,放出热员,形成一定的水化产物。出于各种水化产物的溶解度很小,就在水泥颗粒周围析出。随着水化作用的进行,析出的水化产物不断增多,以致相互接合。这个过程的进展,使水泥浆体稠化而凝结,随后变硬,并能将拌在一起的砂、石等散粒胶结成整体,逐渐产生强度。因此,水泥或水泥混凝上的强度是随硬化龄期而逐渐增长的。早期增长甚快,往后逐渐减缓。但是,只要维持适当的温度和湿度,其强度在几个月、几年后,还会进一步有所增长。另外,也可能在几十午后尚有未水化的部分残留,仍具有继续进行水化作用的潜在能力。作为胶凝材料,除水硬性外,水泥还有许多优点:水泥浆石很好的可塑性,与砂、石拌和后仍能使混 6 合物具有必要的和易性,可使浇筑成各种形状及尺小的构件、以满足设计上的不同要求;适应性强,还可用于海上、地下、深水或者严寒、干热的地区。以及耐侵蚀、核电站、防辐射等特殊要求的工程;硬化后可以获得较高强度,并且改变水泥的组成,可以适当调节其性能,满足某些工程的不同需要;可与纤维或者聚合物等多种无机、有机材料相匹配,制成各种水泥基复合材料,有效发挥材料潜力;与普遍钢铁相比,水泥制品不会生锈,也没有木材这类材料易于腐朽的缺点,更不会有塑料年久老化的问题,耐久性好;维修工作量小,等等。因此,水泥不但大量应用于工业与民用建筑,还广泛应用于交通、城市建设、农林、水利以及海港等工程,它被制成各种形式的混凝土、钢筋混凝土的构件和构筑物;而水泥管、水泥船等各种水泥制品在代钢、代木方面也越来越显示出技术经济上的优越性。同时,也正是由于钢筋混凝土、顶应力钢筋混凝土和钢结构材料的混合使用,才使高层、超高层、大跨度等以及各种特殊功能的建筑物、构筑物的出现成为可能。还值得注意的是,新产业革命已经为水泥行业提出扩大水泥品种和应用范围的崭新课题:开发占地球表面71%的海洋是人类社会前进的标志,而海洋工程的建造,如海洋平台、海洋工厂乃至海洋城市,其主要建筑材料就是水泥。此外,像宇航工业、核工业以及其他新型工业的建设,也需要各种无机非金属材料,其中最为基本的则是以水泥基为主的新型复合材料。因此,水泥工业的发展对保证国家建设计划的顺利进行、人民生活水平的不断提高,具有十分重要的意义。而且,其他领域所发展的新一代技术,也必然会渗透到水泥工业当中,传统的水泥工业势必会由于科学技术的迅猛发展而带来新的工艺变革和品种演变,应用领域必将有新的开拓,从而使其在国民经济中起到更为重要的作用。
第二篇:环氧树脂性能特点
性能特点
(1)力学性能高。环氧树脂具有很强的内聚力,分子结构致密,所以它的力学性能高于酚醛树脂和不饱和聚酯等通用型热固性树脂。
(2)附着力强。环氧树脂固化体系中含有活性极大的环氧基、羟基以及醚键、胺键、酯键等极性基团,赋予环氧固化物对金属、陶瓷、玻璃、混凝土、木材等极性基材以优良的附着力。
(3)固化收缩率小。一般为1%~2%。是热固性树脂中固化收缩率最小的品种之一(酚醛树脂为8%~10%;不饱和聚酯树脂为4%~6%;有机硅树脂为4%~8%)。线胀系数也很小,一般为6×10-5/℃。所以固化后体积变化不大。
(4)工艺性好。环氧树脂固化时基本上不产生低分子挥发物,所以可低压成型或接触压成型。能与各种固化剂配合制造无溶剂、高固体、粉末涂料及水性涂料等环保型涂料。
(5)优良的电绝缘性。环氧树脂是热固性树脂中介电性能最好的品种之一。
(6)稳定性好,抗化学药品性优良。不含碱、盐等杂质的环氧树脂不易变质。只要贮存得当(密封、不受潮、不遇高温),其贮存期为1年。超期后若检验合格仍可使用。环氧固化物具有优良的化学稳定性。其耐碱、酸、盐等多种介质腐蚀的性能优于不饱和聚酯树脂、酚醛树脂等热固性树脂。因此环氧树脂大量用作防腐蚀底漆,又因环氧树脂固化物呈三维网状结构,又能耐油类等的浸渍,大量应用于油槽、油轮、飞机的整体油箱内壁衬里等。
(7)环氧固化物的耐热性一般为80~100℃。环氧树脂的耐热品种可达200℃或更高。
第三篇:陶瓷材料的分类及性能(本站推荐)
陶瓷材料的力学性能
高分子091 项 淼 学号17 陶瓷材料
陶瓷、金属、高分子材料并列为当代三大固体材料 之间的主要区别在于化学键不同。金属:金属键
高分子:共价键(主价键)+范德瓦尔键(次价键)陶瓷:离子键和共价键。
普通陶瓷,天然粘土为原料,混料成形,烧结而成。
工程陶瓷:高纯、超细的人工合成材料,精确控制化学组成。工程陶瓷的性能:
耐热、耐磨、耐腐蚀、绝缘、抗蠕变性能好。
硬度高,弹性模量高,塑性韧性差,强度可靠性差。
常用的工程陶瓷材料有氮化硅、碳化硅、氧化铝、氧化锆、氮化硼等。
一、陶瓷材料的结构和显微组织
1、结构特点
陶瓷材料通常是金属与非金属元素组成的化合物;以离子键和共价键为主要结合键。可以通过改变晶体结构的晶型变化改变其性能。
如“六方氮化硼为松散的绝缘材料;立方结构是超硬材料”
2、显微组织
晶体相,玻璃相,气相 晶界、夹杂
(种类、数量、尺寸、形态、分布、影响材料的力学性能。(可通过热处理改善材料的力学性能)
陶瓷的分类
※ 玻璃—工业玻璃(光学,电工,仪表,实验室用);建筑玻璃;日用玻璃 ※ 陶瓷—普通陶瓷--日用,建筑卫生,电器(绝缘),化工,多孔……
特种陶瓷--电容器,压电,磁性,电光,高温……
金属陶瓷--结构陶瓷,工具(硬质合金),耐热,电工……
※ 玻璃陶瓷—耐热耐蚀微晶玻璃,光子玻璃陶瓷,无线电透明微晶玻璃,熔渣玻璃陶瓷…
2.陶瓷的生产
(1)原料制备(拣选,破碎,磨细,混合)
普通陶瓷(粘土,石英,长石等天然材料)
特种陶瓷(人工的化学或化工原料---
各种化合物如氧、碳、氮、硼化合物)(2)坯料的成形(可塑成形,注浆成形,压制成形)
(3)烧成或烧结 3.陶瓷的性能
(1)硬度 是各类材料中最高的。
(高聚物<20HV,淬火钢500-800HV,陶瓷1000-5000HV)(2)刚度 是各类材料中最高的(塑料1380MN/m2,钢207000MN/m2)(3)强度 理论强度很高(E/10--E/5);由于晶界的存在,实际强度比理论值低的多。(E/1000--E/100)。耐压(抗压强度高),抗弯(抗弯强度高),不耐拉(抗拉强度很低,比抗压强度低一个数量级)较高的高温强度。(4)塑性: 在室温几乎没有塑性。
(5)韧性差,脆性大。是陶瓷的最大缺点。
(6)热膨胀性低。导热性差,多为较好的绝热材料(λ=10-2~10-5w/m﹒K)
(7)热稳定性—抗热振性(在不同温度范围波动时的寿命)急冷到水中不破裂所能承受的最高温度。陶瓷的抗热振性很低(比金属低的多,日用陶瓷220℃)
(8)化学稳定性:耐高温,耐火,不可燃烧,抗蚀(抗液体金属、酸、碱、盐)(9)导电性—大多数是良好的绝缘体,同时也有不少半导体(NiO,Fe3O4等)(10)其它:不可燃烧,高耐热,不老化,温度急变抗力低。
普通陶瓷
一.传统陶瓷
原料—
长石,石英,粘土,高龄土,绢云母,滑石,石灰。
加入(MgO,ZnO,BaO,Cr2O3等)提高强度;加入(Al2O3,ZrO2等)提高强度和热稳定性;
加入(SiC等)提高导热性。1.日用陶瓷
性能要求:白度,光洁度,热稳定性,机械强度,热稳定性
用途:日用器皿,工艺品艺术品等 2.建筑陶瓷
性能要求:强度,热稳定性
用途:地面,墙壁,管道,卫生洁具等.3.电工陶瓷(高压瓷)
性能要求:强度,介电性能和热稳定性.用途:隔电,支持及连接,绝缘器件 4.化工陶瓷
性能要求:耐蚀性.用途:实验器皿,耐热容器,管道,设备。特种陶瓷
1.氧化物陶瓷:
※Al2O3 — 高的强度和高温强度(抗压2493MN/m2),高化学稳定性和介电性能
• 以Al2O3为主要成分,含少量SiO2的陶瓷。
• 根据Al2O3含量不同,分为75瓷(Al2O3 含量为75%)又称刚玉-莫来石瓷; 95瓷、99瓷,又称刚玉瓷。
• Al2O3含量愈高,玻璃相愈少,气孔愈少,陶瓷的性能愈好,但工艺愈复杂,成本愈高。
优势:氧化铝陶瓷的强度高,是普通陶瓷的2~6倍,抗拉强度可达250MPa;
• 耐磨性好,硬度次于金刚石、碳化硼、立方氮化硼和碳化硅,居第5;
• 耐高温性能好,刚玉陶瓷可在1600℃下长期工作,在空气中的最高使用温度达1980℃;
• 耐蚀性和绝缘性好;
• 脆性大,抗热振性差,不能承受环境温度的突然变化。
用途:工具,高温炉零件,空压机泵零件,内燃机火花塞,坩埚。
微晶刚玉(弯曲强度5000MN/m2,HRA92-93 红硬性1200℃)---工具,刀具。※ BeO —导热性好(180 kcal/m·h·℃),热稳定性较高,消散高能辐射的能力强,强度低(抗压强度(785MN/m2)
用途: 熔化某些纯金属的坩埚,真空陶瓷和原子反应堆用陶瓷 ※ZrO2 ——呈弱酸性或惰性,导热系数小1.5-1.7kcal/m·h·℃,使用温度2000-2200℃,抗压强度2060MN/m2 ※ MgO CaO 抗各种金属碱性渣的作用,热稳定性差,MgO高温易挥发,CaO在空气中易水化
2.碳化物陶瓷:
※ 碳化硅 —弯曲强度200-250MN/m2,抗压强度1000-1500MN/m2,硬度高,抗氧化,不抗强碱。
• 主晶相SiC,有反应烧结和热压烧结两种碳化硅陶瓷;
• 高温强度高,工作温度可达1600~1700℃ 1400℃时,抗弯强度为500~600MPa ; • 有很好的导热性、热稳定性、抗蠕变能力、耐磨性、耐蚀性,且耐辐射;
• 是良好的高温结构材料,主要用于制作火箭喷管的喷嘴,浇注金属的浇道口、热电偶套管、炉管,燃气轮叶片,高温轴承,热交换器及核燃料包封材料等。
用途:加热元件,石墨的表面保护层,砂轮,磨料 ※ 碳化硼—硬度高,抗磨,熔点高2450℃
用途:磨料,超硬质工具材料。3.氮化物陶瓷:
※氮化硼—石墨类型六方结构(白石墨)----介电体和耐火润滑剂。
立方结构(β-BN)----极高硬度,抗加热温度2000℃,是金刚石的代用品。
• 主晶相BN,共价晶体,晶体结构为六方结构,有白石墨之称;
• 良好的耐热性和导热性,热导率与不锈钢相当,热胀系数比金属和其它陶瓷低得多,故抗热振性和热稳定性好;
• 高温绝缘性好,2000℃仍是绝缘体,是理想的高温绝缘材料和散热材料; • 化学稳定性高,能抗Fe、Al、Ni等熔融金属的侵蚀; • 硬度较其它陶瓷低,可切削加工; • 有自润滑性,耐磨性好。
用途: 氮化硼陶瓷常用于制作热电偶套管,熔炼半导体、金属的坩埚和冶金用高温容器和管道,高温轴承,下班制品成型模,高温绝缘材料;
因BN中含wB=43%,有很大的吸收中子的截面,可作核反应堆中吸收热中子的控制棒。
4.金属陶瓷
以金属氧化物或碳化物为主要成分,加入适量的金属粉末,通过粉末冶金的方法制成的,具有某些金属性质的陶瓷。
金属陶瓷是金属切削刀具、模具和耐磨零件的重要材料。粉末冶金方法及其应用
• 金属材料的制备:熔炼、铸造
高熔点的金属及金属化合物难以通过熔炼或铸造的方法制备 粉末冶金:陶瓷生产工艺在冶金中的应用 粉末制备----压制成型----烧结成零件或毛坯
粉末冶金法的基本工艺过程 1.粉末制备
包括粉末制取、配料、粉料混合等步骤。
粉末的纯度、粒度、混合的均匀程度等对粉末冶金制品的质量有重要影响。粉末愈细、愈均匀、纯度愈高,陶瓷的性能愈好。2.压制成型
多采用冷压法,即将粉料装入模具型腔内,在压力机下压制成致密的具有一定强度的坯体。为了改善粉末的可塑性和成型性,通常在粉料中会加入一定比例的增塑剂,如汽油橡胶溶液、石蜡等。3.烧结
将压制成型的坯体放入通过保护气氛的高温炉或真空炉中进行烧结,在保持至少一种组元仍处于固态的烧结温度下,长时间保温,通过扩散、再结晶、化学反应等过程,获得与一般合金相似的组织,并存在一些微小的孔隙的粉末冶金制品。
根据烧结过程中有无液相产生,烧结分为:固相烧结和液相烧结。
• 固相烧结:在烧结时不形成液相。
无偏析高速钢、烧结铝(Al-Al2O3)、烧结钨、青铜-石墨、铁-石墨等
• 液相烧结:在烧结时形成部分液相的液-固共存状态。
金属陶瓷硬质合金(WC-Co、WC-TiC-Co等)、高速钢-WC、铬钼钢-WC等 4.后处理加工
为改善或得到某些性能,有些粉末冶金制品在烧结后还要进行后处理加工。
如齿轮、球面轴承等在烧结后再进行冷挤压,以提高其密度、尺寸精度等;铁基粉末冶金零件进行淬火处理,以提高硬度等等。
陶瓷材料的力学性能
强度(高温、低温、室温)韧性、硬度、断裂韧度、疲劳等。
一、陶瓷材料的弹性变形、塑性变形与断裂(图9-23)(1)弹性 A)弹性模量大
是金属材料的2倍以上。
∵共价键结构有较高的抗晶格畸变、阻碍位错运动的阻力。晶体结构复杂,滑移系很少,位错运动困难。
B)弹性模量呈方向性;压缩模量高于拉伸弹性模量 结构不均匀性;缺陷
C)气孔率↑,弹性模量↓(2)塑性变形
a)室温下,绝大多数陶瓷材料塑性变形极小。
b)1000℃以上,大多数陶瓷材料可发生塑性变形(主滑移系运动)c)陶瓷的超塑性
超细等轴晶,第二相弥散分布,晶粒间存在无定形相。
-2-11250℃,3.5×10 S应变速率ε=400%。
利用陶瓷的超塑性,可以对陶瓷进行超塑加工(包括扩散焊接)(3)断裂
以各种缺陷(表面或内部)为裂纹源 裂纹扩展,瞬时脆断。
缺陷的存在是概率性的。用韦伯分布函数表示材料断裂
F()1exp()0mv('m)dv F(ζ)—断裂概率 m—韦伯模数
ζ0—特征应力,该应力下断裂概率为0.632 ζ’、ζ—试样内部的应力及它们的最大值
二、陶瓷材料强度和硬度
陶瓷的实际强度比其理论值小1~2个数量级。(1)弯曲强度
三点弯曲、四点弯曲
四点弯曲试样工作部分缺陷存在的几率较大。∴强度比三点的低。(2)抗拉强度
夹持部位易断裂(加橡胶垫)
∴常用弯曲强度代之,高20%~40%。(3)抗压强度
比抗拉强度高得多,10倍左右。
(4)硬度高 HRA,AT45N小负荷的维氏硬度或努氏硬度。
陶瓷材料的断裂韧度 比金属的低1~2个数量级 测定方法(图)
单边切口法、山形切口法、压痕法、双扭法、双悬臂梁法。
∵KIC值受切口宽度的影响。金属材料:ζ↑、δ↓、KIC↓;
陶瓷材料:ζ↑、KIC↑。∵尖端塑性区很小。
陶瓷材料的增韧:
(1)改善组织(细密、纯、匀)(2)相变增韧(3)微裂纹增韧
陶瓷材料的疲劳强度
静态疲劳,动态疲劳,循环疲劳和热疲劳(1)静态疲劳
对应于金属材料的应力腐蚀和高温蠕变断裂。“温度、应力、环境介质” 分成的个区(图10-11)
孕育区(低于应力强度因子门槛值)低速区da/dt随K↑而↑
中速区da/dt仅与环境介质有关,与K无关。
高速区da/dt随K↑而呈指数关系↑(2)动态疲劳
类似于金属材料应力腐蚀研究中的慢应变速率拉伸。(3)循环疲劳
疲劳破坏以慢速龟裂扩展的方式发生。陶瓷材料是脆性材料。(4)热疲劳 低周疲劳
金属的疲劳寿命通常用循环周次表示 陶瓷材料的疲劳寿命则用断裂时间表示 疲劳特性评价,同样符合paris公式
陶瓷材料的其他性能
1、耐磨性
是耐磨材料的一个发展方向。(1)减摩性与耐磨性(2)抗磨性
2、抗热震性(热冲击)(1)抗热震断裂
1f E(1)fR 缓慢加热和冷却RE急剧加热和冷却Rtc,均与热导率有关。(2)抗热震损伤
气孔可钝化裂纹尖端;减小应力集中;降低热导率。
反复加热冷却产生的弹性变能是陶瓷材料热震损伤的动力(裂纹扩展的动力)。提高热震损伤抗力,需使用弹性模量大,强度低的材料。
第四篇:河豚毒素性能特点及检测方法
河豚毒素检测方法
随着渔业的发展,河豚鱼中毒事件的屡次出现,以及当前可能被恐怖分子利用的潜在威胁,使TTX的检测越来越为人们所重视,并具有重要的现实意义,检测方法可分为生物测定法、理化分析法和免疫化学法、生物测定法、高效液相色谱紫外检测法(HPLC-UV)、高效液相色谱荧光检测法(HPLCFLD)、高效毛细管电泳法(HPCE)、液质联用、气质联用等方法。生物法有酶联免疫(ELISA)法和小鼠法等。
生物测定法
小鼠生物实验法、竞争置换法、组织培养生物实验法、动电位法。
理化分析法
荧光法、紫外分光光度法、薄层色谱法及其联用技术、电泳法及其联用技术、气相色谱法及其联用技术、高效液相色谱法及其联用技术。
免疫化学检测法
TTX的检测方法很多,每种方法都有其优缺点,可根据实验条件及要求选择恰当的检测方法。TTX作为钠离子通道阻断剂,虽然毒性强,但在临床中也可作为高效镇痛剂,并且对某些肿瘤有抑制作用,在神经生物学、药理学、肌肉生理学等方面被广泛用于工具药。随着TTX检测手段的不断完善,TTX的研究将会有更大的发展,在食品检验、中毒诊断、治疗及国家安全等方面发挥更大的作用。
ELISA法 ELISA法具有特异性好、灵敏度高,可定量检测,而且有采样量极小等特点,多用于河豚毒素的痕量检测;小鼠法是利用河豚毒素的毒性特点进行的小鼠毒性检测的方法,方法简便,但定量不准确且重复性差、目标性差,已少用。
HPLCUV法
HPLCUV法是常用的检测手段,既可以检测含量,又可以作为有关物质的考察,河豚毒素没有紫外光谱特征吸收,采用末端吸收进行检测;国外多采用柱后衍生化荧光检测的方法进行含量测定,河豚毒素本身没有荧光,氢氧化钠破坏后产生降解产物C9碱具有荧光;荧光检测的灵敏度比紫外检测的灵敏度高,但在含量测定检测结果上两种方法不存在显著性差异。
第五篇:欢迎词特点以及分类
欢迎词是由东道主出面对宾客的到来表示欢迎的讲话文稿。欢迎词指行政机关、企业事单位、社会团体或个人在公共场合欢迎友好团体或个人来访时致辞的讲话稿。
欢迎词特点(一)欢愉性
中国有句古话是“有朋自远方来,不亦乐乎”,所以致欢迎词当有一种愉快的心情,言 词用语务必富有激情和表现出致词人的真诚。只有这样才可给客人一种“宾至如归”的感觉 ,为下一步各种活动的完满举行打下好的基础。(二)口语性
欢迎词本意是现场当面向宾客口头表达的,所以口语化是欢迎词文字上的必然要求,在遣词 用语上要运用生活化的语言,即简洁又富有生活的情趣。口语化会拉近主人同来宾的亲切关 系。
欢迎词分类
(一)欢迎词从表达方式上分 1.现场讲演欢迎词
一般由欢迎人在被欢迎人到达时在欢迎现场口头发表的欢迎稿。2.报刊发表欢迎词
这是发表在报刊或公开发行刊物之上的欢迎稿。它一般在客人到达前后发表。(二)欢迎词从社交的公关性质上分 1.私人交往欢迎词
私人交往欢迎词一般是在个人举行较大型的宴会、聚会、茶会、舞会、讨论会等非官方的场合下使用的欢迎稿。通常要在正式活动开始前进行。私人交往欢迎词往往具有很大的即时性、现场性。
2.公事往来欢迎词
这样的欢迎词一般在较庄重的公共事务中使用。要有事先准备好的得体的书面稿,文字措词 上的要求较私人交往欢迎词要正式和严格。