浅谈初中数学函数思想与方程思想的转化

时间:2019-05-13 00:11:29下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《浅谈初中数学函数思想与方程思想的转化》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《浅谈初中数学函数思想与方程思想的转化》。

第一篇:浅谈初中数学函数思想与方程思想的转化

浅谈初中数学函数思想与方程思想的转化 江苏省如皋市港城实验学校(226532)

李军

函数与方程是初中数学中两个重要概念,函数与方程的思想是初中数学的基本思想,函数思想,是指用函数的概念和性质及图像去分析问题、转化问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的。

函数与方程既是两个不同的概念,又存在着密切的联系,一个函数若能用一个解析式表达,则这个表达式就可看成一个方程;一个二元方程的两个未知数间存在着对应关系,如果这个对应关系是单值的,那么这个方程也可以看成一个函数,一个一元方程,它的两端可以分别看成函数,方程的解就是这两个函数图象交点的横坐标等。反之,许多有关函数的问题也可以用方程思想去解决,函数思想与方程是解决很多数学问题的基本思想,初中数学中的很多章节(方程、方程组、函数等)都存在着方程思想和函数思想,因此,许多有关方程的问题都是函数思想教学的重要渗透点。这在我们初中教材教学中已得到充分体现。下面本人结合教学实际浅谈如何运用这两种思想去解决数学问题。

1、用函数的观点看方程问题。运用函数思想考虑问题,已经成为解决各种数学问题的重要途径之一。这在函数与实际问题教学中尤为突出,比如人教版八年级最佳方案问题,九年级最值问题。只要我们如能将实际问题抽象出函数模型,建立函数解析式,那问题就能迎刃而解。这类问题在平时的教学中已逐步渗透这儿不再一一举例。函数还可以用来解决不等式

例:k为何值时,方程x23xk0的一根大于1,另一根小于1?

解法:运用函数思想,将方程左边看作一个二次函数x23xk0,结合数形结合思想,则方程x23xk0的根就是使函数y=x23xk的值为0的自变量的值,即抛物线与x轴的交点(图略)。又因为抛物线开口向上,所以只要满足x=1时,y<0即可。即-2+k<0,得k<2 以上解法可见,运用函数思想来处理问题,方法新颖,思路独特,直观明了,有时可大大简化解题过程。同时也解决了运用方程或不等式常规解法所不能解决的问题。

2、用方程思想解决函数问题

对于有函数图像的实际问题,尤其以行程问题为最,大部分学生总是束手无策,如下例

:甲乙两车先后都以60km/h的速度从M地将一批物品运往N地.两车出发后,发货站发现甲车遗漏一件物品,遂派丙车将遗漏物品送达甲车.丙车完成任务后,即沿原路返回(物品交接时间忽略不计).如图表示三辆车离M地的距离s(km)随时间t(min)变化的图象. 请根据图象进行以下探究:

(1)说明图象中点B的实际意义;

(2)甲车出发多长时间后被丙车追上?此时追及点距M地多远?(3)丙车与乙车在距离M地多远处迎面相遇?

好多同学都是以图像为研究中心,想求解析式,但无从着手。对于此类问题,同学如能抓住题目中的数量数量关系,画出行程问题线段示意图,结合方程思想,就变成七年级的一元一次方程的应用题,那我们解决起来就不困难了。

(1)丙车在甲车出发后40min时追上乙车,此时丙、乙两车距离M地30km;(2)由题意可知,丙车速度为90km/h

1设甲车出发xh被丙车追上,列方程得:60x=90(x-)

3此时,60x=60×1=60.

甲车出发1小时被丙车追上,此时追及点距M地60km.

(3)由(2)可知,丙车追上甲车时行驶了60km,此时乙车行驶了50min,离M地50km 设丙车从返回到遇上乙车用了yh,列方程得(60+90)y=60﹣50 解得h,即y=4min 答:乙车一共行驶的时间为54min,丙车与乙车在距离M地54km处迎面相遇. 从这类问题我们可以看出,对于实际问题,函数思想与方程思想解决问题的实质都是一样的,他们都是抓住实际问题中的数量关系来解题。当然我们同样利用题目数量关系求得甲、乙两者的解析式,利用点B求AC解析式。但是从学生的接受来看,运用方程思想解决较好。

当然用函数的思想去解决有关方程的问题,或用方程的思想去解决有关函数的问题的类型还有很多很多,需要在平时做练习时多加注意归纳,并在解题和归纳地过程中逐步培养和确立数学思想方法意识,对提高数学成绩,一定会起到积极作用,函数与方程思想的运用对于我们中学的学习起到桥梁作用,对于学好高中数学有着很重要的意义。

第二篇:“函数与方程思想”案例分析

教学设计案例分析

——“函数与方程思想”案例

一.主题

函数与方程是中学数学的重要概念,他们之间有着密切的联系;函数与方程的思想是中学的基本思想,主要依据题意,构造恰当的函数,或建立相应的方程来解决问题。函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值,解(证)不等式,解方程以及讨论参数的取值范围等问题;二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的。函数与方程的思想是历年高考的重点和热点。

1.函数的思想

用运动和变化的观点,集合与对应的思想分析和研究具体问题中的数量关系,建立函数关系或构造函数,运用函数的图像和性质去分析问题,转化问题使问题获得解决,函数思想是对函数概念的本质认识。

2.方程的思想

在解决问题时,用事先设定的未知数沟通问题中所涉及的各量间的等量关系,建立方程或方程组,求出未知数及各量的值,或者用方程的性质去分析,转化问题,使问题获得解决。

3.函数的思想与方程的思想的关系

在中学数学中,很多函数的问题需要用方程的知识和方法来支持,很多方程的问题需要用函数的知识和方法去解决。对于函数,当

时,就转化为方程,也可以把函数

看作二元方程,函数与方程可相互转化。

4.函数与方程的思想在解题中的应用

(1)函数与不等式的相互转化,对函数,当

时,就化为不等式,借助于函数的图像和性质可解决有关问题,而研究函数的性质也离不开不等式。,当

时,就化为不等式,借助于函数的图像和性质可解决有关问题,而研究函数的性质也离不开不等式。

时,就化为不等式,借助于函数的图像和性质可解决有关问题,而研究函数的性质也离不开不等式。,借助于函数的图像和性质可解决有关问题,而研究函数的性质也离不开不等式。

(2)数列的通项与前

项和是自变量为正整数的函数,用函数的观点去处理数列问题十分重要。

项和是自变量为正整数的函数,用函数的观点去处理数列问题十分重要。

(3)解析几何中的许多问题,需要通过解二元方程组才能解决。这都涉及二次方程与二次函数的有关理论。

(4)立体几何中有关线段,角,面积,体积的计算,经常需要运用列方程或建立函数表达式的方法加以解决,建立空间直角坐标系后,立体几何与函数的关系更加密切。

二.背景

此案例的背景主要是:这是一堂与函数与方程思想有关的中学数学课,虽然本节教材是实施新的课程改革,但是这节内容与老教材的内容基本一致。选用此案例的原因是虽然该案例的授课老师授课时是一节平常课,采用的上课方式是组讨论式,但是该授课老师以前曾有过用此节内容开公开课的经历,当时采用的上课方式是普通的启发式教学。通过此案例我们可以将其进行分析比较,进而得到结果。

三.情景描述

四.教学反思研究

五.教学设想

第三篇:试讲教案初中数学二次函数方程

试讲教案(数学)

人教版初中数学教案

26.1 二次函数(1)教学目标:

(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯 重点难点:

能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。教学过程:

一、试一试

1.设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果写在下表的空格中

2.x的值是否可以任意取?有限定范围吗? 3.我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定,y是x的函数,试写出这个函数的关系式,对于1.,可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思考、交流、发表意见,达成共识:当AB的长为5cm,BC的长为10m时,围成的矩形面积最大;最大面积为50m2。对于2,可让学生分组讨论、交流,然后各组派代表发表意见。形成共识,x的值不可以任意取,有限定范围,其范围是0 <x <10。对于3,教师可提出问题,(1)当AB=xm时,BC长等于多少m?(2)面积y等于多少?并指出y=x(20-2x)(0 <x <10)就是所求的函数关系式

某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。将这种商品的售价降低多少时,能使销售利润最大? 在这个问题中,可提出如下问题供学生思考并回答: 1.商品的利润与售价、进价以及销售量之间有什么关系? [利润=(售价-进价)×销售量] 2.如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元? [10-8=2(元),(10-8)×100=200(元)] 3.若每件商品降价x元,则每件商品的利润是多少元?一天可销

售约多少件商品? [(10-8-x);(100+100x)] 4.x的值是否可以任意取?如果不能任意取,请求出它的范围,[x的值不能任意取,其范围是0≤x≤2] 5.若设该商品每天的利润为y元,求y与x的函数关系式。[y=(10-8-x)(100+100x)(0≤x≤2)] 将函数关系式y=x(20-2x)(0 <x <10=化为: y=-2x2+20x(0<x<10)……………………………(1)将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为: y=-100x2+100x+20D(0≤x≤2)……………………(2)

三、观察;概括

1.教师引导学生观察函数关系式(1)和(2),提出以下问题让学生(1)函数关系式(1)和(2)的自变量各有几个?(各有1个)(2)多项式-2x2+20和-100x2+100x+200分别是几次多项式?(分别是二次多项式)(3)函数关系式(1)和(2)有什么共同特点?(都是用自变量的二次多项式来表示的)(4)本章导图中的问题以及P1页的问题2有什么共同特点? 让学生讨论、交流,发表意见,归结为:自变量x为何值时,函数y取得最大 2.二次函数定义:形如y=ax2+bx+c(a、b、、c是常数,a≠0)的函数叫做x的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.

四、课堂练习

1.(口答)下列函数中,哪些是二次函数?(1)y=5x+1(2)y=4x2-1(3)y=2x3-3x2(4)y=5x4-3x+1 2.P3练习第1,2题。

五、小结 1.请叙述二次函数的定义.

2,许多实际问题可以转化为二次函数来解决,请你联系生活实际,编一道二次函数应用题,并写出函数关系式

第四篇:小学数学中的转化思想

小学数学中的转化思想

光明小学

肖承焕

【摘要】小学是学生学习数学的启蒙阶段,这一阶段让学生真正理解并掌握一些基本的数学思想便显得尤为重要。转化思想是数学思想的重要组成部分。它是从未知领域发展,通过数学元素之间的因果联系向已知领域转化,从中找出它们之间的本质联系,解决问题的一种思想方法。在小学数学中,主要表现为数学知识的某一形式向另一形式转变,即化新为旧、化繁为简、化曲为直、化数为形等。【关键词】小学数学 教学 转化

转化思想是把一个实际问题通过某种转化、归结为一个数学问题,把一个较复杂的问题转化、归结为一个较简单的问题。也就是说,转化方法的基本思想是在解决数学问题时,将待解决的问题,通过某种转化过程,归结到一类已经解决或者比较容易解决的问题,然后通过容易问题还原解决复杂的问题。将有待解决或未解决的问题,转化为在已有知识的范围内可解决的问题,是解决数学问题的基本思路和途径之一,是一种重要的数学思想方法。

小学是学生学习数学的启蒙阶段,这一阶段让学生真正理解并掌握一些基本的数学思想便显得尤为重要。转化思想是数学思想的重要组成部分。它是从未知领域发展,通过数学元素之间的因果联系向已知领域转化,从中找出它们之间的本质联系,解决问题的一种思想方法。在小学数学中,主要表现为数学知识的某一形式向另一形式转变,即化新为旧、化繁为简、化曲为直、化数为形等。21世纪的数学教师,应该结合相应的数学情景,培养学生善于和习惯利用转化思想解决问题的意识。使复杂的问题简单化、抽象的问题具体化,特殊的问题一般化,未知的问题已知化,提高学生解决数学问题的能力,从而使学生爱上学数学。

一、转化的形式多种多样

(一)计算中的转化

1.计算的纵向转化

加减计算: 20以内数的加减←―100以内数的加减←―多位数的加减←―小数加减 ← 分数加减。其中 20以内数的加减计算是基础。如23+15可以转化成2+1和3+5两道十以内数的计算,64-38 可以转化成14-8和5-3两道计算。多位数计算也同样。1

分数加减计算如 7/8+3/8 就是 7个1/8 加3个1/8,就是(7+3)个1/8,最后也可以看作是20以内数的计算。乘除计算:一位数乘法← 多位数乘法← 小数乘法。一位数乘法口诀是基础,多位数乘法都可以把它归结到一位数乘法。除数是一位数的除法←―多位数除法←-小数除法。除法中除数是一位数除法的计算方法是基础,多位数除法都可以把它归结到一位数除法。2.计算的横向转化

加法与减法之间可以转化,乘法与除法之间可以转化。几个相同加数连加的和,可以转化成乘法来计算。被减数连续减去几个相同的减数,差为零,可以转化成除法来表示。分数的除法,可以将除数颠倒位置变成乘法进行计算。

(二)综合应用中的转化。

小学阶段十一类简单应用题分别如下: ⑴求总数(部分数+部分数=总数)⑵求剩余(总数-部分数=另一部分数)⑶求相同加数的和(每份数×份数=总数)

⑷把一个数平均分成几份,求一份是多少(总数÷份数=每份数)⑸求一个数里包含几个另一个数(总数÷每份数=份数)⑹求两数相差多少(较大数-较小数=相差数)⑺求比一个数多几的数(较小数+相差数=较大数)⑻求比一个数少几的数(较大数-相差数=较小数)⑼求一个数的几倍是多少(较小数×倍数=较大数)

⑽已知一个数的几倍数,求一倍数(几倍数÷倍数=一倍数)⑾求一个数是另一个数的几倍(较大数÷较小数=倍数)

十一类简单应用题可以归结为四大类数量关系,即部总关系、相差关系、倍数关系、总份关系。每一类数量关系的基本应用题可以通过条件与问题的交换进行相互转化,其它的稍复杂的整数和小数应用题可以把一步计算应用题通过改变条件转化成复杂应用题。任何的复杂的应用题都可以通过二道或更多的简单应用题组合而成。

(三)图形中的转化。

面积计算公式的推导可以把长方形面积公式作为基础,其它图形面积公式都可以通过转化变成长方形或平行四边形后得出公式。体积计算公式以长方体的体积计算公式为

基础,圆柱体的体积公式的推导也是通过转化为长方体来得出。转化思想是解决数学问题的一种最基本的数学思想,在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题,我们也常常在不同的数学问题之间互相转化,可以说在解决数学问题时转化思想几乎是无处不在的。

二、转化在小学数学教学中的主要作用

(一)化新为旧,给新知寻找一个合适的生长点

任何一个新知识,总是原有知识发展和转化的结果。在实际教学中,教师可以把学生感到生疏的问题转化成比较熟悉的问题,并利用已有的知识加以解决,促使其快速高效地学习新知,而已有的知识就是这个新知的生长点。

(二)化繁为简。优化解题策略

在处理和解决数学问题时,常常会遇到一些运算或数量关系非常复杂的问题,这时教师不妨转化一下解题策略,化繁为简。反而会收到事半功倍的效果。例如,在学生掌握长方体、正方体的体积计算公式后,出示一个不规则的铁块,让学生求出它的体积。学生们顿时议论纷纷,认为不能用长方体、正方体的体积计算公式--直接计算。但不久就有学生提出,可以利用转化思想来计算出它的体积。通过小组讨论后,学生们的答案可谓精彩纷呈。

方法一:用一块橡皮泥,根据铁块的形状,捏成一个和它体积一样的模型,然后把橡皮泥捏成长方体或正方体,橡皮泥的体积就是铁块的体积。

方法二:把这个铁块放到一个装有水的长方体的水槽内,浸没在水中,看看水面上升了多少,拿水槽内底面的长、宽与水面上升的高度相乘得到铁块的体积。

方法三:把铁块放到一个装满水的量杯内,使之淹没,然后拿出来,看看水少了多少毫升,这个铁块的体积就是多少立方厘米。

方法四:可以请铁匠师傅帮个忙,让他敲打成一个规则的长方体后再计算。

这时,学生在转化思想的影响下,茅塞顿开,将一道生活中的数学问题既形象又有创意地解决了。从这里可以看出:学生掌握了转化的数学思想方法,就犹如有了一位“隐形”的教师,从根本上说就是获得了自己独立解决数学问题的能力。

(三)化曲为直,突破空间障碍

“化曲为直”的转化思想是小学数学曲面图形面积学习的主要思想方法。它可以把学生的思维空间引向更宽更广的层次,形成一个开放的思维空间,为学生今后的发展打下坚实的基础。

例如,圆面积的教学,教师在教学过程中,先请学生把圆16等分以后,请他们动手拼成近似的平面图形,即用转化思想,通过“化曲为直”来达到化未知为已知。学生兴趣盎然,通过剪、摆、拼以及多种感官协同参与活动,拼出以下图形。

三、转化在小学数学中的有效策略

(一)实施“转化”的前提是摸清学生的“最近发展区”

教育对儿童的发展能够起到主导和促进作用,但需要确定儿童发展的两种水平:一种是已经达到的发展水平,另一种是儿童可能达到的发展水平。后者就是所谓的“最近发展区”。

(二)在获取新知的过程中,让转化思想成为首选的数学思想

在小学数学教学中,提倡学生拥有多元化的数学思想,就要培养学生的发散思维能力,但“集中思维”也是不可或缺的。笔者所说的“集中思维”是向转化思想的集中。转化思想成为指导小学生学习与思考重要法宝,“遇题必思,解题必用”。

总之,转化思想是解决数学问题的一种最基本的数学思想,在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题,我们也常常在不同的数学问题之间互相转化,可以说在解决数学问题时转化思想几乎是无处不在的。【参考文献】

[1]金雪根.培养学生转化思想的认识与实践[J].小学教学参考,2003(4):31-32.[2] 周家学.浅淡中学数学中的转化思想[J].教学研究,2007(6):61.[3] 卫星.化思想在小学数学教学中的运用[J].教学与管理,2009(7):40-42.[4] 鲍善军,余真彪.如何培养学生运用转化思想的能力[J].新课程研究,2010(5):159.4

第五篇:函数与方程教案

函数与方程教案

27.3实践与探索(第二课时)二次函数与一元二次方程的关系 晋城四中 李前进 【教学目标】

1、知识与技能:(1)体会函数与方程之间的联系,初步体会利用函数图象研究方程问题的方法;(2)理解二次函数图象与x轴(横轴)交点的个数与一元二次方程的根的个数之

间的关系,理解方程有两个不等的实根、两个相等的实根和没有实根的函数 图象特征;22(3)理解一元二次方程ax+bx+c=0的根就是二次函数与y=ax+bx+c图象与x轴交

点的横坐标。

2、过程与方法:(1)由一次函数与一元一次方程根的联系类比探求二次函数与一元二次方程之间 的联系;(2)经历类比、观察、发现、归纳的探索过程,体会函数与方程相互转化的数学

思想和数形结合的数学思想。

3、情感、态度与价值观: 培养学生类比与猜想、不完全归纳、认识到事物之间的联系与转化、体验 探究的乐趣和学会用辨证的观点看问题的思维品质。【重点与难点】

重点:经历“类比--观察--发现--归纳”而得出二次函数与一元二次方程的关系的探

索过程。

难点:准确理解二次函数与一元二次方程的关系。【教法与学法】

教法:采用“发现式学习”的方式,注重“最近发展区”,寻根问源,以旧知识为

基础创设问题情境,引导学生经历“类比—猜想—观察—发现—归纳—应用” 的探究过程。学法:探究式学习。

appearance of the weld appearance quality technical requirements of the project must not have a molten metal stream does not melt the base metal to weld, weld seam and heat-affected zone surface must not have cracks, pores, defects such as crater and ash, surface smoothing, weld and base metal should be evenly smooth transition.Width 2-3 mm from the edge of weld Groove.Surface reinforcement should be less than or equal to 1 + 0.2 times the slope edge width, and should not be greater than 4 mm.Depth of undercut should be less than or equal to 0.5 mm, total length of the welds on both sides undercut not exceed 10% of the weld length, and long continuous should not be greater than 100 mm.Wrong side should be less than or at 0.2T, and should not be greater than 2 mm(wall thickness mm t)incomplete or not allow 7.5 7.5.1 installation quality process standards of the electrical enclosure Cabinet surface is clean, neat, no significant phenomenon of convex, close to nature, close the door.7.5.2 Cabinet Cabinet face paints no paint, returned to rusted, consistent color.7.5.3 uniform indirect gap from top to bottom, slot width <1.5mm 7.5.4 adjacent Cabinet surface roughness is 0.7.5.5 the cabinets firmly fixed, crafts beautiful.7.5.6 Cabinet surface gauge, switch cabinet mark clear, neat, firm paste.7.5.7 Terminal row of neat, is reliable, the appearance is clean and not damaged.7.5.8 cables neat and clean, solid binding, binding process in appearance.7.5.9 the first cable production firm, crafts beautiful, clear signage does not fade.7.5.10 fireproof plugging tight, no cracks and pores.7.6 7.6.1 of the standard electrical wiring quality technology cable a, the multi-core wire bunch arrangement should be parallel to each other, horizontal wire harness or wire should be perpendicular to the longitudinal multi-core wire bunch.The distance between the wire harness and wire harness symmetry, and as close as possible.B-core wiring harness into round, multi-core wire bunch used g wire binding, fastening 【教学过程】

一、诗词导入

教师投影:我国著名数学家华罗庚曾经说过:“数缺形时少直观,形少数 时难入微,数形结合百般好,隔离分家万事休。”(学生齐读)师:数学家的寥寥数语就将数与形之间的内在联系表达的淋漓尽致。今天,我们通过研究二次函数中的数形结合来体会“数形结合百般好”的奥妙~ 设计思路:从学生熟悉的小诗入手,激发学生探究学习的积极性。

二、温故知新 y3那些年,我们一起做过的题: 2(1)解一元一次方程x+1=0;1(2)画一次函数y=x+1的图象,并指出函数y=x+1的图象 x –2–11O 与x轴的交点坐标。–1(3)你会不画图象求函数y=3x,3与x轴的交点坐标吗, 师生共同总结:一次函数y,kx,b的图象与x轴的交点的横坐标就是一元一次方程kx,b,0的根

设计思路:这一环节让学生通过对旧知识的回顾及对新知识的思考,梳理旧知识,起到承上启下之效,同时通过老师的引导,培养学生的形成解决一类问题的通用方法的思维品质

三、类比猜想

22你觉得一元二次方程ax+bx+c=0的根与二次函数y=ax+bx+c之间有联系吗,四、问题探究

教师分配研究的任务,然后小组合作完成,教师提问,学生展示研究成果。设计思路: 学生画函数图象比较慢,分配任务既可以节约时间,又可以使 每个学生都有事可做,能够很好地完成学习任务。

appearance of the weld appearance quality technical requirements of the project must not have a molten metal stream does not melt the base metal to weld, weld seam and heat-affected zone surface must not have cracks, pores, defects such as crater and ash, surface smoothing, weld and base metal should be evenly smooth transition.Width 2-3 mm from the edge of weld Groove.Surface reinforcement should be less than or equal to 1 + 0.2 times the slope edge width, and should not be greater than 4 mm.Depth of undercut should be less than or equal to 0.5 mm, total length of the welds on both sides undercut not exceed 10% of the weld length, and long continuous should not be greater than 100 mm.Wrong side should be less than or at 0.2T, and should not be greater than 2 mm(wall thickness mm t)incomplete or not allow 7.5 7.5.1 installation quality process standards of the electrical enclosure Cabinet surface is clean, neat, no significant phenomenon of convex, close to nature, close the door.7.5.2 Cabinet Cabinet face paints no paint, returned to rusted, consistent color.7.5.3 uniform indirect gap from top to bottom, slot width <1.5mm 7.5.4 adjacent Cabinet surface roughness is 0.7.5.5 the cabinets firmly fixed, crafts beautiful.7.5.6 Cabinet surface gauge, switch cabinet mark clear, neat, firm paste.7.5.7 Terminal row of neat, is reliable, the appearance is clean and not damaged.7.5.8 cables neat and clean, solid binding, binding process in appearance.7.5.9 the first cable production firm, crafts beautiful, clear signage does not fade.7.5.10 fireproof plugging tight, no cracks and pores.7.6 7.6.1 of the standard electrical wiring quality technology cable a, the multi-core wire bunch arrangement should be parallel to each other, horizontal wire harness or wire should be perpendicular to the longitudinal multi-core wire bunch.The distance between the wire harness and wire harness symmetry, and as close as possible.B-core wiring harness into round, multi-core wire bunch used g wire binding, fastening 表格一: 二次函数 函数图象 图象与x轴方程的根 一元二次 方程 的交点坐 标 22 y=x+2x x+2x=0 22y=x-2x+1 x-2x+1=0 22y=x-2x+2-2x+2=0 x

五、归纳结论

2(1)从“数”的方面看,当二次函数y=ax+bx+c的函数值y=_0_ 时,二次函数 x2-2x+ 2 变为一元二次方程ax+bx+c=0,此时相应的_自变量的值即为二次方程 2ax+bx+c=0的_根_;2=0(2)从“形”的方面看,当二次函数的y值为0时,从图像看指的是二次函数图 像与_x轴_的交点,此时二次函数y=ax+bx+c与x轴交点的_横坐标_即为二x2-2x+ 2次方程ax+bx+c=0的_根_。表格二: 2=0 2一元二次方程二次函数y=ax+bx+c的图象一元二次方程根的判别式 222b,4ac ax+bx+c=0的根的个数 与x轴交点的个数

x-2x+ 22=0 b,4ac>0 2 b,4ac=0 2 b,4ac<0 教师和学生一起总结: 2二次函数y=ax+bx+c的图象与x轴的交点有三种情况:有两个交点、有一 2个交点、没有交点。当二次函数y=ax+bx+c的图象与x轴有交点时,交点的横 2坐标就是当y=0时自变量x的值,即一元二次方程ax+bx+c=0的根。appearance of the weld appearance quality technical requirements of the project must not have a molten metal stream does not melt the base metal to weld, weld seam and heat-affected zone surface must not have cracks, pores, defects such as crater and ash, surface smoothing, weld and base metal should be evenly smooth transition.Width 2-3 mm from the edge of weld Groove.Surface reinforcement should be less than or equal to 1 + 0.2 times the slope edge width, and should not be greater than 4 mm.Depth of undercut should be less than or equal to 0.5 mm, total length of the welds on both sides undercut not exceed 10% of the weld length, and long continuous should not be greater than 100 mm.Wrong side should be less than or at 0.2T, and should not be greater than 2 mm(wall thickness mm t)incomplete or not allow 7.5 7.5.1 installation quality process standards of the electrical enclosure Cabinet surface is clean, neat, no significant phenomenon of convex, close to nature, close the door.7.5.2 Cabinet Cabinet face paints no paint, returned to rusted, consistent color.7.5.3 uniform indirect gap from top to bottom, slot width <1.5mm 7.5.4 adjacent Cabinet surface roughness is 0.7.5.5 the cabinets firmly fixed, crafts beautiful.7.5.6 Cabinet surface gauge, switch cabinet mark clear, neat, firm paste.7.5.7 Terminal row of neat, is reliable, the appearance is clean and not damaged.7.5.8 cables neat and clean, solid binding, binding process in appearance.7.5.9 the first cable production firm, crafts beautiful, clear signage does not fade.7.5.10 fireproof plugging tight, no cracks and pores.7.6 7.6.1 of the standard electrical wiring quality technology cable a, the multi-core wire bunch arrangement should be parallel to each other, horizontal wire harness or wire should be perpendicular to the longitudinal multi-core wire bunch.The distance between the wire harness and wire harness symmetry, and as close as possible.B-core wiring harness into round, multi-core wire bunch used g wire binding, fastening 设计思路:通过教师引导学生完成表格,使学生对命题的内涵理解,“学生对数学命题中各部分符号的含义能深刻理解,发现并知道各部分间的内在联系。”填空使学生从“形”与“数”的角度体会数形结合思想,以及方程与函数互相转化的思想,从而归纳出具一般性的结论。y22y = x x 6

1六、基础练习x–3–2–1123O2–1(1)已知二次函数y=x-x-6的图象如图所示: –2 –3图象与x轴有2个交点,交点的横坐标 –42 是______,则方程x-x-6=0有__个根,方程的根是________ 2(2)函数y= x-5x+6的图象与x轴有___个交点,其交点坐标为_________、__________。(3)自命题

每个小组按照教师的要求,小组内通过讨论写出一个一般式的二次函数关系式,用关系式出一道有关二次函数和一元二次方程的简单的题,(七个大组分三种情况布置有目的性的布置,各小组只知道自己小组的任务)。教师通过在教师内观察学生活动情况,选两个代表性题由其他小组来做。

设计思路:小组活动,激发学生的学习热情,巩固对上面总结结论的认识。

七、例题讲解 2 例1:已知二次函数y=ax+bx+c(a?0)的对称轴是x=2,它与x轴的一个交 2点坐标是(4,0),则方程ax+bx+c=0的两个解是__________ 设计思路:鼓励学生自主思考,然后小组讨论,派代表上讲台讲解。

八、巩固练习

2(1)抛物线y=ax+bx+c(a?0)的图象全部在x轴下方的条件是()22(A)a,0 b,4ac?0(B)a,0 b , 4ac,0 22(C)a,0 b , 4ac,0(D)a,0 b , 4ac,0(2)下列函数中其图象与x轴有两个交点的是()11112222(A)y=()x23+155(B)y=()x+23+155(C)y=()x23155(D)y=()x+23+1554444 appearance of the weld appearance quality technical requirements of the project must not have a molten metal stream does not melt the base metal to weld, weld seam and heat-affected zone surface must not have cracks, pores, defects such as crater and ash, surface smoothing, weld and base metal should be evenly smooth transition.Width 2-3 mm from the edge of weld Groove.Surface reinforcement should be less than or equal to 1 + 0.2 times the slope edge width, and should not be greater than 4 mm.Depth of undercut should be less than or equal to 0.5 mm, total length of the welds on both sides undercut not exceed 10% of the weld length, and long continuous should not be greater than 100 mm.Wrong side should be less than or at 0.2T, and should not be greater than 2 mm(wall thickness mm t)incomplete or not allow 7.5 7.5.1 installation quality process standards of the electrical enclosure Cabinet surface is clean, neat, no significant phenomenon of convex, close to nature, close the door.7.5.2 Cabinet Cabinet face paints no paint, returned to rusted, consistent color.7.5.3 uniform indirect gap from top to bottom, slot width <1.5mm 7.5.4 adjacent Cabinet surface roughness is 0.7.5.5 the cabinets firmly fixed, crafts beautiful.7.5.6 Cabinet surface gauge, switch cabinet mark clear, neat, firm paste.7.5.7 Terminal row of neat, is reliable, the appearance is clean and not damaged.7.5.8 cables neat and clean, solid binding, binding process in appearance.7.5.9 the first cable production firm, crafts beautiful, clear signage does not fade.7.5.10 fireproof plugging tight, no cracks and pores.7.6 7.6.1 of the standard electrical wiring quality technology cable a, the multi-core wire bunch arrangement should be parallel to each other, horizontal wire harness or wire should be perpendicular to the longitudinal multi-core wire bunch.The distance between the wire harness and wire harness symmetry, and as close as possible.B-core wiring harness into round, multi-core wire bunch used g wire binding, fastening

七、拓展提高:

21、已知二次函数y=ax+bx+c(a?0)的图象 如图所示,根据图象回答下列问题: 2(1)方程ax+bx+c=0的两个解是__________ 2(2)方程ax+bx+c=4的两个解是__________ 设计思路:让学生对二次函数和一元二次方程的关系的认识上升高度。

22、你会利用二次函数的图象求出一元二次不等式x,x,2,0的解集吗,(看课堂时间情况决定是否出示)

八、课堂小结,提高认识

函数 方程 22ax+bx+c=0(a ?0)y=ax+bx+c(a?0)横坐标的

值 图象与x轴交点 根 个数

一个关系:二次函数图象与一元二次方程根的关系: 两种思想:函数与方程互相转化的思想;数形结合思想(设计思路:用精炼的语言,使得学生记忆简便,而且印象加深,同时让学生在 总结中反思,完成升华。学生再次齐读华罗庚名言,下课。

九、布置作业,巩固提升

十、板书设计

课题:„„.课题:„„.方程与函数转化 例1: 方程与函数转化 例1: 函数 方程 22y=ax+bx+c(a?0)ax+bx+c=0(a ?0)横坐标的

值 图象与x轴交点 根 个数 数形结合 数形结合

appearance of the weld appearance quality technical requirements of the project must not have a molten metal stream does not melt the base metal to weld, weld seam and heat-affected zone surface must not have cracks, pores, defects such as crater and ash, surface smoothing, weld and base metal should be evenly smooth transition.Width 2-3 mm from the edge of weld Groove.Surface reinforcement should be less than or equal to 1 + 0.2 times the slope edge width, and should not be greater than 4 mm.Depth of undercut should be less than or equal to 0.5 mm, total length of the welds on both sides undercut not exceed 10% of the weld length, and long continuous should not be greater than 100 mm.Wrong side should be less than or at 0.2T, and should not be greater than 2 mm(wall thickness mm t)incomplete or not allow 7.5 7.5.1 installation quality process standards of the electrical enclosure Cabinet surface is clean, neat, no significant phenomenon of convex, close to nature, close the door.7.5.2 Cabinet Cabinet face paints no paint, returned to rusted, consistent color.7.5.3 uniform indirect gap from top to bottom, slot width <1.5mm 7.5.4 adjacent Cabinet surface roughness is 0.7.5.5 the cabinets firmly fixed, crafts beautiful.7.5.6 Cabinet surface gauge, switch cabinet mark clear, neat, firm paste.7.5.7 Terminal row of neat, is reliable, the appearance is clean and not damaged.7.5.8 cables neat and clean, solid binding, binding process in appearance.7.5.9 the first cable production firm, crafts beautiful, clear signage does not fade.7.5.10 fireproof plugging tight, no cracks and pores.7.6 7.6.1 of the standard electrical wiring quality technology cable a, the multi-core wire bunch arrangement should be parallel to each other, horizontal wire harness or wire should be perpendicular to the longitudinal multi-core wire bunch.The distance between the wire harness and wire harness symmetry, and as close as possible.B-core wiring harness into round, multi-core wire bunch used g wire binding, fastening

下载浅谈初中数学函数思想与方程思想的转化word格式文档
下载浅谈初中数学函数思想与方程思想的转化.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    分类讨论思想与初中数学教学

    最新【精品】范文 参考文献专业论文 分类讨论思想与初中数学教学 分类讨论思想与初中数学教学 摘 要:数学中的分类讨论思想是一种比较重要的数学思想,通过加强数学分类讨论......

    数学思想与方法

    小学数学教学研究 第四次作业答案 1. 下列不属于数学性质特征的是( )。 A. 抽象性 B. 严谨性 C. 客观性 D. 应用广泛性 2. 下列不属于当今国际小学数学课程目标特征的是( )。 A.......

    数学思想

    一.数学思想方法总论 高中数学一线牵,代数几何两珠连;三个基本记心间,四种能力非等闲.常规五法天天练,策略六项时时变,精研数学七思想,诱思导学乐无边. 一线:函数一条主线(贯穿教材始......

    数学思想

    对数学教学中渗透方法思想、转化思想、数形结合思想、分类讨 论思想等的认识与感受 数学学科也可以称之为一门方法学科,这种方法是一种逻辑,一种规律。要想学好数学,就得掌握数......

    初中数学中巧妙“转化”的解题思想例谈

    初中数学中巧妙“转化”的解题思想例谈【摘要】数学学科数对培养学生的推理能力与思维能力均有着十分重要的意义,在数学教学中有很多的数学思想与数学方法,将“转化思想”应用......

    小学数学教学中应强化方程思想

    小学数学教学中应强化方程思想 在小学阶段,小学生一天到晚都是跟算术法打交道,算术法对他们来说已经是刻骨铭心。所以当我教他们用列方程解应用题的时候,学生犯愁了,我也犯愁了......

    对初中数学思想的认识与感受

    对初中数学思想的认识与感受 白莲岩中心学校朱正启 数学思想是处理数学问题的指导思想,是数学的灵魂,是学生形成良好的认知结构的纽带,是由知识转化为能力的桥梁。在平时的数学......

    初中思想品德课

    初中思想品德课“生活化”教学策略的研究 (开题报告) 一、课题提出的背景及研究本课题的意义 1.初中思想品德课“生活化”教学是基于对当今课堂教学的反思、是基于新课程改......