投资问题数学建模

2020-11-20 22:20:00下载本文作者:会员上传
简介:写写帮文库小编为你整理了这篇《投资问题数学建模》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《投资问题数学建模》。

数学模型第一次讨论作业

问题:

某部门现有资金10万元,五年内有以下投资

项目供选择:

项目A:从第一年到第四年每年初投资,次年末收回本金且获利15%;

项目B:第三年初投资,第五年末收回本金且获利25%,最大投资额为4万元;

项目C:第二年初投资,第五年末收回本金且获利40%,最大投资额为3万元;

项目D:每年初投资,年末收回本金且获利6%;

问如何确定投资策略使第五年末本息总额最大?

问题分析:

用表示第i年对第j个项目的投资金额

要使第五年年末本息总额最大,应当在每年将所有可用资金都用于投资,以确保资金的充分利用,由于项目投资均发生在年初,故以下只讨论年初的投资情况:

第一年:

第二年:手上资金(即第一年年末收回资金)为,全部用来对可投资项目投资,则有=

第三年:同理,有=

第四年:=

第五年:=

第五年年末本息和为(即第五年所能收回的所有资金)

建立模型:

=

=

=

=,求解模型:

Lingo解法:

可编写lingo程序如下:

model:

max=1.06*x54+1.15*x41+1.25*x32+1.4*x23;!目标函数;

x11+x14=10;!以下约束条件表示每年资金全部用于投资;

1.06*x14=x21+x23+x24;

1.15*x11+1.06*x24=x31+x32+x34;

1.15*x21+1.06*x34=x41+x44;

1.15*x31+1.06*x44=x54;

x23<=3;!限制B,C项目的最大投资额;

x32<=4;

end

运行结果如下:

Global

optimal

solution

found.Objective

value:

14.37500

Infeasibilities:

0.000000

Total

solver

iterations:

Variable

Value

Reduced

Cost

X54

0.000000

0.000000

X41

4.500000

0.000000

X32

4.000000

0.000000

X23

3.000000

0.000000

X11

7.169811

0.000000

X14

2.830189

0.000000

X21

0.000000

0.000000

X24

0.000000

0.3036000E-01

X31

0.000000

0.000000

X34

4.245283

0.000000

X44

0.000000

0.2640000E-01

Row

Slack

or

Surplus

Dual

Price

14.37500

1.000000

0.000000

1.401850

0.000000

-1.322500

0.000000

-1.219000

0.000000

-1.150000

0.000000

-1.060000

0.000000

0.7750000E-01

0.000000

0.3100000E-01

所得最优值为14.375万元,对应的最优解为:

x11=7.169811,x14=2.830189,x23=3,x32=4,x34=4.245283,x41=4.5,其余值为0

即第一年对A项目投资7.169811万元,对D项目投资2.830189万元;第二年对C项目投资3万元;第三年对B项目投资4万元,对D项目投资4.245283万元;第四年对A项目投资4.5万元。

Lindo解法:

可编写lindo程序如下:

max

1.06x54+1.15x41+1.25x32+1.4x23

st

x11+x14=10

1.06x14-x21-x23-x24=0

1.15x11+1.06x24-x31-x32-x34=0

1.15x21+1.06x34-x41-x44=0

1.15x31+1.06x44-x54=0

x23<=3

x32<=4

输出结果如下:

LP

OPTIMUM

FOUND

AT

STEP

OBJECTIVE

FUNCTION

VALUE

1)

14.37500

VARIABLE

VALUE

REDUCED

COST

X54

0.000000

0.000000

X41

4.500000

0.000000

X32

4.000000

0.000000

X23

3.000000

0.000000

X11

7.169811

0.000000

X14

2.830189

0.000000

X21

0.000000

0.000000

X24

0.000000

0.030360

X31

0.000000

0.000000

X34

4.245283

0.000000

X44

0.000000

0.026400

ROW

SLACK

OR

SURPLUS

DUAL

PRICES

2)

0.000000

1.401850

3)

0.000000

-1.322500

4)

0.000000

-1.219000

5)

0.000000

-1.150000

6)

0.000000

-1.060000

7)

0.000000

0.077500

8)

0.000000

0.031000

NO.ITERATIONS=

所得最优值为14.375万元,对应的最优解为:

x11=7.169811,x14=2.830189,x23=3,x32=4,x34=4.245283,x41=4.5,其余值为0

即第一年对A项目投资7.169811万元,对D项目投资2.830189万元;第二年对C项目投资3万元;第三年对B项目投资4万元,对D项目投资4.245283万元;第四年对A项目投资4.5万元。

Matlab解法:

Way1可编写matlab程序如下:

f=[0

0

0

0

0

0

1.4

0

0

1.25

0

0

1.15

0

0

0

0

0

0

1.06];

Aeq=[1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0;

0

0

0

1.06

0

0

0

0

0

0

0

0

0

0

0

0

0;

1.15

0

0

0

0

0

0

1.06

0

0

0

0

0

0

0

0

0;

0

0

0

0

1.15

0

0

0

0

0

0

1.06

0

0

0

0

0

0;

0

0

0

0

0

0

0

0

1.15

0

0

0

0

0

0

1.06

0

0

0

-1];

beq=[10;0;0;0;0];

A=[0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0;

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0];

b=[3;4];

lb=zeros(20,1);

[x,fval]=linprog(-f,A,b,Aeq,beq,lb,[])

运行结果如下:

Optimization

terminated.x

=

6.5508

0

0

3.4492

0.6561

0

3.0000

0.0000

2.0066

4.0000

0

1.5268

2.3730

0

0

0.0000

0

0

0

2.3076

fval

=

-14.3750

所得最优值为14.375万元,对应的最优解为:x11=6.5508,x14=3.4492,x21=0.6561,x23=3,x31=2.0066,x32=4,x34=1.5268,x41=2.3730,x54=2.3076,其余值为0。

Way2可编写matlab程序如下:

f=[0 0 0 0 0 0-1.4 0 0-1.25 0 0-1.15 0 0 0 0 0 0-1.06];

A=[];

b=[];

Aeq=[1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;...0 0 0 1.06-1 0-1-1 0 0 0 0 0 0 0 0 0 0 0 0;...1.15 0 0 0 0 0 0 1.06-1-1 0-1 0 0 0 0 0 0 0 0;...0 0 0 0 1.15 0 0 0 0 0 0 1.06-1 0 0-1 0 0 0 0;...0 0 0 0 0 0 0 0 1.15 0 0 0 0 0 0 1.06 0 0 0-1];

beq=[10;0;0;0;0];

lb=[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];

ub=[inf inf inf inf inf inf 3 inf inf 4 inf inf inf inf inf inf inf inf inf inf];

[x,fval]=linprog(f,A,b,Aeq,beq,lb,ub)

运行结果如下:

Optimization terminated.x =

6.5113

0

0

3.4887

0.6980

0

3.0000

0.0000

2.0003

4.0000

0

1.4877

2.3797

0

0

0.0000

0

0

0

2.3004

fval =

-14.3750

所得最优值为14.375万元,对应的最优解为:x11=6.5113,x14=3.4887,x21=0.6980,x23=3,x31=2.0003,x32=4,x34=1.4877,x41=2.3797,x54=2.3004,其余值为0。

讨论:利用matlab,lingo及lindo程序分别求解上述模型后,发现取到相同最优值情况下,matlab的最优解不同于lingo和lindo,该问题可能存在多个最优解?

经尝试已排除变量设置数量差异,软件版本差异及计算机系统差异的原因,可能是软件求解原理或近似导致,或者该问题本身最优解不唯一。

下载投资问题数学建模word格式文档
下载投资问题数学建模.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    数学建模摘要及问题

    2008年高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网......

    数学建模

    A题:一种汽车比赛的最优策略 汽车运动是当前世界上一项重要的体育项目。 这项运动比传统的体育项目更具综合性, 尤其涉及科学技术的各个方面。数学物理科学在这个项目中自然十......

    数学建模

    数学建模论文格式模板 (第一页内容) 保证书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则, 我们完全明白在竞赛开始后不能以任何方式与队外的任何人(包括指导教师)讨论竞赛......

    数学建模

    第一篇 我的大学职业生涯规划作为当代大学生,若是带着一脸茫然,踏入这个拥挤的社会怎能满足社会的需要,使自己占有一席之地?每当人类经过一次重大变革,总是新的机会在产生,有的机......

    数学建模

    护士排班问题的建议 摘要:综述了我国护士的排班类型,原则及排班方式:按功能制和整体护理模式排班。按值班时间包括固定,弹性,三班制排班。排班模式的改革:护士的自我排班等支持系......

    关于售书问题的数学建模

    关于售书问题的数学建模 1一、问题的提出 1、问题的描述 一家出版社准备在某市建立两个销售代销点,向7个区的大学生售书,每个区的大学生数量(单位:千人)已经表示在图上.每个销售代......

    数学建模A交通事故车流量问题(合集)

    建模A第三问思路: 此问题可以用排队论知识来解决, 模型说明:发生交通事故时,事故车辆占用了两个车道,只剩下一个车道能通行,而此时有三个队列的车辆在排队,此时可以看成是单服务台......

    从《植树问题》谈数学建模

    从《植树问题》谈数学建模 哈尔滨市经纬小学校 刘洋 教学片段: 师:同学们,你们知道最早的计数方法是什么吗?对了,结绳计数。这节课,老师也带来了一根绳子。这是一根长0.4米的绳子,......