小学数学解题的19种方法总结

时间:2019-05-13 01:58:45下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《小学数学解题的19种方法总结》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《小学数学解题的19种方法总结》。

第一篇:小学数学解题的19种方法总结

小学数学解题的19种方法总结

一、形象思维方法

形象思维方法是指人们用形象思维来认识、解决问题的方法。它的思维基础是具体形象,并从具体形象展开来的思维过程。形象思维的主要手段是实物、图形、表格和典型等形象材料。它的认识特点是以个别表现一般,始终保留着对事物的直观性。它的思维过程表现为表象、类比、联想、想象。它的思维品质表现为对直观材料进行积极想象,对表象进行加工、提炼进而提示出本质、规律,或求出对象。它的思维目标是解决实际问题,并且在解决问题当中提高自身的思维能力。

1、实物演示法

利用身边的实物来演示数学题目的条件和问题,及条件与条件,条件与问题之间的关系,在此基础上进行分析思考、寻求解决问题的方法。这种方法可以使数学内容形象化,数量关系具体化。比如:数学中的相遇问题。通过实物演示不仅能够解决“同时、相向而行、相遇”等术语,而且为学生指明了思维方向。再如,在一个圆形(方形)水塘周围栽树问题,如果能进行一个实际操作,效果要好得多。

二年级数学教材中,“三个小朋友见面握手,每两人握一次,共要握几次手”与“用三张不同的数字卡片摆成两位数,共可以摆成多少个两位数”。像这样的有关排列、组合的知识,在小学教学中,如果实物演示的方法,是很难达到预期的教学目标的。

特别是一些数学概念,如果没有实物演示,小学生就不能真正掌握。长方形的面积、长方体的认识、圆柱的体积等的学习,都依赖于实物演示作思维的基础。

所以,小学数学教师应尽可能多地制作一些数学教(学)具,而且这些教(学)具用过后要好好保存,可以重复使用。这样可以有效地提高课堂教学效率,提升学生的学习成绩。

2、图示法

借助直观图形来确定思考方向,寻找思路,求得解决问题的方法。图示法直观可靠,便于分析数形关系,不受逻辑推导限制,思路灵活开阔,但图示依赖于人们对表象加工整理的可靠性上,一旦图示与实际情况不相符,易使在此基础上的联想、想象出现谬误或走入误区,最后导致错误的结果。比如有的数学教师爱徒手画数学图形,难免造成不准确,使学生产生误解。

在课堂教学当中,要多用图示的方法来解决问题。有的题目,图画出来了,结果也就出来的;有的题,图画好了,题意学生也就明白了;有的题,画图则可以帮助分析题意、启迪思路,作为其他解法的辅助手段。

例1把一根木头锯成3段需要24分钟,锯成6段需要多少分钟?(图略)

思维方法是:图示法。

思维方向是:锯几次,每次用几分钟。

思路是:锯3段锯了几次,每次用几分钟,锯6段锯了几次,需要多少分钟。

例2判断等腰三角形中,点D是底边BC的中点,图甲的面积比图乙的面积大,图甲的周长比图乙的周长长。(图略)

思维方法:图示法。

思维方向:先比较面积,再比较周长。

思路:作条辅助线。图甲占的面积大,图乙所占面积小,所以“图甲的面积比图乙的面积大”是正确的。线段AD比曲线AD短,所以“图甲的周长比图乙的周长长”是错误的。

3、列表法

运用列出表格来分析思考、寻找思路、求解问题的方法叫做列表法。列表法清晰明了,便于分析比较、提示规律,也有利于记忆。它的局限性在于求解范围小,适用题型狭窄,大多跟寻找规律或显示规律有关。比如,正、反比例的内容,整理数据,乘法口诀,数位顺序等内容的教学大都采用“列表法”。

用列表法解决传统数学问题:鸡兔同笼问题。制作三个表格:第一张表格是逐一举例法,根据鸡与兔共20只的条件,假设鸡只有1只,那么兔就有19只,腿共有78条……这样逐一列举,直至寻找到所求的答案;第二张表格是列举了几个以后发现了只数与腿数的规律,从而减少了列举的次数;第三张表格是从中间开始列举,由于鸡与兔共20只,所以各取10只,接着根据实际的数据情况确定列举的方向。

4、探索法

按照一定方向,通过尝试来摸索规律、探求解决问题思路的方法叫做探究法。我国着名数学家华罗庚说过,在数学里,“难处不在于有了公式去证明,而在于没有公式之前,怎样去找出公式来。”苏霍姆林斯基说过:在人的心灵深处,都有一种根深蒂固的需要,这就是希望自己是一个发现者、研究者、探索者,而在儿童的精神世界中,这种需要特别强烈。“学习要以探究为核心”,是新课程的基本理念之一。人们在难以把问题转化为简单的、基本的、熟悉的、典型的问题时,常常采取的一种好方法就是探究、尝试。

第一、探究方向要准确,兴趣要高涨,切忌胡乱尝试或形式主义的探究。例如,教学“比例尺”时,教师创设“学生出题考老师”的教学情境,师:“现在我们考试好不好?”学生一听:很奇怪,正当学生疑惑之时,教师说:“今天改变过去的考试方法,由你们出题考老师,愿意吗?”学生听后很感兴趣。教师说:“这里有一幅地图,你们用直尺任意量出两地的距离,我都能很快地告诉你们这两地之间的实际距离,相信吗?”于是学生纷纷上台度量、报数,教师都一个接一个地回答对应的实际距离。学生这时更感到奇怪,异口同声地说:“老师您快告诉我们吧,您是怎样算的?”教师说:“其实呀,有一位好朋友在暗中帮助老师,你们知道它是谁吗?想认识它吗?”于是引出所要学习的内容“比例尺”。

第二、定向猜测,反复实践,在不断分析、调整中寻找规律。

例3找规律填数。

(1)1、4、、10、13、、19;

(2)2、8、18、32、、72、。

第三,独立探究与合作探究结合。独立,有自由的思维时空;合作,可以知识上互补,方法上互相借鉴,不时还能碰撞出智慧的火花。

小学数学教学活动中,教师应尽量创设让学生去探究的情景,创造让学生去探究的机会,鼓励有探究精神和习惯的学生。

5、观察法

通过大量具体事例,归纳发现事物的一般规律的方法叫做观察法。巴浦洛夫说:“应当先学会观察,不学会观察永远当不了科学家。”

小学数学“观察”的内容一般有:①数字的变化规律及位置特点;②条件与结论之间的关系;③题目的结构特点;④图形的特点及大小、位置关系。

如:观察一组算式:25×4=4×25,62×11=11×62,100×6=6×100……归纳出乘法交换率:在乘法算式里,交换两个因数的位置,积不变。

“观察”的要求:

第一、观察要细致、准确。

例4找出下列各题错在哪里,并改正。

(1)25×16=25×(4×4)=(25×4)×(25×4);

(2)18×36+18×64=(18+18)×(36+64)

例5直接写出下列各题的得数:

(1)3.6+6.4(2)3.6+6.04

(3)125×57×0.04(4)(351-37-13)÷5

第二、科学观察。科学观察渗透了更多的理性因素,它是有目的,有计划地察看研究对象。比如,在教学长方体的认识时,要做到“有序”观察:(1)面--形状、个数、面与面之间的关系;(2)棱--棱的形成、条数、棱与棱之间的关系(相对的棱相等;相对的棱有四条;长方体的棱可以分为三组);(3)顶点--顶点的形成、个数,认识顶点的一个重要作用是引出长方体长、宽、高的概念。

第三,观察必定与思考结合。这是一年级下学期的一道思考题,如果只观察不思考,这道题目让干什么就不知道。

6、典型法

针对题目去联想已经解过的典型问题的解题规律,从而找出解题思路的方法叫做典型法。典型是相对于普遍而言的。解决数学问题,有些需要用一般方法,有些则需要用特殊(典型)方法。比如,归

一、倍比和归总算法、行程、工程、消同求异、平均数等。

运用典型法必须注意:

(1)要掌握典型材料的关键及规律。

例7已知爸爸比儿子大30岁,爸爸今年的年龄正好是儿子的7倍。爸爸、儿子今年分别是多少岁?关键点在:爸爸比儿子大30岁,爸爸的年龄比儿子多几倍。典型题都有典型解法,要想真正学好数学,即要理解和掌握一般思路和解法,还要学会典型解法。

(2)熟悉典型材料,并能敏捷地联想到所适用的典型,从而确定所需要的解题方法。

例8见到“某城市有一条公共汽车线路,长16500米,平均每隔500米设一个车站。这条线路需要设多少个车站?”这样题目,就应该联想到上面所讲到的“锯木头用多少分钟”的典型问题。

(3)典型和技巧相联系。

例9甲乙两个工程队共有82人,如果从乙队调8人到甲队,两队人数正好相等。甲乙两队原来各有多少人?这题目的技巧:调前、调后两队总人数没变。先算调后各队人数,再算原来各队人数。

7、放缩法

通过对被研究对象的放缩估计来解决问题的方法叫做放缩法。放缩法灵活、巧妙,但有赖于知识的拓展能力及其想象能力。

例16求12和9的最小公倍数。求两个数的最小公倍数一般的方法是“短除式”方法,它是根据这两个数的质因数情况来求出它们的最小公倍数的。但也有两个典型方法:一是“如果两个数是互质数,那么这两个数的最小公倍数就是它们的乘积”;二是“如果大数是小数的倍数,那么这两个数的最小公倍数就是大数”。现在我们根据典型方法二,进行扩展运用,放大“大数”来求12和9的最小公倍数。

12不是9的倍数,就把它放大2倍,得24,仍然不是9的倍数,放大3倍,得36,36是9的倍数,那么,12和9的最小公倍数就是36。这种方法的关键点在于,如果大数不是小数的倍数,就把大数翻倍,但一定从2倍开始,如果一下子扩大6倍,得数是它们的公倍数,而不是最小的了。

例17期末考试,小刚的语文成绩和英语成绩的和是197分;语文和数学成绩加起来是199分;数学和英语成绩加起来是196分。想一想,小刚的哪科成绩最高?你能算出小刚的各科成绩吗?

思路一:“放大”。通过观察发现,语、数、外三科成绩在题目中各出现两次,我们求197+199+196的和,这个和是“语数外成绩的2倍”,除以2得三科成绩之和,再减去任意两科的成绩,就得到第三科的成绩。

思路二:“缩小”。我们用语数成绩的和减去语外的成绩,199-197=2(分),这是数学减英语成绩的差。数学和英语的和是196分,再求数学的分数就不难了。放缩法有时运用在估算和验算上。

例18检验下列计算结果是否正确?

(1)18.7×6.9=137.3;(2)17485÷6.6=3609.对于(1)用总体估计,放大至19×7=133,估计得数要小于133,所以本题结果错误。对于(2)用最高位估计,把17看作18,把6。6看作6,18÷6=3,显然答数的最高位不会是3,故本题结果也不正确。

例19把鸡和兔放在一起,共有48个头,114只足,问鸡、兔各有几只。

这是一道鸡兔同笼的典型问题,我们也用放缩法,不妨把鸡和兔的足数缩小2倍,那么,鸡的足数和它的头数一样,而兔的足数是它的只数的2倍。所以,总的足数缩小2倍后,鸡和兔的总足数与它们的总只数相差数就是兔的只数。

8、验证法

你的结果正确吗?不能只等教师的评判,重要的是自己心里要清楚,对自己的学习有一个清楚的评价,这是优秀学生必备的学习品质。

验证法应用范围比较广泛,是需要熟练掌握的一项基本功。应当通过实践训练及其长期体验积累,不断提高自己的验证能力和逐步养成严谨细致的好习惯。

(1)用不同的方法验证。教科书上一再提出:减法用加法检验,加法用减法检验,除法用乘法验算,乘法用除法验算。

(2)代入检验。解方程的结果正确吗?用代入法,看等号两边是否相等。还可以把结果当条件进行逆向推算。

(3)是否符合实际。“千教万教教人求真,千学万学学做真人”陶行知先生的话要落实在教学中。比如,做一套衣服需要4米布,现有布31米,可以做多少套衣服?有学生这样做:31÷4≈8(套)

按照“四舍五入法”保留近似数无疑是正确的,但和实际不符合,做衣服的剩余布料只能舍去。教学中,常识性的东西予以重视。做衣服套数的近似计算要用“去尾法”。

(4)验证的动力在猜想和质疑。牛顿曾说过:“没有大胆的猜想,就做不出伟大的发现。”“猜”也是解决问题的一种重要策略。可以开拓学生的思维、激发“我要学”的愿望。为了避免瞎猜,一定学会验证。验证猜测结果是否正确,是否符合要求。如不符合要求,及时调整猜想,直到解决问题。

二、抽象思维方法

运用概念、判断、推理来反映现实的思维过程,叫抽象思维,也叫逻辑思维。

抽象思维又分为:形式思维和辩证思维。客观现实有其相对稳定的一面,我们就可以采用形式思维的方式;客观存在也有其不断发展变化的一面,我们可以采用辩证思维的方式。形式思维是辩证思维的基础。

形式思维能力:分析、综合、比较、抽象、概括、判断、推理。

辩证思维能力:联系、发展变化、对立统一律、质量互变律、否定之否定律。

小学数学要培养学生初步的抽象思维能力,重点突出在:(1)思维品质上,应该具备思维的敏捷性、灵活性、联系性和创造性。(2)思维方法上,应该学会有条有理,有根有据地思考。(3)思维要求上,思路清晰,因果分明,言必有据,推理严密。(4)思维训练上,应该要求:正确地运用概念,恰当地下判断,合乎逻辑地推理。

9、对照法

如何正确地理解和运用数学概念?小学数学常用的方法就是对照法。根据数学题意,对照概念、性质、定律、法则、公式、名词、术语的含义和实质,依靠对数学知识的理解、记忆、辨识、再现、迁移来解题的方法叫做对照法。

这个方法的思维意义就在于,训练学生对数学知识的正确理解、牢固记忆、准确辨识。

例20、三个连续自然数的和是18,则这三个自然数从小到大分别是多少?

对照自然数的概念和连续自然数的性质可以知道:三个连续自然数和的平均数就是这三个连续自然数的中间那个数。

21、判断:能被2除尽的数一定是偶数。

这里要对照“除尽”和“偶数”这两个数学概念。只有这两个概念全理解了,才能做出正确判断。

10、公式法

运用定律、公式、规则、法则来解决问题的方法。它体现的是由一般到特殊的演绎思维。公式法简便、有效,也是小学生学习数学必须学会和掌握的一种方法。但一定要让学生对公式、定律、规则、法则有一个正确而深刻的理解,并能准确运用。

22、计算59×37+12×59+59

59×37+12×59+59

=59×(37+12+1)…………运用乘法分配律

=59×50…………运用加法计算法则

=(60-1)×50…………运用数的组成规则

=60×50-1×50…………运用乘法分配律

=3000-50…………运用乘法计算法则

=2950…………运用减法计算法则

11、比较法

通过对比数学条件及问题的异同点,研究产生异同点的原因,从而发现解决问题的方法,叫比较法。

比较法要注意:

(1)找相同点必找相异点,找相异点必找相同点,不可或缺,也就是说,比较要完整。

(2)找联系与区别,这是比较的实质。

(3)必须在同一种关系下(同一种标准)进行比较,这是“比较”的基本条件。

(4)要抓住主要内容进行比较,尽量少用“穷举法”进行比较,那样会使重点不突出。

(5)因为数学的严密性,决定了比较必须要精细,往往一个字,一个符号就决定了比较结论的对或错。

23、填空:0.75的最高位是(),这个数小数部分的最高位是();十分位的数4与十位上的数4相比,它们的()

相同,()不同,前者比后者小了()。

这道题的意图就是要对“一个数的最高位和小数部分的最高位的区别”,还有“数位和数值”的区别等。

23、六年级同学种一批树,如果每人种5棵,则剩下75棵树没有种;如果每人种7棵,则缺少15棵树苗。六年级有多少学生?

这是两种方案的比较。相同点是:六年级人数不变;相异点是:两种方案中的条件不一样。

找联系:每人种树棵数变化了,种树的总棵数也发生了变化。

找解决思路(方法):每人多种7-5=2(棵),那么,全班就多种了75+15=90(棵),全班人数为90÷2=45(人)。

12、分类法

俗语:物以类聚,人以群分。

根据事物的共同点和差异点将事物区分为不同种类的方法,叫做分类法。分类是以比较为基础的。依据事物之间的共同点将它们合为较大的类,又依据差异点将较大的类再分为较小的类。

分类即要注意大类与小类之间的不同层次,又要做到大类之中的各小类不重复、不遗漏、不交叉。

24、自然数按约数的个数来分,可分成几类?

答:可分为三类。(1)只有一个约数的数,它是一个单位数,只有一个数1;(2)有两个约数的,也叫质数,有无数个;(3)有三个约数的,也叫合数,也有无数个。

13、分析法

把整体分解为部分,把复杂的事物分解为各个部分或要素,并对这些部分或要素进行研究、推导的一种思维方法叫做分析法。

依据:总体都是由部分构成的。

思路:为了更好地研究和解决总体,先把整体的各部分或要素割裂开来,再分别对照要求,从而理顺解决问题的思路。

也就是从求解的问题出发,正确选择所需要的两个条件,依次推导,一直到问题得到解决为止,这种解题模式是“由果溯因”。分析法也叫逆推法。常用“枝形图”进行图解思路。

25、玩具厂计划每天生产200件玩具,已经生产了6天,共生产1260件。问平均每天超过计划多少件?

思路:要求平均每天超过计划多少件,必须知道:计划每天生产多少件和实际每天生产多少件。计划每天生产多少件已知,实际每天生产多少件,题中没有告诉,还得求出来。要求实际每天生产多少件玩具,必须知道:实际生产多少天,和实际生产多少件,这两个条件题中都已知。

枝形图:(略)

14、综合法

把对象的各个部分或各个方面或各个要素联结起来,并组合成一个有机的整体来研究、推导和一种思维方法叫做综合法。

用综合法解数学题时,通常把各个题知看作是部分(或要素),经过对各部分(或要素)相互之间内在联系一层层分析,逐步推导到题目要求,所以,综合法的解题模式是执因导果,也叫顺推法。这种方法适用于已知条件较少,数量关系比较简单的数学题。

26、两个质数,它们的差是小于30的合数,它们的和即是11的倍数又是小于50的偶数。写出适合上面条件的各组数。

思路:11的倍数同时小于50的偶数有22和44。

两个数都是质数,而和是偶数,显然这两个质数中没有2。

和是22的两个质数有:3和19,5和17.它们的差都是小于30的合数吗?

和是44的两个质数有:3和41,7和37,13和31.它们的差是小于30的合数吗?

这就是综合法的思路。

15、方程法

用字母表示未知数,并根据等量关系列出含有字母的表达式(等式)。列方程是一个抽象概括的过程,解方程是一个演绎推导的过程。方程法最大的特点是把未知数等同于已知数看待,参与列式、运算,克服了算术法必须避开求知数来列式的不足。有利于由已知向未知的转化,从而提高了解题的效率和正确率。

27、一个数扩大3倍后再增加100,然后缩小2倍后再减去36,得50.求这个数。

28、一桶油,第一次用去40%,第二次比第一次多用10千克,还剩余6千克。这桶油重多少千克?

这两题用方程解就比较容易。

16、参数法

用只参与列式、运算而不需要解出的字母或数表示有关数量,并根据题意列出算式的一种方法叫做参数法。参数又叫辅助未知数,也称中间变量。参数法是方程法延伸、拓展的产物。

29、汽车爬山,上山时平均每小时行15千米,下山时平均每小时行驶10千米,问汽车的平均速度是每小时多少千米?

上下山的平均速度不能用上下山的速度和除以2.而应该用上下山的路程÷2.例30、一项工作,甲单独做要4天完成,乙单独做要5天完成。两人合做要多少天完成?

其实,把总工作量看作“1”,这个“1”就是参数,如果把总工作量看作“2、3、4……”都可以,只不过看作“1”运算最方便。

17、排除法

排除对立的结果叫做排除法。

排除法的逻辑原理是:任何事物都有其对立面,在有正确与错误的多种结果中,一切错误的结果都排除了,剩余的只能是正确的结果。这种方法也叫淘汰法、筛选法或反证法。这是一种不可缺少的形式思维方法。

31、为什么说除2外,所有质数都是奇数?

这就要用反证法:比2大的所有自然数不是质数就是合数。假设:比2大的质数有偶数,那么,这个偶数一定能被2整除,也就是说它一定有约数2。一个数的约数除了1和它本身外,还有别的约数(约数2),这个数一定是合数而不是质数。这和原来假定是质数对立(矛盾)。所以,原来假设错误。

32、判断:(1)同一平面上两条直线不平行,就一定相交。(错)

(2)分数的分子和分母同乘以或同除以一个相同的数,分数大小不变。(错)

18、特例法

对于涉及一般性结论的题目,通过取特殊值或画特殊图或定特殊位置等特例来解题的方法叫做特例法。特例法的逻辑原理是:事物的一般性存在于特殊性之中。

33、大圆半径是小圆半径的2倍,大圆周长是小圆周长的()倍,大圆面积是小圆面积的()倍。

可以取小圆半径为1,那么大圆半径就是2。计算一下,就能得出正确结果。

33、正方形的面积和边长成正比例吗?

如果正方形的边长为a,面积为s.那么,s:a=a(比值不定)

所以,正方形的面积和边长不成正比例。

19、化归法

通过某种转化过程,把问题归结到一类典型问题来解题的方法叫做化归法。化归是知识迁移的重要途径,也是扩展、深化认知的首要步骤。化归法的逻辑原理是,事物之间是普遍联系的。化归法是一种常用的辩证思维方法。

34、某制药厂生产一批防“非典”药,原计划25人14天完成,由于急需,要提前4天完成,需要增加多少人?

这就需要在考虑问题时,把“总工作日”化归为“总工作量”。

35、超市运来马铃薯、西红柿、豇豆三种蔬菜,马铃薯占25%,西红柿和豇豆的重量比是4:5,已知豇豆比马铃薯多36千克,超市运来西红柿多少千克?

需要把“西红柿和豇豆的重量比4:5”化归为“各占总重量的百分之几”,也就是把比例应用题化归为分数应用题。

第二篇:小学数学解题方法总结

小学数学解题方法总结

想要学好数学就要掌握好解题方法,下面是小编整理的小学数学解题方法,希望对大家有帮助!

如何正确地理解和运用数学概念?小学数学常用的方法就是对照法。根据数学题意,对照概念、性质、定律、法则、公式、名词、术语的含义和实质,依靠对数学知识的理解、记忆、辨识、再现、迁移来解题的方法叫做对照法。

这个方法的思维意义就在于,训练孩子对数学知识的正确理解、牢固记忆、准确辨识。

例1:三个连续自然数的和是18,则这三个自然数从小到大分别是多少?

对照自然数的概念和连续自然数的性质可以知道:三个连续自然数和的平均数就是这三个连续自然数的中间那个数。

例2:判断题:能被2除尽的数一定是偶数。

这里要对照“除尽”和“偶数”这两个数学概念。只有这两个概念全理解了,才能做出正确判断。

通过对比数学条件及问题的异同点,研究产生异同点的原因,从而发现解决问题的方法,叫比较法。

比较法要注意:

找相同点必找相异点,找相异点必找相同点,不可或缺,也就是说,比较要完整。

找联系与区别,这是比较的实质。

必须在同一种关系下进行比较,这是“比较”的基本条件。

要抓住主要内容进行比较,尽量少用“穷举法”进行比较,那样会使重点不突出。

因为数学的严密性,决定了比较必须要精细,往往一个字,一个符号就决定了比较结论的对或错。

例3:填空:的最高位是,这个数小数部分的最高位是;十分位的数4与十位上的数4相比,它们的相同,不同,前者比后者小了。

这道题的意图就是要对“一个数的最高位和小数部分的最高位的区别”,还有“数位和数值”的区别等。

例4:六年级同学种一批树,如果每人种5棵,则剩下75棵树没有种;如果每人种7棵,则缺少15棵树苗。六年级有多少学生?

这是两种方案的比较。相同点是:六年级人数不变;相异点是:两种方案中的条件不一样。

找联系:每人种树棵数变化了,种树的总棵数也发生了变化。

找解决思路:每人多种7-5=2,那么,全班就多种了75+15=90,全班人数为90÷2=45。

运用定律、公式、规则、法则来解决问题的方法。它体现的是由一般到特殊的演绎思维。公式法简便、有效,也是孩子学习数学必须学会和掌握的一种方法。但一定要让孩子对公式、定律、规则、法则有一个正确而深刻的理解,并能准确运用。

例5:计算59×37+12×59+59

59×37+12×59+59

=59×……运用乘法分配律

=59×50……运用加法计算法则

=×50……运用数的组成规则

=60×50-1×50……运用乘法分配律

=3000-50……运用乘法计算法则

=2950……运用减法计算法则

把整体分解为部分,把复杂的事物分解为各个部分或要素,并对这些部分或要素进行研究、推导的一种思维方法叫做分析法。

依据:总体都是由部分构成的。

思路:为了更好地研究和解决总体,先把整体的各部分或要素割裂开来,再分别对照要求,从而理顺解决问题的思路。

也就是从求解的问题出发,正确选择所需要的两个条件,依次推导,一直到问题得到解决为止,这种解题模式是“由果溯因”。分析法也叫逆推法。常用“枝形图”进行图解思路。

例6:玩具厂计划每天生产200件玩具,已经生产了6天,共生产1260件。问平均每天超过计划多少件?

思路:要求平均每天超过计划多少件,必须知道:计划每天生产多少件和实际每天生产多少件。计划每天生产多少件已知,实际每天生产多少件,题中没有告诉,还得求出来。要求实际每天生产多少件玩具,必须知道:实际生产多少天,和实际生产多少件,这两个条件题中都已知。

根据事物的共同点和差异点将事物区分为不同种类的方法,叫做分类法。分类是以比较为基础的。依据事物之间的共同点将它们合为较大的类,又依据差异点将较大的类再分为较小的类。

分类即要注意大类与小类之间的不同层次,又要做到大类之中的各小类不重复、不遗漏、不交叉。

例7:自然数按约数的个数来分,可分成几类?

答:可分为三类。只有一个约数的数,它是一个单位数,只有一个数1;有两个约数的,也叫质数,有无数个;有三个约数的,也叫合数,也有无数个。

把对象的各个部分或各个方面或各个要素联结起来,并组合成一个有机的整体来研究、推导和一种思维方法叫做综合法。

用综合法解数学题时,通常把各个题知看作是部分,经过对各部分相互之间内在联系一层层分析,逐步推导到题目要求,所以,综合法的解题模式是执因导果,也叫顺推法。这种方法适用于已知条件较少,数量关系比较简单的数学题。

例8:两个质数,它们的差是小于30的合数,它们的和即是11的倍数又是小于50的偶数。写出适合上面条件的各组数。

思路:11的倍数同时小于50的偶数有22和44。

两个数都是质数,而和是偶数,显然这两个质数中没有2。

和是22的两个质数有:3和19,5和17。它们的差都是小于30的合数吗?

和是44的两个质数有:3和41,7和37,13和31。它们的差是小于30的合数吗?

这就是综合法的思路。

用字母表示未知数,并根据等量关系列出含有字母的表达式。列方程是一个抽象概括的过程,解方程是一个演绎推导的过程。方程法最大的特点是把未知数等同于已知数看待,参与列式、运算,克服了算术法必须避开求知数来列式的不足。有利于由已知向未知的转化,从而提高了解题的效率和正确率。

例9:一个数扩大3倍后再增加100,然后缩小2倍后再减去36,得50。求这个数。

例10:一桶油,第一次用去40%,第二次比第一次多用10千克,还剩余6千克。这桶油重多少千克?

这两题用方程解就比较容易。

用只参与列式、运算而不需要解出的字母或数表示有关数量,并根据题意列出算式的一种方法叫做参数法。参数又叫辅助未知数,也称中间变量。参数法是方程法延伸、拓展的产物。

例11:汽车爬山,上山时平均每小时行15千米,下山时平均每小时行驶10千米,问汽车的平均速度是每小时多少千米?

上下山的平均速度不能用上下山的速度和除以2。而应该用上下山的路程÷2。

例12:一项工作,甲单独做要4天完成,乙单独做要5天完成。两人合做要多少天完成?

其实,把总工作量看作“1”,这个“1”就是参数,如果把总工作量看作“2、3、4……”都可以,只不过看作“1”运算最方便。

排除对立的结果叫做排除法。

排除法的逻辑原理是:任何事物都有其对立面,在有正确与错误的多种结果中,一切错误的结果都排除了,剩余的只能是正确的结果。这种方法也叫淘汰法、筛选法或反证法。这是一种不可缺少的形式思维方法。

例13:为什么说除2外,所有质数都是奇数?

这就要用反证法:比2大的所有自然数不是质数就是合数。假设:比2大的质数有偶数,那么,这个偶数一定能被2整除,也就是说它一定有约数2。一个数的约数除了1和它本身外,还有别的约数,这个数一定是合数而不是质数。这和原来假定是质数对立。所以,原来假设错误。

例14:判断题:同一平面上两条直线不平行,就一定相交。

分数的分子和分母同乘以或同除以一个相同的数,分数大小不变。

对于涉及一般性结论的题目,通过取特殊值或画特殊图或定特殊位置等特例来解题的方法叫做特例法。特例法的逻辑原理是:事物的一般性存在于特殊性之中。

例15:大圆半径是小圆半径的2倍,大圆周长是小圆周长的倍,大圆面积是小圆面积的倍。

可以取小圆半径为1,那么大圆半径就是2。计算一下,就能得出正确结果。

例16:正方形的面积和边长成正比例吗?

如果正方形的边长为a,面积为s。那么,s:a=a

所以,正方形的面积和边长不成正比例。

通过某种转化过程,把问题归结到一类典型问题来解题的方法叫做化归法。化归是知识迁移的重要途径,也是扩展、深化认知的首要步骤。化归法的逻辑原理是,事物之间是普遍联系的。化归法是一种常用的辩证思维方法。

例17:某制药厂生产一批防“非典”药,原计划25人14天完成,由于急需,要提前4天完成,需要增加多少人?

这就需要在考虑问题时,把“总工作日”化归为“总工作量”。

例18:超市运来马铃薯、西红柿、豇豆三种蔬菜,马铃薯占25%,西红柿和豇豆的重量比是4:5,已知豇豆比马铃薯多36千克,超市运来西红柿多少千克?

需要把“西红柿和豇豆的重量比4:5”化归为“各占总重量的百分之几”,也就是把比例应用题化归为分数应用题。

第三篇:小学数学解题心得

小学数学解题心得:

上小学三年级的侄女在做数学作业时,有一题是这样的:

一个数被另一个数除,商是3时,余数是10。除数、被除数、商三个数的和为163。问除数、被除数各是多少?

一看这题目,感觉有点难,如果用方程来解应没问题,但关键的是侄女才上到小学三年级,不可能领会方程的含义。只能另想办法。首先要在和数163中把商和余数减掉:163-3-10=150。150为除数和被除数的和,它们的关系应是3的相除后余10,所以应再以150-10=140为求倍数关系。这里很关键的一点就要引入一种我自己认为解小学数学题很重要的方法和技巧“份”。我们可以把商是几就当几“份”来处理。“份”数再加1得到的数去除倍数关系的数。这是“份”是3,3+1=4。140÷4=35。这里35为其中的一个数,另一个数为150-35=115。验算:35+115+10+3=163。证明解题正确。

解到这里,突然感觉现在小孩子学习任务真的很重了,想想我们这些60代的人在知识上也许已不能再去在小孩子面前充什么老师了,呵呵。当然,希望真正的小数数学老师能给出更好的解题方法来。

第四篇:小学数学应用题分类解题(整理)

小学数学应用题分类解题大全

求平均数应用题是在“把一个数平均分成几份,求一份是多少”的简单应用题的基础上发展而成的。它的特征是已知几个不相等的数,在总数不变的条件下,通过移多补少,使它们完全相等。最后所求的相等数,就叫做这几个数的平均数。

解答这类问题的关键,在于确定“总数量”和与总数量相对应的“总份数”。计算方法:总数量÷总份数=平均数平均数×总份数=总数量

总数量÷平均数=总份数

例1:东方小学六年级同学分两个组修补图书。第一组28人,平均每人修补图书15本;第二组22人,一共修补图书280本。全班平均每人修补图书多少本?

要求全班平均每人修补图书多少本,需要知道全班修补图书的总本数和全班的总人数。(15×28+280)÷(28+22)=14本

例2:有水果糖5千克,每千克2.4元;奶糖4千克,每千克3.2元;软糖11千克,每千克4.2元。将这些糖混合成什锦糖。这种糖每千克多少元?

要求什锦糖每千克多少元,要先出这几种糖的总价和总重量最后求得平均数,即每千克什锦糖的价钱。

(2.4×5+3.2×4+4.2×11)÷(5+4+11)=3.55元

3、要挖一条长1455米的水渠,已经挖了3天,平均每天挖285米,余下的每天挖300米。这条水渠平均每天挖多少米?

已知水渠的总长度,平均每天挖多少米,就要先求出一共挖了多少天。1455÷(3+(1455-285×3)÷300)=291米

4、小华的期中考试成绩在外语成绩宣布前,他四门功课的平均分是90分。外语成绩宣布后,他的平均分数下降了2分。小华外语成绩是多少分?

解法一:先求出四门功课的总分,再求出一门功课的的总分,然后求得外语成绩。(90–2)×5–90×4=80分

5、甲乙丙三人在银行存款,丙的存款是甲乙两人存款的平均数的1.5倍,甲乙两人存款的和是2400元。甲乙丙三人平均每人存款多少元?

要求甲乙丙三人平均每人存款多少元,先要求得三人存款的总数。(2400÷2×1.5+2400)÷3=1400元

6、甲种酒每千克30元,乙种酒每千克24元。现在把甲种酒13千克与乙种酒8千克混合卖出,当剩余1千克时正好获得成本,每千克混合酒售价多少元?

要求每千克混合酒售价多少元,要先求得两种酒的总价钱和两种酒的总千克数。因为当剩余1千克时正好获得成本,所以在总千克数中要减去1千克。

(30×13+24×8)÷(13+8–1)=29.1元

7、甲乙丙三人各拿出相等的钱去买同样的图书。分配时,甲要22本,乙要23本,丙要30本。因此,丙还给甲13.5元,丙还要还给乙多少元?

先求买来图书如果平均分,每人应得多少本,甲少得了多少本,从而求得每本图书多少元。1.平均分,每人应得多少本?(22+23+30)÷3=25本

2.甲少得了多少本?25–22=3本 3.乙少得了多少本?25–23=2本 4.每本图书多少元?13.5÷3=4.5元 5. 丙应还给乙多少元? 4.5×2=9元

13.5÷[(22+23+30)÷3–22]×[(22+23+30)÷3–23]=9元

8、小荣家住山南,小方家住山北。山南的山路长269米,山北的路长370米。小荣从家里出发去小方家,上坡时每分钟走16米,下坡时每分钟走24米。求小荣往返一次的平均速度。在同样的路程中,由于是下坡的不同,去时的上坡,返回时变成了下坡;去时的下坡,回来时成了上坡,因此,所用的时间也不同。要求往返一次的平均速度,需要先求得往返的总路程和总时间。

1、往返的总路程(260+370)×2=1260米

2、往返的总时间(260+370)÷16+(260+370)÷24=65.625分

3、往返平均速度 1260÷65.625=19.2米

(260+370)×2÷[(260+370)÷16+(260+370)÷24]=19.2米

9、草帽厂有两个草帽生产车间,上个月两个车间平均每人生产草帽185顶。已知第一车间有25人,平均每人生产203顶;第二车间平均每人生产草帽170顶,第二车间有多少人?

解法一:可以用“移多补少获得平均数”的思路来思考。

第一车间平均每人生产数比两个车间平均每人平均数多几顶?203–185=18顶;第一车间有25人,共比按两车间平均生产数计算多多少顶?18×25=450。将这450顶补给第二车间,使得第二车间平均每人生产数达到两个车间的总平均数。

6. 第一车间平均每人生产数比两个车间平均顶数多几顶? 203–185=18顶 7.第一车间共比按两车间平均数逆运算,多生产多少顶?18×25=450顶 8. 第二车间平均每人生产数比两个车间平均顶数少几顶?185–170=15顶 9. 第二车间有多少人:450÷15=30人(203–185)×25÷(185–170)=30人 例

10、一辆汽车从甲地开往乙地,去时每小时行45千米,返回时每小时行60千米。往返一次共用了3.5小时。求往返的平均速度。(得数保留一位小数)解法一:要求往返的平均速度,要先求得往返的距离和往返的时间。

去时每小时行45千米,1千米要 小时;返回时每小时行60千米,1千米要 小时。往返1千米要(+)小时,进而求得甲乙两地的距离。

1、甲乙两地的距离 3.5÷(+)=90千米

2、往返平均速度 90×2÷3.5≈52.4千米 3.5÷(+)×2÷3.5≈52.4千米

解法二:把甲乙两地的距离看作“1”。往返距离为2个“1”,即1×2=2。去时每千米需 小时,返回时需 小时,最后求得往返的平均速度。

1÷(+)≈51.4千米

在解答某一类应用题时,先求出一份是多少(归一),然后再用这个单一量和题中的有关条件求出问题,这类应用题叫做归一应用题。

归一,指的是解题思路。

归一应用题的特点是先求出一份是多少。归一应用题有正归一应用题和反归一应用题。在求出一份是多少的基础上,再求出几份是多产,这类应用题叫做正归一应用题;在求出一份是多少的基础上,再求出有这样的几份,这类应用题叫做反归一应用题。

根据“求一份是多少”的步骤的多少,归一应用题也可分为一次归一应用题,用一步就能求出“一份是多少”的归一应用题;两次归一应用题,用两步到处才能求出“一份是多少”的归一应用题。

解答这类应用题的关键是求出一份的数量,它的计算方法: 总数÷份数=一份的数

例1、24辆卡车一次能运货物192吨,现在增加同样的卡车6辆,一次能运货物多少吨? 先求1辆卡车一次能运货物多少吨,再求增加6辆后,能运货物多少吨。这是一道正归一应用题。192÷24×(24+6)=240吨

2、张师傅计划加工552个零件。前5天加工零件345个,照这样计算,这批零件还要几天加工完?

这是一道反归一应用题。

例3、3台磨粉机4小时可以加工小麦2184千克。照这样计算,5台磨粉机6小时可加工小麦多少千克?

这是一道两次正归一应用题。

4、一个机械厂和4台机床4.5小时可以生产零件720个。照这样计算,再增加4台同样的机床生产1600个零件,需要多少小时?

这是两次反归一应用题。要先求一台机床一小时可以生产零件多少个,再求需要多少小时。1600÷[720÷4÷4.5×(4+4)]=5小时

5、一个修路队计划修路126米,原计划安排7个工人6天修完。后来又增加了54米的任务,并要求在6天完工。如果每个工人每天工作量一定,需要增加多少工人才如期完工? 先求每人每天的工作量,再求现在要修路多少米,然后求要5天完工需要工人多少人,最后求要增加多少人。

(126+54)÷(126÷7÷6×5)–7=5人

6、用两台水泵抽水。先用小水泵抽6小时,后用大水泵抽8小时,共抽水624立方米。已知小水泵5小时的抽水量等于大水泵2小时的抽水量。求大小水泵每小时各抽水多少立方米?

解法一:根据“小水泵5小时的抽水量等于大水泵2小时的抽水量”,可以求出大水泵1小时的抽水量相当于小水泵几小时的抽水量。把不同的工作效率转化成某一种水泵的工作效率。

1、大水泵1小时的抽水量相当于小水泵几小时的抽水量?5÷2=2.5小时

2、大水泵8小时的抽水量相当于小水泵几小时的抽水量2.5×8=20小时

3、小水泵1小时能抽水多少立方米?642÷(6+20)=24立方米

4、大水泵1小时能抽水多少立方米?24×2.5=60立方米 解法二:

1、小水泵1小时的抽水量相当于大水泵几小时的抽水量2÷5=0.4小时

2、小水泵6小时的抽水量相当于大水泵几小时的抽水量0.4×6=2.4小时

3、大水泵1小时能抽水多少立方米?624÷(8+2.4)=60立方米

4、小水泵1小时能抽水多少立方米?60×0.4=24立方米

7、东方小学买了一批粉笔,原计划29个班可用40天,实际用了10天后,有10个班外出,剩下的粉笔,够有校的班级用多少天?

先求这批粉笔够一个班用多少天,剩下的粉笔够一个班用多少天,然后求够在校班用多少天。

1、这批粉笔够一个班用多少天 40×20=800天

2、剩下的粉笔够一个班用多少天 800–10×20=600天

3、剩下几个班 20–10=10个

4、剩下的粉笔够10个班用多少天 600÷10=60天(40×20–10×20)÷(20–10)=60天

8、甲乙两个工人加工一批零件,甲4.5小时可加工18个,乙1.6小时可加工8个,两个人同时工作了27小时,只完成任务的一半,这批零件有多少个?

先分别求甲乙各加工一个零件所需的时间,再求出工作了27小时,甲乙两工人各加工了零件多少个,然后求出一半任务的零件个数,最后求出这批零件的个数。

[27÷(4.5÷18)+27÷(1.6÷8)]×2=486个

在解答某一类应用题时,先求出总数是多少(归总),然后再用这个总数和题中的有关条件求出问题。这类应用题叫做归总应用题。

归总,指的是解题思路。

归总应用题的特点是先总数,再根据应用题的要求,求出每份是多少,或有这样的几份。例

1、一个工程队修一条公路,原计划每天修450米。80天完成。现在要求提前20天完成,平均每天应修多少米?

450×80÷(80–20)=600米

2、家具厂生产一批小农具,原计划每天生产120件,28天完成任务;实际每天多生产了20件,可以几天完成任务?

要求可以提前几天,先要求出实际生产了多少天。要求实际生产了多少天,要先求这批小农具一共有多少件。

28–120×28÷(120+20)=4天

3、装运一批粮食,原计划用每辆装24袋的汽车9辆,15次可以运完;现在改用每辆可装30袋的汽车6辆来运,几次可以运完?

24×9×15÷30÷6=18次

4、修整一条水渠,原计划由8人修,每天工作7.5小时,6天完成任务,由于急需灌水,增加了2人,要求4天完成,每天要工作几小时?

一个工人一小时的工作量,叫做一个“工时”。要求每天要工作几小时,先要求修整条水渠的工时总量。

1、修整条水渠的总工时是多少?7.5×8×6=360工时

2、参加修整条水渠的有多少人 8+2=10人

3、要求 4天完成,每天要工作几小时 4、360÷4÷10=9小时 7.5×8×6÷4÷(8+2)=9小时

5、一项工程,预计30人15天可以完成任务。后来工作的天后,又增加3人。每人工作效率相同,这样可以提前几天完成任务?

一个工人工作一天,叫做一个“工作日”。

要求可以提前几天完成,先要求得这项工程的总工作量,即总工作日。

1、这项工程的总工作量是多少?15×30=450工作日 2、4天完成了多少个工作日?4×30=120工作日

3、剩下多少个工作日?450–120=330工作日

4、剩下的要工作多少天?330÷(30+3)=10天

5、可以提前几天完成?15–(4+10)=1天 15–[(15×30–4×30)÷(30+3)+4]=1天

6、一个农场计划28天完成收割任务,由于每天多收割7公顷,结果18天就完成 了任务。实际每天收割多少公顷?

要求实际每天收割多少公顷,要先求原计划每天收割多少公顷。要求原计划每天收割多少公顷,要先求18天多收割了多少公顷。18天多收割的就是原计划(28–18)天的收割任务。

1、18天多收割了多少公顷? 7×18=126公顷

2、原计划每天收割多少公顷? 126÷(28–18)=12.6公顷

3、实际每天收割多少公顷? 12.6+7=19.6公顷 7×18÷(28–18)+7=19.6公顷 例

7、休养准备了120人30天的粮食。5天后又新来30人。余下的粮食还够用多少天?

先要求出准备的粮食1人能吃多少天,再求5天后还余下多少粮食,最后求还够用多少天。

1、准备的粮食1人能吃多少天?300×120=3600天 2、5天后还余下的粮食够1人吃多少天?3600–5×120=3000天

3、现在有多少人?120+30=150人

4、还够用多少天? 3000÷150=20天(300×120–5×120)÷(120+30)=20天

8、一项工程原计划8个人,每天工作6小时,10天可以完成。现在为了加快工程进度,增加22人,每天工作时间增加2小时,这样,可以提前几天完成这项工程?

要求可以几天完成,要先求现在完成这项工程多少天。要求现在完成这项工程多少天,要先求这项工程的总工时数是多少。

10–6×10×8÷(8+22)÷(6+2)=8天

已知两个数以及它们之间的倍数关系,要求这两个数各是多少的应用题,叫做和倍应用题。解答方法是:和÷(倍数+1)=1份的数 1份的数×倍数=几倍的数

1、有甲乙两个仓库,共存放大米360吨,甲仓库的大米数是乙仓库的3倍。甲乙两个仓库各存放大米多少吨?

2、一个畜牧场有绵羊和山羊共148只,绵羊的只数比山羊只数的2倍多4只。两种羊各有多少只?

山羊的只数:(148-4)÷(2+1)=48只 绵羊的只数:48×2+4=100只

3、一个饲养场养鸡和鸭共3559只,如果鸡减少60只,鸭增加100只,那么,鸡的只数比鸭的只数的2倍少1只。原来鸡和鸭各有多少只?

鸡减少60只,鸭增加00只后,鸡和鸭的总数是3559-60+100=3599只,从而可求出现在鸭的只数,原来鸭的只数。

1、现在鸡和鸭的总只数:3559-60+100=3599只

2、现在鸭的只数:(3599-1)÷(2+1)=1200只

3、原来鸭的只数:1200-100=1100只

4、原来鸡的只数:3599-1100=2459只

4、甲乙丙三人共同生产零件1156个,甲生产的零件个数比乙生产的2倍还多15个;乙生产的零件个数比丙生产的2倍还多21个。甲乙丙三人各生产零件多少个?

以丙生产的零件个数为标准(1份的数),乙生产的零件个数=丙生产的2倍-21个;甲生产的零件个数=丙的(2×2)倍+(21×2+15)个。

丙生产零件多少个?(1156-21-21×2-15)÷(1+2+2×2)=154个 乙:154×2+21=329个 甲:329×2+15=673个

5、甲瓶有酒精470毫升,乙瓶有酒精100毫升。甲瓶酒精倒入乙瓶多少毫升,才能使甲瓶酒精是乙瓶的2倍?

要使甲瓶酒精是乙瓶的2倍,乙瓶 是1份,甲瓶是2份,要先求出一份是多少,再求还要倒入多少毫升。

1、一份是多少?(470+100)÷(2+1)=190毫升

2、还要倒入多少毫升?190-100=90毫升

6、甲乙两个数的和是7106,甲数的百位和十位上的数字都是8,乙数百位和十位上的数字都是2。用0代替这两个数里的这些8和2,那么,所得的甲数是乙数的5倍。原来甲乙两个数各是多少?

把甲数中的两个数位上的8都用0代替,那么这个数就减少了880;把乙数中的两个数位上的2都用0代替,那么这个数就减少了220。这样,原来两个数的和就一共减少了(880+220)[7106-(880+220)]÷(5+1)+220=1221„„乙数 7106-1221=5885„„甲数 已知两个数的差以及它们之间的倍数关系,要求这两个数各是多少的应用题,叫做差倍应用题。

解答方法是:差÷(倍数-1)=1份的数 1份的数×倍数=几倍的数

1、甲仓库的粮食比乙仓多144吨,甲仓库的粮食吨数是乙仓库的4倍,甲乙两仓各存有粮食多少吨?

以乙仓的粮食存放量为标准(即1份数),那么,144吨就是乙仓的(4-1)份,从而求得一份是多少。

114÷(4-1)=48吨„„乙仓

2、参加科技小组的人数,今年比去年多41人,今年的人数比去年的3倍少35人。两年各有多少人参加?

由“今年的人数比去年的3倍少35人”,可以把去年的参加人数作为标准,即一份的数。今年参加人数如果再多35人,今年的人数就是去年的3倍。(41+35)就是去年的(3-1)份

去年:(41+35)÷(3-1)=38人

3、师傅生产的零件的个数是徒弟的6倍,如果两人各再生产20个,那么师傅生产的零件个数是徒弟的4倍。两人原来各生产零件多少个?

如果徒弟再生产20个,师傅再生产20×6=120个,那么,现在师傅生产的个数仍是徒弟的6倍。可见20×6-20=100个就是徒弟现有个数的6-2=4倍。

(20×6-20)÷(6-4)-20=30个„„徒弟原来生产的个数 30×6=180个师傅原来生产个数

4、第一车队比第二车队的客车多128辆,再起从第一车队调出11辆客车到第二车队服务,这时,第一车队的客车比第二车队的3倍还多22辆。原来两车队各有客车多少辆? 要求“原来两车队各有客车多少辆”,需要求“现在两车队各有客车多少辆”;要求“现在两车队各有客车多少辆”,要先求现在第一车队比第二车队的客车多多少辆。

1、现在第一车队比第二车队的客车多多少辆? 128-11×2=106辆

2、现在第二车队有客车多少辆?(106-22)÷(3-1)=42辆

3、第二车队原有客车多少辆?42-11=31辆

4、第一车队原有客车多少辆?31+128=159辆

5、小华今年12岁,他父亲46岁,几年以后,父亲的年龄是儿子年龄的3倍? 父亲的年龄与小华年龄的差不变。

要先求当父亲的年龄是儿子年龄的3倍时小华多少岁,再求还要多少年。(46-12)÷(3-1)-12=5年

6、甲仓存水泥64吨,乙仓存水泥114吨。甲仓每天存入8吨,乙仓每天存入18吨。几天后乙仓存放水泥吨数是甲仓的2倍?

现在甲仓的2倍比乙仓多(64×2-114)吨,要使乙仓水泥吨数是甲仓的2倍,每天乙仓实际只多存入了(18-2×8)吨。

(64×2-114)÷(18-2×8)=7天

7、甲乙两根电线,甲电线长63米,乙电线长29米。两根电线剪去同样的长度,结果甲电线所剩下长度是乙电线的3倍。各剪去多少米?

要求“各剪去多少米”,要先求得甲乙两根电线所剩长度各是多少米。两根电线的差不变,甲电线的长度是乙电线的3倍。从而可求得甲乙两根电线所剩下的长度。

1、乙电线所剩的长度?(63-29)÷(3-1)=17米

2、剪去长度?29-17=12米

8、有甲乙两箱橘子。从甲箱取10只放入乙箱,两箱的只数相等;如果从乙箱取15只放入甲箱,甲箱橘子的只数是乙箱的3倍。甲乙两箱原来各有橘子多少只?

要求“甲乙两箱原来各有橘子多少只”,先求甲乙两箱现在各有橘子多少只。

已知现在“甲箱橘子的只数是乙箱的3倍”,要先求现在甲箱橘子比乙箱多多少只。原来甲箱比乙箱多10×2=20只,“从乙箱取15只放入甲箱”,又多了15×2=30只。现在两箱橘子相差(10×2+15×2)只。

(10×2+15×2)÷(3-1)+15=40只„„乙箱 40+10×2=60只„„甲箱 已知两个数的和与它们的差,要求这,叫做和差应用题。解答方法是:(和+差)÷2=大数(和-差)÷2=小数

1、果园里有苹果树和梨树共308棵,苹果树比梨树多48棵。苹果树和梨树各有多少棵?

2、甲乙两仓共存货物1630吨。如果从甲仓调出6吨放入乙仓,甲仓的货物比乙仓的货物还多10吨。甲乙两仓原来各有货物多少吨?

从甲仓调出6吨放入乙仓,甲仓的货物比乙仓的货物还多10吨,可知原来两仓货物相差6×2+10=22吨,由此,可根据两仓货物的和与差,求得两仓原有货物的吨数。

3、某公司甲班和乙班共有工作人员94人,因工作需要临时从乙班调46人到甲班工作,这时,乙班比甲班少12人,原来甲班和乙班各有工作人员多少人?

总人数不变。即原来和现在两班工作人员的和都是94人。现在两班人数相差12人。要求原来甲班和乙班各有工作人员多少人,先要求现在甲班和乙班各有工作人员多少人?

1、现在甲班有工作人员多少人?(94+12)÷2=53人

2、现在乙班有工作人员多少人?(94-12)÷2=41人

3、原来甲班有工作人员多少人?53-46=7人

4、原来乙班有工作人员多少人?41+46=87人

4、甲乙丙三人共装订同一种书刊508本。甲比乙多装订42本,乙比丙多装订26本。他们三人各装订多少本?

先确定一个人的装订本数为标准。如果我们选定乙的装订本数为标准,从总数508中减去甲比乙多装订4的2本,加上丙比乙少装订的26本,得到的就是乙装订本数的3倍。由此,可求得乙装订的本数。

乙:(508-42+26)÷3=164本 甲丙略

5、三辆汽车共运砖9800块,第一辆汽车比其余两车运的总数少1400块,第二辆比第三辆汽车多运200块。三辆汽车各运砖多少块?

根据“三辆汽车共运砖9800块”和“第一辆汽车比其余两车运的总数少1400块”,可求得第一辆汽车和其余两车各运砖多少块。

根据“其余两车共运砖块数”和“第二辆比第三辆汽车多运200块”可求得第二辆和第三辆各运砖多少块。

1、第一辆:(9800-1400)÷2=4200块

2、第二辆和第三辆共运砖块数:9800-4200=5600块

3、第二辆:(5600+200)÷2=2900块

4、第三辆:5600-2900=2700块

6、甲乙丙三人合做零件230个。已知甲乙两人做的总数比丙多38个;甲丙两人做的总数比乙多74个。三人各做零件多少个?

先把跽两人做的零件总数看成一个数,从而求出丙做零件的个数,再把甲丙两人做的零件总数看作一个数,从而求出乙做零件的个数。丙:(230-38)÷2=96个 乙:(230-38)÷2=78个 甲略

7、一列客车长280米,一列货车长200米,在平行的轨道上相向而行,两车从两车头相遇到两车尾相离共经过15秒;两列车在平行轨道上同向而行,货车在前,客车在后,从两车相遇(货车车尾和客车车头)到两车相离(货车车头和客车车尾)经过2分钟。两列车的速度各是多少?

由相向而行从相遇到相离经过15秒,可求得两列车的速度和(280+200)÷15;由同向而行从相遇到相离经过2分钟,可求得两列车的速度差(280-200)÷(60×2)。从而求得两列车的速度。

8、五年级三个班共有学生148人。如果把1班的3名学生调到2班,两班人数相等;如果把2班的1名学生调到3班,3班还比2班少3人。三个班原来各有学生多少人? 由“如果把1班的3名学生调到2班,两班人数相等”,可知,1班学生人数比2班多3×2=6人;由“如果把2班的1名学生调到3班,3班还比2班少3人”可知,2班学生人数比3班多1×2+3=5人。如果确定以2班学生人数为标准,由“三个班共有学生148人”和“1班学生人数比2班多3×2=6人,2班学生人数比3班多1×2+3=5人”可先求得2班的学生人数。

(148-3×2+1×2+3)÷3=49人„„2班 甲丙班略

已知两人的年龄,求他们之间的某种数量关系;或已知两人年龄之间的数量关系,求他们的年龄等,这类问题叫做年龄应用题问题。

年龄问题的主要特点是:大小年龄差是个不变量。差是定值的两个量,随时间的变化,倍数关系也会发生变化。

这类应用题往往是和差应用题、和倍应用题、差倍应用题的综合应用。

1、小方今年11岁,他爸爸今年43岁,几年以后,爸爸的年龄是小方年龄的3倍? 因为小方与爸爸的年龄差43-11=32不变。以几年后小方的年龄为1份数,爸爸的年龄就是3份的数。根据差倍应用题的解法,可求出小方几年后的年龄。

(43-11)÷(3-1)=16岁 16-11=5年

2、妈妈今年比儿子大24岁,4年后妈妈年龄是儿子的5倍。今年儿子几岁? “妈妈今年比儿子大24岁“,4年后也同样大24岁,根据差倍应用题的解法,可求得4年后儿子的年龄,进而求得今年儿子的年龄。

24÷(5-1)-4=2岁

3、今年甲乙两人年龄和为50岁,再过5年,甲的年龄是乙的4倍。今年甲乙两人各几岁?

今年甲乙两人年龄和为50岁,再过5年,两人的年龄和是50+5×2=60岁。根据和倍应用题的解法。可求得5年后乙的年龄,从而求得今年乙的年龄和甲的年龄。

4、小高5年前的年龄等于小王7年后的年龄。小高4年后与小王3年前的年龄和是35岁。今年两人各是多少岁?

由“小高5年前的年龄等于小王7年后的年龄“可知,小高比小王大5+7岁;他们俩今年年龄的和为:35+3-4=30岁,根据和差应用题的解法,可求得今年两人各是多少岁。由第一个条件可知,小高比小王在5+7=12岁。由第二个条件可知,他们的年龄和为35+3-4=34岁。

“根据两个差求未知数”是指分析问题的思考方法。“两个差”是指题目中有这样的数量关系。例如:总量之差与单位量之差;时间之差与速度之差或距离之差等等。解题时可以找出题目中的两个差,再根据两个这间的相应关系使总量得到解决。

1、百货商场上午卖出洗衣机8台,下午卖出同样的洗衣机12台,下午比上午多收售货款6600元,每台洗衣机售价多少元?6600÷(12-8)=1650元

2、一辆汽车上午行驶120千米,下午行驶210千米。下午比上午多行驶1.5小时。平均每小时行驶多少千米?(210-120)÷1.5=60千米

3、新建一个图书室和一个办公室。室内地面共有234平方米。已知办公室比图书室小54平方米。用同样的砖铺地,图书室比办公室多用864块。图书室和办公室地面各用砖多少块?

由“办公室比图书室小54平方米”和“图书室比办公室多用864块”可求得“平均每平方米需用砖多少块”;由“室内地面共有234平方米”和“办公室比图书室小54平方米”,可求得“”。从而求得各用砖多少块。

4、甲乙两人同时从东村出发去西村,甲每分钟行76米,乙每分钟行68米。到达西村时,乙比甲多用了4分钟。东西两村间的路程是多少米?

甲乙两人同时从东村出发,当甲到达西村时,乙距西村还有4分钟的路程。乙每分钟行68米,4分钟能行68×4=272米。也就是说,在相同的时间内,甲比乙多行272米。这是路程这差。每分钟甲比惭多行76-68=8米,这是速度这差。根据这两个差,可以求出甲走完全程所用的时间,从而求得两村之间的路程。

76×[68×4÷(76-68)]=2584米

5、冰箱厂原计划每天生产电冰箱40台,改进工艺后,实际每天比原计划多生产5台这样,提前2天完成了这批生产任务外,还比原计划多生产了35台。实际生产电冰箱多少台?

要求“实际生产电冰箱多少台”,需要知道“实际每天生产多少台”和“实际生产了多少天”。

如果实际上再生产 2 天后话,还能生产(40+5)×2=90台,双知比原计划还多生产35台,实际上比原计划多生产了90+35=125台,这是一个总量之差。又知实际每天比原计划多生产5台,这是生产效率之差。根据这两个差可以求出原计划生产的天数。从而求得实际生产电冰箱的台数:40×{[(40+5)×2+35]÷5}+35=1035台

6、食品厂运来一批煤,原计划每天生产480千克,烧了预定的时间后,还剩下1680千克;改进烧煤方法后,实际每天烧400千克,烧了同样的时间后,还剩下4080千克。这批煤共有多少千克?

要求这批煤共有多少千克,先要求出预定烧的天数。计划烧后还剩1680千克,实际烧后还剩4080千克可求得实际比坟墓多剩多少千克,这是剩下总量之差,实际每天烧400千克,计划每天烧480千克,可求得每天烧煤量之差。根据这两个差,可求得烧了多少天。进而可求得烧了多少千克,这批煤共有多少千克。

400×[(4080-1680)÷(480-400)]+4080=16080千克

有关栽树以及与栽树相似的一类应用题,叫做植树问题。植树问题通常有两种形式。一种是在不封闭的线路上植树,另一种是在封闭的线路上植树。

1、不封闭线路上植树

如果在一条不封闭的线路上可不可能,而且两端都植树,那么,植树的棵数比段数多。其数量关系如下:

棵数=总长÷株距+1 总长=株距×(棵数-1)株距=总长÷(棵数-1)

2、在封闭的线路上植树,那么植树的棵数与段数相等。其数量关系如下: 棵数=总长÷株距 总长=株距×棵数 株距=总长÷棵数

1、有一条公路全长500米,从头至尾每隔5米种一棵松树。可种松树多少棵? 500÷5 +1=101棵

2、从校门口到街口,一共插有30面红旗,相邻两面红旗相隔6米。从校门口到街口长多少米? 6×(30-1)=174米

3、在一条长150米的大路两旁各栽一行树,起点和终点都栽,一共栽了102棵。每相邻两棵树之间的距离相等。相邻两棵树之间的距离有多少米? 150÷(102÷2-1)=3米 例

4、在一个周长为600米的池塘周围植树,每隔10米栽一棵杨树,在相邻两棵杨树之间每隔2米栽1棵柳树。杨树和柳树各栽了多少棵?

根据“棵数=总长÷株距”,可以求出杨树的棵数

在每两棵杨树之间可分为10÷2=5段,栽柳树4-1=4棵。由此,可以求得柳树的棵数。杨树:600÷10=60棵 柳树:(10÷2-1)×60=240棵

5、一条马路一侧,原有木电线杆97根,每相邻的两根相距40米。现在计划全部换用大型水泥电线杆,每相邻两根相距60米。需要大型水泥电线杆多少根?

1、这条路全长多少米?40×(97-1)=3840米

2、需要大型水泥电线杆多少根?3840÷60+1=65根

6、一座大桥长200米,计划在大桥两侧的栏杆上共安装32块图案,每块图案长2米,靠近桥两端的图案离桥端10.5米。相邻两图案之间的距离是多少米?

在桥两侧共装32块图案,即每侧装16块,图案之间的间隔有16-1=15个。用总长减去16块图案的距离就可以知道15个间隔的长度。

相向运动问题

同向运动问题(追及问题)背向运动问题(相离问题)

在行车、行船、行走时,按照速度、时间和距离之间的相依关系,已知其中的两个量,要求第三个量,这类应用题,叫做行程应用题。也叫行程问题。

行程应用题的解题关键是掌握速度、时间、距离之间的数量关系: 距离=速度×时间 速度=距离÷时间 时间=距离÷速度 按运动方向,行程问题可以分成三类:

1、相向运动问题(相遇问题)

2、同向运动问题(追及问题)

3、背向运动问题(相离问题)

十、行程应用题

相向运动问题(相遇问题),是指地点不同、方向相对所形成的一种行程问题。两个运动物体由于相向运动而相遇。

解答相遇问题的关键,是求出两个运动物体的速度之和。

基本公式有:两地距离=速度和×相遇时间 相遇时间=两地距离÷速度和 速度和=两地距离÷相遇时间

1、两列火车同时从相距540千米的甲乙两地相向而行,经过3.6小时相遇。已知客车每小时行80千米,货车每小时行多少千米?

2、两城市相距138千米,甲乙两人骑自行车分别从两城出发,相向而行。甲每小时行13千米,乙每小时行12千米,乙在行进中因修车候车耽误1小时,然后继续行进,与甲相遇。求从出发到相遇经过几小时?

因为乙在行进中耽误1小时。而甲没有停止,继续行进。也可以说,甲比乙多行1小时。如果从总路程中把甲单独行进的路程减去,余下的路程就是跽两人共同行进的。

(138-13)÷(13+12)+1=6小时

3、计划开凿一条长158米的隧道。甲乙两个工程队从山的两边同时动工,甲队每天挖2.5米,乙队每天挖进1.5米。35天后,甲队调往其他工地,剩下的由乙队单独开凿,还要多少天才能打通隧道?

要求剩下的乙队开凿的天数,需要知道剩下的工作量和乙队每天的挖进速度。要求剩下的工作量,要先求两队的挖进速度的和,35天挖进的总米数,然后求得剩下的工作量。[158-(2.5+1.5)×35]÷1.5=12天

4、一列客车每小时行95千米,一列货车每小时的速度比客车慢14千米。两车分别从甲乙两城开出,1.5小时后两车相距46.5千米。甲乙两城之间的铁路长多少千米? 已知1.5小时后两车还相距46.5千米,要求甲乙两城之间的铁路长,需要知道1.5小时两车行了多少千米?要求1.5小时两车共行了多少千米。需要知道两车的速度。

(95-14+95)×1.5+46.5=310.5千米

5、客车从甲地到乙地需8小时,货车从乙地到甲地需10小时,两车分别从甲乙两地同时相向开出。客车中途因故停开2小时后继续行驶,货车从出发到相遇共用多少小时? 假设客车一出发即发生故障,且停开2小时后才出发,这时货车已行了全程的 ×2=,剩下全程的1-=,由两车共同行驶。(1-×2)÷()-10分钟

5、甲乙两人骑自行车同时从学校出发,同方向前进,甲每小时行15千米,乙每小时行10千米。出发半小时后,甲因事又返回学校,到学校后又耽搁1小时,然后动身追乙。几小时后可追上乙?

先要求得甲先后共耽搁了多少小时,甲开始追时,两人相距多少千米 10×(0.5×2+1)÷(15-10)=4小时

6、甲乙丙三人都从甲地到乙地。早上六点甲乙两人一起从甲地出发,甲每小时行5千米,乙每小时行4千米。丙上午八点才从甲地出发,傍晚六点,甲、丙同时到达乙地。问丙什么时候追上乙?

要求“两追上乙的时间”,需要知道“丙与乙的距离差”和“速度差”。要先求丙每小时行多少千米,再求丙追上乙要多少时间

1、丙行了多少小时18-8=10小时

2、丙每小时比甲多行多少千米5×2÷10=1千米

3、丙每小时行多少千米5+1=6千米

4、丙追上乙要用多少小时4×2÷(6-4)=4小时

7、快中慢三辆车同时从同一地点出发,沿着同一条公路追赶前面的一个骑车人。这三辆车分别用6分钟、10分钟、12分钟追上骑车人。现在知道快车每小时行24千米,中车每小时行20千米,那么慢车每小时行多少千米?

快中慢三辆车出发时与骑车人的距离相同,根据快车和中车追上骑车人的路程差和时间差可求得骑车人的速度,进而求慢车每小时行多少千米。

单位换算略。6分钟= 小时 10分钟= 小时 12分钟= 小时

1、快车 小时行多少千米24× =2.4千米

2、中车 小时行多少千米20× = 千米

3、骑车人每小时行多少千米(-2.4)÷()=20天 解法二:

假定甲与乙一样工作3天,完成的工作量为 ×3=,这时工作量必定超过20%,超过部分 +20%,就是甲队一天的工作量。

甲队单独完成这项工作所需时间1÷(×3-20%)=20天 乙队单独完成这项工作所需时间1÷()=60天

5、乙队单独运完这批货物所需天数 1÷[-()=

3、一项工程,原定100人,工作90天完成;工程进行15天后,由于采用先进工具和技术,平均每人工效提高了50%。完成这项工程可提前几天?

要求完成这项工程,可以提前几天,先要求出实际所用的天数;要求实际所用的天数,先要求出完成余下的工程所用的天数。全工程原定100人90天完成,那么,平均每人每天要完成全工程的 ;100人工作15天完成了全工程量的 ×100×15。余下全工程的(1-×100×15)。采用先进技术后,每人工作效率是:[ ×(1+50%)],进而求得余下的工程所用的天数。1、100人工作15天后,还余下全工程的几分之几?1-×100×15=

2、改进技术后,100人1天可以完成这项工程的几分之几?×(1+50%)×100=

3、余下的工程要用多少天?÷ =50天

4、可提前多少天?90-15-50=25天

综合算式:90-15-(1-×100×15)÷[ ×(1+50%)×100]=25天

4、有一水池,装有甲乙两个注水管,下面装有丙管排水。空池时,单开甲管5分钟可注满;单开乙管10分钟可注满。水池注满水后,单开丙管15分钟可将水放完。如果在空池时,将甲乙丙三管齐开,2分钟后关闭乙管,还要几分钟可以注满水池?

分析与解:先求出甲乙丙三管齐开2分钟后,注满了水池的几分之几,还余下几分之几。再求余下的要几分钟。

1、三管齐开2分钟,注满了水池的几分之几?(+)=4分钟

5、一队割麦工人要把两块麦地的麦割去。大的一块麦地比小的一块大一倍。全队成员先用半天时间割大的一块麦地,到下午,他们对半分开,一半仍留在大麦地上,到傍晚时正 33 好把大麦地的麦割完;另一半到小麦地去割,到傍晚时还剩下一小块,这一小块第二天由1人去割,正好1天割完。这个割麦队共有多少人?

分析与解:把大的一块麦地算作单位“1”,小的一块麦地为。根据题意,一半成员半天割了,一天割了,全队成员一天可割 ×2=。

1、全队成员一天可割几分之几? ×2=

2、所剩的一小块面积是几分之几?-(-1)=

3、全队有多少人?(1+×3=

4、一个女工独做需要多少天 1÷ =18天

8、一项工程,甲独做10天完成,乙独做12天可以完成,丙独做15天完成。现在三人合作甲中途因病休息了几天,结果6天完成任务。甲休息了几天?

如果甲没有休息,那么甲乙丙都工作了6天,完成了工程量的几分之几,超过了几分之几,然后求得甲休息了几天。

1、三人合做6天,完成了工程量的几分之几?(+ +)×6=

2、超额完成了工程的几分之几?-1=

3、甲休息了几天? ÷ =5天

牛顿问题也叫牛吃草问题。由于这个问题是由伟大的科学家牛顿提出来的,所以以后就把这类问题叫做牛顿问题。牛顿问题的特点是随着时间的增长所研究的量也等量地增加,解答时,要抓住这个关键问题,也就是要求出原来的量和增加的量各是多少。

牧场上长满牧草,每天匀速生长。这片牧场可供10头牛吃20天,可供15头牛吃10天。供25头牛吃几天?

牧草的总量不定,它是随时间的增加而增加。但是不管它怎样增长,草的总量总是由牧场原有草量和每天长出的草量相加得来的。

10头牛20天吃的总草量比15头牛10天吃的草量多,多出部分相当于10天新长出的草量。

设法求出一天新长出的草量和原有草量。1、10头牛20天吃的草可供多少牛吃一天?10×20=200头、2、15头牛10天吃的草可供多少 头牛吃一天15×10=150头

3、(20–10)天新长出的 草可供多少头牛吃一天?50÷10=5头

4、每天新长出的草可供多少头牛吃一天?50÷10=5头 5、20天(或10天)新长出的草可供多少头牛吃一天?5×20=100头

或5×10=50头

6、原有的草可供多少头牛吃一天?200–100=100头

或150–50=100头

7、每天25头牛中,如果有5头牛去吃新长出的草,其余的牛吃原有的草,可吃几天?

100÷(25–5)=5天

2、有一水井,连续不断涌出泉水,每分钟涌出的水量相等。如果用3 台抽水机抽水,36分钟可以抽完;如果用5台抽水机抽水,20分钟可以抽完。现在12分钟要抽完井水,需要抽水机多少台?

随着时间的增长涌出的泉水也不断增多,但原来水量和每分钟涌出的水量不变。

1、3台抽水机的抽水量。3×36=108台分 2、5台抽水机的抽水量。5×20=100台分

3、使用3 台抽水机比用5台抽水机多用多少分钟?36–20=16分

4、使用3台抽水机比用5台抽水机少抽的水量。108–100=8台分

5、泉水每分钟涌出的水量,算出需要抽水机多少台?8÷16= 台

6、水井分钟涌出的水量。×36=18台分

7、水井原有的水量。108–18=90台分

8、水井原有水量加上12分钟涌出的水量。×12=6台分

9、水井原有水量加上12分钟涌出的水量。90+6、12台分

10、需要抽水机多少台?96÷12=8台

3、一片青草,每天生长速度相等。这片青草可共10头牛吃20天,或共60只羊吃10天。如果1头牛吃的草量等于4 只羊吃的草量,那么10头牛与60只羊一起吃,可以吃多少天?

先把题目进行转化。因为1头牛吃的草量等于4 只羊吃的草量。由此,题目可以转换成:这片青草可供(4×10)只羊吃20天,或供60只羊吃10天,问(4×10+60)只羊吃多少天?

1、(4×10)只羊20天吃的草可供多少只羊一天?4×10×20=800只天 2、60只羊10天吃的草可供多少只羊吃一天?60×10=600只天

3、(20–10)天新长出的草可供多少只羊吃一天?800–600=200只

4、每天的新长出的草可供多少只羊吃一天?200÷10=20只 5、20天新长出的草可供多少只羊吃一天?20×20=400只

6、原有草可供多少只羊吃一天?800–400=400只

7、可吃多少天?400÷(4×10+60–20)=5天

汉朝大将韩信善于用兵。据说韩信每当部队集合,他只要求部下士兵作1~3、1~5、1~7报数后,报告一下特各次的余数,便可知道出操公倍数和缺额。

这个问题及其解法,大世界数学史上颇负盛名,中外数学家都称之为“孙子定理”或“中国剩余定理”。

这类问题的解题依据是:

1、如果被除数增加(或减少)除数的若干倍,除数不变,那么余数不变。例如: 20÷3=6„„2(20-3×5)÷3=21„„2(20+3×15)÷3=1„„2

2、如果被除数扩大(缩小)若干倍,除数不变,那么余数也扩大(缩小)同样的倍数。例如: 20÷9=2„„2(20×3)÷9=6„„6(20÷2)÷9=1„„1

1、一个数除以3余2,除以5余3,除以7余2。求适合这些条件的最小的数。

1、求出能被5和7整除,而被3除余1的数,并把这个数乘以2。70×2=140

2、求出能被3和7整除,而被5除余1的数,并把这个数乘以3。21×3=63

3、求出能被5和3整除,而被7除余1的数,并把这个数乘以2。15×2=30

4、求得上面三个数的和 140+63+30=233

5、求3、57的最小公倍数 [3、5、7]=105

6、如果和大于最小公倍数,要从和里减去最小公倍数的若干倍:233–105×2=23 例

2、一个数除以3余2,除以5余2,除以7余4,求适合这些条件的最小的数。解法一: 70×2+21×2+15×4=242 [3、5、7]=105 242–105×2=32 解法

二、35+21×2+15×4=137 [3、5、7]=105 137–105=32 例

3、一个数除以5余3,除以6余4,除以7余1,求适合这些条件的最小的数。

1、因为[

6、7]=42,而42÷5余2,根据第二个依据,42×4÷5应余8(2×4),实际余3,所以取42×4=168

2、因为[

7、5]=35,而35÷6余5,则取35×2=70

3、[

5、6]=30,30÷7余2,则取30×4=120

4、[5、6、7、]=210 5、168+70+120–210=148 例

4、我国古代算书上有一道韩信点兵的算题:卫兵一队列成五行纵队,末行一人;列成六行纵队末行五人;列成七行纵队,末行四人;列成十一行纵队,末行十人。求兵数。

1、[6、7、11]=462 462÷5余2 462×3÷5余1 取462×3=1386

2、[7、11、5]=385 385÷6余5 385×5÷6余5 取385×5=1925

3、[11、5、6]=330 330÷7余1 220×4÷7余4 取330×4=1320

4、[5、6、7]=210 210÷11余1 210×10÷11余10 取210×10=2100

5、求四个数的和 1386+1925+1320+2100=6731

6、[5、6、7、11]=2310 7、6731–2310×2=2111

第五篇:小学数学解题思路技巧

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

小学数学解题思路技巧

神奇的1和0 [知识要点]

1.我们用字母α表示除0以外的任何数,则有

⑴ α×1=1×α=α;

α÷1=α。

⑵ α+0=0+α=α;

α-0=α;

α×0=0×α=0;

0÷α=0。

⑶ α÷0无意义。

2.掌握含0的数的读法,规定末尾的0不读;中间有一个0或几个0连在一起都只读一个0。[范例解析]

例1 计算下面由数字1组成的“金字塔”,把所有的1都加起来,看谁算得快。

“金字塔”每层的和分别是1、2、3、4、5、6、7、8、9、10。

它们的总和是:1+2+3+4+5+6+7+8+9+10 例2 请回答:数字3最少是几个数字相乘的积?最多呢?

由于3×1=3,所以3最少是两个数字的积,最多可看成是一个数3和无穷多个数1的积。

例3 我们做一个数字计算游戏。任取一个不是1的数,如果是双数就除以2(如取18,就18÷2);如果是单数就乘以3加上1后再除

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

以2[如取7,就(7×3+1)÷2]。现在我们取数3,反复用这两种方法计算,最后的结果怎样?任取数7呢?

将数3按这两种方法计算有:

3×3+1=10

10÷2=5

5×3+1=16

16÷2=8

8÷2=4

4÷2=2

2÷2=1

简记为:3→10→5→16→8→4→2→1

同样,对于数7有:

7→22→11→34→17→52→26→13→40→20→10→5→16→8→4→2→1 数3和数7经过用规定的两种方法反复计算,最后的结果都是1。这种计算方法称“角谷猜想”。例4 2÷0得几?说明理由。

假定2÷0=α,根据除法的意义,应有α×0=2。但α×0=0,所以α×0不能等于2。这说明,找不到一个数与0的积等于2,故2÷0无意义。

例5 把两个“9”和两个“0”拿来组成四位数,那么:

⑴ 两个0都不读出来的数是什么数?

⑵ 只读出一个0的数是什么数?

⑶ 四位数中最大的一个数是什么数?

⑷ 四位数中最小的一个数是什么数?

⑴ 9900

⑵ 9090

⑶ 9009

⑷ 9900 例6 计算:⑴ 1300×3

⑵ 1600×5

⑶ 470×3

⑷ 5008

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

×5 解

[思路技巧]

任何一个数中间或末尾的0,都占一个数位。因此,用乘数去乘被乘数时,不管乘数中间有几个0,都要一个一个地同乘数相乘;遇到被乘数末尾有0的时候,可以先用乘数去乘0前面的数,然后在乘得的数的末尾填写0,填写0的个数要与被乘数末尾的0的个数相同。

总之,0和1有许多奇妙的性质,用途很广,例如,电子计算机所采用的二进制数,就只用1和0来表示。随着数学知识的增长,你会越来越感到它们重要。[习题精选] 1.填空。

1×()=1

1+()=1

1-()=1

2-()=1

1÷()=1

7÷()=1 2.计算。

⑴ 617×0×4

⑵ 5783×9×0

⑶ 80×3×1 ⑷ 2030×3×4

⑸ 3020×2×3

⑹ 7010×1×2 3.用“角谷猜想”计算方法填数。

⑴ 6→□→□→□→□→□→□→□→

⑵ 18→□→□→□→□→□→□→□→□→□→□→□→□→□→□→□→□→□→□→□→1

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

4.在6的后面添上一个0,这个数是原来的几倍?比原来的数多多少?

5.1400末尾的两个0可以不读,也可以不写,对吗?为什么? 6.1005中间的两个零只读一个,也可以只写一个,对吗?为什么? 7.0、2、4、6、8五个数字的和与2、4、6、8、0五个数字的积相比,不用计算,你说是和大?还是积大? 8.比比看,谁做得又对又快?

1+0

0+1

1×1

1×0

1-1

0+0

1÷1

0×0

1-0

0÷1 1+1

6×1

6÷1

7+0

0+7

7-0

0÷7

7-7

7×7(6-6)×4

(8-8)×0

0÷(8-4)

1×1+1÷1+0×1+0÷1 9.用四个

3、三个0写成七位数,按下面的要求写出各多位数:

一个零都不读出来

()

只读出一个零

()

读出两个零

()

读出三个零

()10.数字迷。

下面每个题里都有一组数,请你从中找出一个适合各问条件的数:

⑴ 7 6 25 53 19

这个数被3除余1;

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

这个数比最小的两位数大;

这个数加上1,再乘以5正好是最小的三位数;

这个数的几?

⑵ 30500 53010

400200 7003000

这个数只读出一个零;

这个数的最高位在二节中;

这个数各个数位上的数的和为8;

这个数是几?

11.用1、0、0、4四个数字写出两个四位数,要使它们是差是99,这两个四位数分别是()和()。余数的妙用 [知识要点]

1.被除数=除数×商+余数;

2.余数要比除数小;

3.会解有余数除法的应用题。[范例解析]

例1 如图1-1。把14个乒乓球平均分给三个班,每班分得几个?还余下几个?

14÷3 = 4余2

每班分得4个还余2个。

例2 下面三个竖式,哪个对?哪个不对?为什么不对?

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

第一个竖式不对,它的余数8比除数5还大,还可商1,即商应为8;

第二个竖式也不对,因商和除数的积不能大于被除数;

第三个竖式是对的,余数3小于除数5。

说明

计算有余数的除法,余数一定要比除数小。这时被除数、除数、商和余数的关系是:

被除数 = 除数×商+余数

被除数-余数 = 除数×商

例3 把11、12、13、14、15、16、17分别除以3时,各得哪些余数?

11÷3 = 3余2;

12÷3 = 4余0;

13÷3 = 4余1;

14÷3 = 4余2;

15÷3 = 5余0;

16÷3 = 5余1;

17÷3 = 5余2。说明

一串连续数除以同一个数,因为它们的余数小于除数,所以余数重复出现。

“余数”在我们生活中还有不少的用处呢!

例4 国庆节挂彩灯,用六种颜色的灯泡,按红、黄、蓝、白、绿、紫的次序装配,总共要装50只灯,每种颜色的灯泡各需要多少只?

可以这样想,六种颜色的灯泡作为一组,50只灯泡可以分成50÷6 = 8(组)余2(只)

于是,其中有四种颜色的灯泡各配8只,另两种颜色的灯泡

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

各配9只。

例5 今天是星期三,再过20天是星期几?

今天是星期三,因为一个星期有7天,以星期一为星期的第一天计算,因已经过了3天。所以有

(20+3)÷7 = 3余2

即再过20天是星期二。

例6 把4、7、18、2四个数填入下式的括号中。

()÷()=()余()

分析

第一个括号是被除数,它必须填最大的一个数18。其次,除数比余数要大,因此,第二个括号中的数必须比最后一个括号中的数要大,但是7×4大于18,所以最后一个括号中只能填数4。即题中式子填数如下:

(18)÷(7)=(2)余(4)[思路技巧]

1.正确理解余数的性质,是正确解决有关余数问题的关键。

2.计算有余数的除法,余数一定要比除数小。[习题精选] 1. 看图填数。

11÷3 = ______(根)......______(根)

14÷4 = ______(份)......______(个)

14÷3 = ______(个)......______(个)

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

2. 下面各题的计算对吗?把不对的改过来。

⑴ 38÷5 = 6......8

49÷6 = 7......7

49÷8 = 5......9

33÷4 = 8......1

2÷1 = 1......1

17÷3 = 5......2

3.()里最大能填几?

()×8<55

()×5<19

()×7<33

()×9<62

()×6<50

()×4<14 4.55除以7,商几余几?除以8呢?除以9呢? 5.

被4除没有余数的:________________

被9除没有余数的:________________ 6.⑴ 用下面各数除以2时,得到哪些余数?除以4时,得到哪些余数?11、13、14、15、17、19

⑵ 用下面各数分别除以5、6时,各得到哪些余数?11、12、13、14、15、16、17 7.把23、7、3、2填入两个式子中,使它们的余数相同。

()÷()=()......()

()÷()=()......()8.下面三个算式的被除数相同,你能填出来吗?

()÷7 =()......1

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

()÷6 =()......5

()÷5 =()......4 9.在□里填上适当的数。

10.在机场上停着20架飞机,准备每3架编为一组起飞,可以编成几组?还声几架?

11.⑴ 把16张风景画片平均分给5个同学,每人分得几张?还剩几张?

⑵ 把16张风景画片分给同学,每人分得5张,可以分给几个同学?还剩几张?

12.⑴ 一件衬衣前面要钉5个纽扣,袖口要钉2个纽扣,一共要钉几个纽扣?

⑵ 现有45个纽扣,每件钉7个,够钉几件衬衣?还剩几个纽扣?

13.有30千克水果糖,每盒装4千克,剩下的装在纸袋里,纸袋里装多少千克糖?

14.一个星期有7天,十月份有31天,十月份里有几个星期零几天?

15.⑴ 学校开会庆“六一”,有9面彩旗,平均插在会场两边,每边插几面?还剩几面?

⑵ 学校开会庆“六一”,有9面彩旗,会场两边各插4面旗,中间插1面旗,共插了几面旗?

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

周期现象 [知识要点]

自然界里有许多现象,如春、夏、秋、冬年复一年地交替;白天与黑夜反复出现;我国民间流传着“初

三、初四娥眉月,十五、十六月团圆”的说法;七天一个星期,等等,都是周期现象。

算术中也有一些有趣的周期问题。例如,一串连续的自然数被3除的余数是: 1、2、0、1、2、0、1、2、0、......它是1、2、0重复出现的一列数,即周期是3。

本节就是要让学生初步了解周期现象,并会用周期解某些较简单的问题。[范例解析]

例1 有一串黑白珠子排列如图1-4所示。

○●○○○●○○○●○○○●○○○●○......图1-4

其中黑珠与白珠共有70个,那么最后一个是黑珠还是白珠?共有几个白珠?

我们由图1-4可知○●○○四个珠子是一个周期,又70÷4=17余2,即这一串珠子经过17次重复后还余2个珠子○●,因此,最后一个是黑珠子。

一个周期的4个主张中有3个白珠,最后2个主张中有一个白珠,白珠一共应有:

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

3×17+1 = 51+1 = 52(个)

说明

对于周期问题,关键是要抓住周期规律这一重要环节,问题才好解决。

例2 1994年4月10日是星期六,那么这一年的7月5日是星期几? 解

从4月10日至7月5日的天数是:

(30-9)+31+30+5 = 87(天)

又一个周期的周期是7,所以

87÷7 = 12余3

即87天经过12个星期又3天,这3天应是星期

六、星期日、星期一。

我们推算出7月5日是星期一。

例3 1、2、0、1、2、0、1、2、0......第1995个数字是多少? 解

这一列数中,它的一个周期是:1、2、0,即周期是3。又

1995÷3 = 665

故这一列数按12、0重复665次,所以第1995个数字是0。例4 1+2+3+4+...+1992+1993被5除的余数是多少? 分析

这个问题如果先求和,就比较麻烦。我们知道,这1993个数被5除的余数周期性的出现,组成下面一列数: 1、2、3、4、0、1、2、3、4、0、1、2、3、4、0......我们知道,1、2、3、4、0是一个周期,周期是5。并且一个周期的5个余数的和是:

1+2+3+4+0 = 10

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

又10÷5 = 2,即是一个周期中5个数字之和可被5 除尽。这就是说,前5个数字的和能被5整除,接着的5个数字的和同样也能被5整除,等等。这样,有多少个5个数字的和可以被5整除呢? 我们知道,1993÷5 = 398余3。

即应有398个5个数字的和可以被5整除。只考虑最后三个数的余数是1、2、3。

又1+2+3 = 6,6÷5 = 1余1 所以,它们的和被5除的余数是1。

[思路技巧]

1.对于周期问题,解决的关键是要正确观察出周期的规律。2.有些问题,虽然不是周期问题,我们可以巧妙地将它转化为周期问题来解决。[习题精选]

1.2、1、1、3、5、2、1、1、3、5......,第273个数字是多少? 2.某年3月5日是星期四,那么这一年的10月1日是星期几? 3.某年的9月15 日是星期五,那么这一年的5月5日是星期几? 4.同样大小的红、白、黑三色球共193个,它们按如图1-5规则排列,其中红球有多少个?最后一个球是什么颜色?

5.1+2+3+4+......+1993+1994的和被9除的余数是多少? 6.有14个数排成一横排,每个数写在一个方格子里,它们具有这样的性质:任何三个相邻的数加起来都是10;另外从左边算起的第4精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

个数等于5,第12个数等于4,问第8和数“?”等于多少?

7.1+2+3+......+9999+10000被7除的余数是多少?

8.1994年的1月5日是星期三,问这一年的7月1日是星期几? 9.1、2、0、3、1、2、0、3、1、2、0、3......这一列数的第186个数字是多少?这186个数的和是多少?

10.拼音字母A、B、C按下面的规律排列:A、B、A、A、C、A、B、A、A、C......共有178个字母。请填下列空格:

⑴ 一个周期A、B、A、A、C它有()个字母;

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

⑵ 一个周期中A有()个,余数中A有();

⑶ 共有()×()+()=()个A;

⑷ 最后一个字母是()。加减巧算 [知识要点]

1.加法的交换律与结合律,用字母表示则有:

α+b = b +α,α+(b+c)=(α+b)+c

2.减法的性质,用字母表示则有:

α-(b+c)= α-b-c

反之,α-b-c = α-(b+c)[范例解析]

例1 简便计算下列各题。

⑴ 129+84+71

⑵ 83+135+65

⑶ 34+75+66

128+73+27+17 解

129+84+71 =(129+71)+84 = 200+84 = 284

83+135+65

= 83+(135+65)= 83+200

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

= 283

34+75+66 =(34+66)+75 = 100+75 = 175

128+73+27+17 =(128+17)+(73+27)= 145+100 = 245

例2 你能巧算297+65的和吗?

分析

我们发现,第一个加数只要加上数3就凑成整数300,这样计算就方便多了。

解法一

297+65 = 297+65+3-3 =(297+3)+(65-3)= 300+62 = 362

解法二

297+65 = 297+62+3 =(297+3)+62

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

= 300+62 = 362 说明

“凑整”是速算中最常见、简单易行的方法,计算时,若凑成10、100、1000、......计算自然方便。但“凑整”不是任意凑,而是有目的地进行,才能起到速算的效果。再看例3。例3 速算下面两题。

⑴ 3471+5899

⑵ 3891-1992 解

3471+5899 = 3471+(5899+101)-101 = 3471+6000-101 = 9471-101 = 9370 ⑵

3891-1992 =(3891-2000)+8 = 1891+8 = 1899

例4 速算下面两题。

⑴ 280-(80+92)

⑵ 297-173-27 解

280-(80+92)= 280-80-92 = 200-92

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

= 108 ⑵

297-173-27 = 297-(173+27)= 297-200 = 97 [思路技巧]

“凑整”是速算中最常见的方法,有目的地把数凑成10、100、1000、......,可以使问题简化。[习题精选]

1.简便计算下面各题。

⑴ 74+29+26

⑵ 153+29+171

⑶ 58+47+42+13

⑷ 149+32+151+68

⑸ 2608+529+392+27 2.看谁算的快。

⑴ 36-12-6

⑵ 75-36-19

⑶ 129-(29+40)

⑷ 1995-(1001+895)3.速算。

⑴ 5789+2011

⑵ 1832-997

⑶ 6801+345+3199

⑷ 362+345+638+655 4.看谁算的快。

⑴ 57+78+43+42

⑵ 249+132+151+68

⑶ 405+997

⑷ 298+87 5. 下面有这样几排数。

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

⑴ 第一竖行各个数的和是15,请你很快算出其余四个竖行各个数的和;

⑵ 第一横行各个数的和是55,请你很快算出其余四个竖行各个数的和。乘法巧算

[知识要点]

1.用乘法口诀计算减法;

2.乘法的交换律、结合律。用字母表示为:

α×b = b×α,α×(b×c)=(α×b)×c;

3.乘法对加法的分配律,用字母表示为:

α×(b+c)= α×b+α×c;

α×b+α×c = α×(b+c)[范例解析]

例1 下面有一组减法计算题,想一想,能找出它们的计算规律吗?

21-12 = 9

31-13 = 18

41-14 = 27

51-15 = 36

61-16 = 45

71-17 = 54

81-18 = 63

91-19 = 72 分析

首先看被减数和减数的关系,它们正好是被减数的十位数字与

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

个位数字的位置交换了一下就得到减数;其次,它们的差正好是9的倍数。即9的1倍、2倍、3倍、4倍、5倍、6倍、7倍、8倍,也即是9的乘法口诀的得数。这是说明道理?

因为十位上的数变成个位上的数,就要相差几个9,如10→1,差1个9;20→2,差2个9;30→3,差3个9;......反过来也一样,1→10,差1个9;2→20,差2个9;3→30,差3个9;......所以,一个两位数交换它的个位与十位上的数字的位置后,得一新的两位数,然后将大数减去小数,它们的差就是这两个数字的差与9的乘积。即可用的乘法口诀计算。例2 下面一组减法题,看谁算得快。

⑴ 72-27 =()

⑵ 43-34 =()

⑶ 83-38 =()

⑷ 53-35 =()

⑸ 94-49 =()⑹ 63-36 =()

⑺ 87-78 =()

⑻ 73-37 =()

⑴ 五九四十五

⑵ 一九得九

⑶ 五九四十五

⑷ 二九一十八

⑸ 五九四十五

⑹ 三九二十七

⑺ 五九四十五

⑻ 四九三十六

例3 简便计算下列各题。

⑴ 214×5×8

⑵ 6×586×5

⑶ 1607×4×5

⑷ 25×8×125×4 解

⑴ 214×5×8

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

= 214×(5×8)= 214×40 = 8560 ⑵ 6×586×5 =(6×5)×586 = 30×58 = 17580 ⑶ 1607×4×5 = 1607×(4×5)= 1607×20 = 32140 ⑷ 25×8×125×4 =(25×4)×(125×8)= 100×1000 = 100000 例4 下面有一组乘法算式,看谁算得快。

1×99 =

2×99 =

3×99 =

4×99 =

5×99 =

6×99 =

7×99 =

8×99 =

9×99 = 分析

我们首先找规律。从2×99看起,它可以靠成是:

2×99 = 2×(100-1)

= 2×100-2×1

= 200-2

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

=198

照这样计算,3×99 = 300-3 = 297,即几乘以99可看成是几百减去几就得结果,因此,我们可很快算出各式的结果。

1×99 = 99

2×99 = 200-2 = 198

3×99 = 300-3 = 297

4×99 = 400-4 = 396

5×99 = 500-5 = 495

6×99 = 600-6 = 594

7×99 = 700-7 = 693

8×99 = 800-5 = 792

9×99 = 900-9 = 891 [思路技巧]

有目的地把数凑成整

十、整百、......,可使计算简便。[习题精选]

1.请你用乘法口诀来计算下面各题,看谁算得快。

53-35 =()

94-49 =()

73-37 =()

82-28 =()

63-36 =()

40-4 =()

32-23 =()

80-8 =()

96-69 =()

70-7 =()

42-24 =()

71-17 =()2.速算下面各题。

⑴ 2×729×5

⑵ 4×83×25

⑶ 17×125×8 ⑷ 132×5×4

⑸ 222×5×8

⑹ 828×25×2

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

3.简便计算。

⑴ 42×3+42×2

⑵ 17×19+181×17

⑶ 125×(8-1)

⑷ 5×(24+38)4.下面有三个算式:

142×2 = 284

142×3 = 426

142×4 = 568 你能利用这三个算式计算下面两道乘法题的得数吗?

142×5 =()

142×6 =()

5.我们知道:37×3 = 111,你能利用它快速算出下面各式结果吗?

37×6 =

37×9 =

37×12 =

37×15 =

37×18 =

37×21 = 连续自然数求和 [知识要点]

1.连续自然数求和的方法:

头尾两数相加的和×加数的个数÷2 2.连续自然数逢单时求和的方法:

中间的加数×加数的个数。[范例解析]

例1 比一比,看谁算得快。

1+2+3+4+5+6+7+8+9 = ? 解法1 如图2-2所示。

4个10加上5等于45。

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

解法2 如图2-3所示。5个9等于45。解法3

得到9个10,即90,它是和数的2倍,即90÷2 = 45。说明

解法1是利用“凑整”技巧进行简算; 解法2是利用“0”的神奇性配对进行速算; 解法3是常说的高斯求和法速算。

你听说过数学家高斯小时候的故事吗?有一次老师出了一道数学题: “求1+2+3+4+......+100的和”。老师的话音刚落,高斯就举手说:等于5050。

高斯是怎样算的?他将这100个数倒过来,每相对两数的和等于101,共有100个101,将101乘以100后再除以2,结果等于5050。我们由此得到启发,一组连续自然数相加时,可用下面的公式求和。

头尾两数相加的和×加数的个数÷2 例2 计算下面两题。

⑴ 4+5+6+7+8+9+10+11+12+13 = ?

⑵ 21+22+23+24+25+26+27+28 =? 解

⑴ 4+5+6+7+8+9+10+11+12+13

=(4+13)×10÷2

= 17×10÷2

= 170÷2

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

= 85

⑵ 21+22+23+24+25+26+27+28

=(21+28)×8÷2

= 49×8÷2

= 392÷2

= 196 说明

只要的连续自然数求和,不一定要从1开始,均可用此法计算。例3 求和:53+54+55+56+57+58+59 解法1

53+54+55+56+57+58+59

=(53+59)×7÷2

= 112×7÷2

= 784÷2

= 392 解法2

53+54+55+56+57+58+59

= 56×7

= 392 说明

如果相加的连续自然数的个数逢单时,也可用下式计算和:

中间的加数×加数的个数。例4 求和。

⑴ 1+3+5+7+9+11+13+15+17

⑵ 24+26+8+30+32 解

⑴ 1+3+5+7+9+11+13+15+17

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

= 9×9 = 81 ⑵ 24+26+8+30+32 = 28×5 = 140 说明

此两题虽然不是连续自然数相加,但是每相邻的两个加数直接都相差同一个数,同样可用公式计算。[思路技巧]

计算连续自然数相加时,可用头尾两数相加的和×加数的个数÷2计算;如果相加的连续自然数是单数时,可用中间的加数×加数的个数求和;如果不是连续自然数相加,但每相邻两个加数之间都相差同一个数,也可用以上两种方法计算。[习题精选] 1.求和。

⑴ 12+13+14+15+16+17+18+19 ⑵ 28+29+30+31+32+33 ⑶ 101+104+107+110+113+116 2.求和。

⑴ 41+42+43+44+45 ⑵ 12+14+16+18+20+22+24 3.求和。

⑴ 77+78+79+80+81+82

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

⑵ 1006+1005+1004+1003+1002+1001 用运算符号连算式 [知识要点]

1.添运算符号+、-、×、÷和括号(),使等式成立;

2.逆推法;

3.凑数放。[范例解析]

例1

用运算符号把下面式子中的4个3连起来,使等式成立。

3 3 3 3= 9

分析

我们从最后一个3向前考虑添运算符号,如果添×号,①变为:× 3 = 9 两边除以3,即为= 3

将②中左边最后一个3前再添×号,②变为:× 3 = 3,两边再除以3,即为:= 1。显然再添÷号。解÷ 3 × 3 × 3 = 9 例2

在下列5个5之间,添上适当的运算符号--+、-、×、÷和(),使得下面等式成立。

5 5 5 5 = 10

分析

我们从①的后边逐步向前边考虑,最后一个5前面如果要添运算符号的话,只可能是+、-、×、÷运算符号中的一个。如果是加号,①式变为

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案 5 5 5 + 5 = 10

两边减5,即变为 5 5 5 5 = 5

再重复上面的想法,如果③左边最后一个5前面又是加号,则③式变为5 5 5=0。这等式很容易得出:

(5-5)×5 = 0或(5-5)÷5 = 0或5×(5-5)= 0 如果③式左边最后一个5前面是减号,③式变为5 5 5 = 10,这式子没有解。

如果③式左边最后一个5前面是乘号或除号,也没有解。

如果①式最后一个5前面是减号、乘号或除号,可采用上面的方法进行同样的分析。

(5-5)×5+5+5 = 10(5-5)÷5+5+5 = 10

5×(5-5)+5+5 = 10

(5×5+5×5)÷5 = 10

(5÷5+5÷5)×5 = 10

等等。

说明

上面的分析方法,是从最后一个数字开始向前推想,所以我们可以把这种方法叫逆推法,使用时一定要考虑全面、周到。例3

在下列六个数的中间添上适当的运算符号,使得下面的算式成立:965 2 7 8 314 0 = 1986。

分析

这题如果采用逆推法,那肯定会相当的麻烦,我们必须另行考

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

虑,先找一个与1986比较接近的数,如965×2 = 1930,这个数比1986小56,这样原问题就转化为:能否用剩下的六个数经过适当的四则运算得出一个等于56的算式呢?然后作适当的增加或减少,使算式成立,增加或减小的部分也采用上述的方法,我们也给它取个名,叫凑数法。

965×2+7×8+314×0 = 1986 例4

在下列数码的某些相邻地方,只添运算符号+和-,使得等式成立: 8 7 6 5 4 3 2 1 = 20 分析

我们从头开始想,98+7 = 105

105-65 = 40 这一来问题转化我用4 3 2 1凑出个20来,而21-3+3 = 20。解

98+7-65+4-3-21 = 20 例5

有2、3、4、6四个数字,请你选择合适的运算符号,最少组成五个算式,使它们都等于24。

2×6+3×4 = 24; 4×6÷(3-2)= 24; 3×6+4+2 = 24; 4×2×(6-3)= 24; 3×(6-2+4)= 24 [思路技巧]

在数字之间添加运算符号使,可采用逆推法或凑数法解答。

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

[习题精选]

1.在3个7中间的□里添入适当的运算符号和括号,使等式成立。

7□7□7 = 2

7□7□7 = 6

7□7□7 = 8 7□7□7 = 7

7□7□7 = 42

7□7□7 = 56 2.在下面各数之间填上“+”、“-”、“×”、“÷”、“()”使等式成立。

⑴ 快乐的1989年:

4 4 4 4 = 1

4 4 4 4 = 9

4 4 4 4 = 8

4 4 4 4 = 9 ⑵ 庆祝国庆四十周年:

2 3 4 5 6 = 40

3 4 5 6 1 = 40

4 5 6 1 2 = 40

5 6 1 2 3 = 40

6 1 2 3 4 = 40

1 2 3 4 5 = 40 ⑶ 在下面○里填上和左边对应地方不同的运算符号,使两边的计算结果相等。

6+2+4 = 6○2○4

8+2+3 = 8○2○3

12-2-2 = 12○2○2

18-9-3 = 18○9○3

1×3+2×4 = 1○3○2○4 ⑷ 下面每一道小题的□里都要填同一个数字。

□+□<□×□

□+□>□×□

□+□=□×□

□+□>□÷□

3.在()中填上+、-、×、÷符号使等式成立。

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

1()2()3 = 1

1()2()3()4 = 9

1()2()3()4()5 = 8

1()2()3()4()5()6 = 9 4.○内应填上什么运算符号?□内应填上什么数?

5.只填一个加号和两个减号于下列某些数码间,使等式成立。2 3 4 5 6 7 8 9 = 100 6.只填两个加号和两个减号于下列某些数码间,使等式成立。2 3 4 5 6 7 8 9 = 100 7.只填一个乘号和七个加号于下列9个数之间,使等式成立。2 3 4 5 6 7 8 9 = 100 8. 下面是几组数码,逆能不能将它们分别拼成数,并用运算符号排成一道算式题,使各题的得数均等于1995?

例如,“5、5、7、7”这组数得:5×5×57 = 1995 ⑴ 3、3、6、6、6 ⑵ 3、3、3、3、3、3、3、3 找规律填数 [知识要点]

1.数列填数;

2.阵图填数。[范例解析]

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

例1 找规律填出后面三个数:

⑴ 3,4,6,9,13,18,______,______,______; ⑵ 56,61,47,44,______,______,______; ⑶ 3,9,27,______,______,______; ⑷ 7,14,21,28,______,______,______; ⑸ 0,1,1,2,3,5,8,______,______,______。

⑴ 这一列数,从第二个数开始,逐渐增大,那它是按什么规律变化的呢?我们仔细观察,第二个数4比第一个数3大1;第三个数比第二个数大2;第四个数比第三个数大3;第五个数比第四个数大4;第六个数比第五个数大5。如图3-1所示。

即是按照加

1、加

2、加

3、加

4、......的规律加下去。因此,应填24,31,39。

⑵ 这一列数正好⑴相反,它们是逐渐减少。其中,第二个数51比第一个数56少5;第三个数又比第二个数少4;第四个数比第三个数少3。如图3-2所示。

即是按照减

5、减

4、减

3、......的规律减下去。因此,应填42,41,40。

⑶ 这一列数中,第二个数是第一个数的3倍;第三个数又是第二个数的3倍,如图3-3所示。

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

图3-3

即是按照前一个数扩大3倍,得后一个数的规律算下去。因此,应填81,243,729。

⑷ 我们观察发现,这一列数中的第二个数是第一个数的2倍,第三个数又是第一个数的3倍,第四个数是第一个数的4倍,如图3-4所示。

即是按照把第一个数扩大2倍、3倍、4倍......的规律酸下去因此,应填35,42,49。

⑸ 这一列数的变化规律较复杂一点,要仔细地观察。我们改变一下观察研究的顺序,即从8起往左看,可看出:8是3+5的和,5又是它的前两个数2+3的和,3则是1+2的和,2是1+1的和,1是0+1的和。如图3-5所示。

即是按照后一个数是前两个数的和的规律算下去。因此,应填13,21,34。

说明

在一列数中填数,关键是要找出这列数中各数之间的变化规律,按规律酸下去,才能正确填才其中的缺数。例2 你能把空缺的数填出来吗? 2 8 3

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案 4 4 2 分析

我们发现,这已知的7个数字之间找不出它们的变化规律。因此,我们应该变换观察的角度,即分单双位上的数考虑,这就将一列数分才人下的两列数: 2 3 4 ?

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

前一列数是按照后一个数是前一个数加1的规律算下去,因此,空缺数应填5。

说明

有时一列数是由两个有规律的数串混合组成的。在填空缺数时,应注意这一点。

例3 找规律,很快把图3-6中小圆圈里的数填出来。

分析

首先观察第一横行和第二横行,发现第二横行的第二、第三、第四个数都是它的第一个数3与第一横行的第二、第三、第四个数的乘积。即3×2 = 6,3×3 = 9,3×5 = 15。又第三横行的第四个数35正好是7×5的积。这就是图中数字之间的规律,按照这一规律,如图3-7所示,缺数应填8,20,14,21。

例4 图3-8中是一个数字金字塔,青你先根据上下数字间的联系找出它们的规律,然后填出塔中的方框的数字。

分析

从上往下看,第一行是一个数2;第二行是两个数2、2;第三行是三个数2、4、2;则4应看作是第二行的2×2的积,这是因为第四行的8正好是第三行的2×4的积。这就是它的变化规律,如图3-9所示。图中画上“ /”表示尖端所指的数字是上一行两个数的积。

因此,方框中应填8、16、64(见图3-9)。

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

[思路技巧]

找规律填数是一类有趣的问题,解决这类问题常常要考虑运用观察、试探、枚举、归纳等研究问题的手段,寻找已知的数上下、左右及前后之间的相互联系和规律,推导出未知的数。[习题精选]

1.先观察下面每一行数的排列有什么规律,然后在(个适当的数:

⑴ 1,4,7,10,(),16,19; 1 2 3 4 5 2 2 3 4 5 3 3 3 4

精心收集

精心编辑

精致阅读

如需请下载!)里填上一

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

5 5 5 5

⑵ 1,1,2,3,5,8,(),21,34;

⑶ 1,4,9,16,25,36,(),64,81;

⑷ 12,15,18,(),24,27,(),33;

⑸ 6,12,(),24,(),(),42,48;

⑹ 95,90,(),80,75,(),(),60;

⑺21,24,27,(),();

⑻50,48,46,(),()。

图3-10 2.按照图3-10中数字排列规律,在空格里填上适当的数。3.在图3-11中,依照第一个三角形里三个数之间的关系,在其他三角形的空格里填上适当的数。

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

4.不用乘法,找出规律后,就可以按规律把积填上去。

1×99 = 99

2×99 = 198

3×99 = 297

4×99 = 396

5×99 = 495

6×99 =

7×99 =

8×99 =

9×99 = 5.找规律填空缺的数。0 1 3 6 10 15 ? ?

6.如图3-12,在金字塔图中每一块砖上都有一个数字,请你根据上下数字之间的联系,找出它们的规律,然后填在空砖上。7.根据叶子中数字的计算规律,填出花中所空的数。

8.下面两题中的数去掉其中的一个数,其余的都是按规律排列的,请你去掉这个数。

⑴ 5,10,15,17,20;

⑵ 72,70,68,66,36。9.请按图3-14中的规律在空白处填上数。

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

奇怪的算式 [知识要点]

根据推理的方法来确定算式中的数字,分加法算式谜、减法算式谜、乘法算式谜几种。[范例解析]

例1 填出方框里的数。

分析

9加几个位上是3?十位上哪两个数相加得8。

等。

例2 填出右边算式方框里的数。

分析

18减几得9?十位上2+4 = 6,6+1 = 7。解

例3 右面的算式中,只有五个数字已些出,补上其他的数字:

分析

先填哪一个呢?做这一类题目要善于发现问题的突破口。从百位进位来看,和的千位数只能是1,从十位相加来看,进位到百位,也只能进1。因此□2□的百位是9,和的百位是0。通过上面的分析,就找到了这道题目的突破口。

再从15-7-6 = 2,11-2-1 = 8,得出算式:

例4 在下面的加法算式中,每个汉字代表一个数字,相同的汉字代表的数字相同,求这个算式:

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

分析

千位上的“边”是进位得来,所以“边”= 1,其次,从个位知道,“看”+“看”的末位数字还是“看”,所以“看”= 0,因此推出:

想想看 = 想×110

算算看 = 算×110

所以和数“边算边看”是11的倍数,因而“算”=2。进而推出:想想 = 121-22 = 99。

所求的算式是990+220 = 1210。

例5 下面的算式由0,1,......,9十个数字组成,已写出三个数字,补上其他数字。

分析

这一算式有十个数字,分别是0,1,......,9这十个数字,因此这个算式中所有数字各不相同,解题时要充分利用着一点,为了说明的方便,用英文字母A、B、C、D、E、F来表示要填的数字,很明显,A = 1。

解题的突破口是确定B,B可以是7或9,因为F至少是3,所以十位相加后一定要进位,如果B是9,C将是2,就出现数字的重复,因此,B只能是7,C是0。

现在还没有用上的数字是9,6,5,3,其中只有6是双数,因此,个位上D和E必定是单数,只能是D = 9,E = 3,因此也确定了F = 6,这个算式如右所示。

例6 如图是一个动物式子,不同的动物代表不同的数字,请你想一想,算一算,这些动物各代表哪些数字?

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

图3-15 分析

这个式子从哪里下手解答呢?根据两个一位数相加和只能满十的特点,首先,推出公鸡等于“1”。然后,又根据两熊猫相加,和仍然是熊猫,推出熊猫只能等于“0”。讲熊猫等于0,代入式中,又根据公鸡等于“1”推出白兔等于“5”。将白兔等于5代入式中,推出松鼠等于2。

这个算式是:

说明

奇怪的算式,实际上就是“算式之谜:”,也称“趣味算式问题”。它是一种猜谜游戏,故有较强的趣味性,可以锻炼思维能力。

既然趣味算式问题是一种猜谜游戏,“凑”就成了它的当然方法之一,而且在某些情况下,“凑”还是一种有效的方法。例7 填出右边算式方框里的数。

分析

因为积的个位数字是5,所以被乘数的个位数字只能是5;又积是千位数,且最高位是数字1,所以被乘数百位上的数字只能是2。解

[思路技巧]

解算式谜这类题,要认真观察算式,抓住问题的突破口。[习题精选]

1.在方框里填上适当的数,使下列各式成立。

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

2.在圆圈和方框里填上适当的数,使下列等式成立(圆圈和方框分别代表两个不同的数)。

3.算一算,下列图形各表示什么数。

⑴ □+△ = 26

△ =()

△-5 = 3

□=()

⑶ ○-□ = 4

○ = 3

○+□ = 14

□ =()

4.在方框里填上适当的数。

5.下面三个算式的被除数相同,你能填出来吗?

□÷7 = □......1

□÷6 = □......5

□÷5 = □......4 6.写算式(能写几道就写几道)。

□÷□ = 2

□÷□ = 5

□÷□ = 7

□÷□ = 9 7.在下面算式的圆圈里填上合适的运算符号,方框里填上合适的数。你能写出几种填法?(每次填的运算符号不要完全相同)

8○□○□ = 21。8.数字还原。

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

下面的竖式,是用△、○、□、★、◎这样的图形表示0至9中的数字。想一想,这五个图形各代表几呢? ⑴

⑶ ◎+◎ = ◎×◎

◎ =()9.在下面竖式中的方格里填上适当的数。

10.请将下面竖式里的字换成数字,使竖式成立。

11.巧填竖式。

12.题中每一个字母或字都代表一个数,请想一想它们各代表什么数字,算式才能成立?

调整法趣谈

[知识要点]

1.调整法的意义。

我们看下面的点子图:

●●●●●

●●

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

图3-16 它一共有二组,一组有5个点子,另一组有两个点子,图中一共有多少个点子?

算式:5+2 = 7(个)。现在问:怎样改变点子图,来表示算式2+5呢?我们可用交换点子位置或移动点子位置来改变。如图所示:

这种通过交换点子位置或移动点子位置的操作过程,我们较做调整法。

2.调整法的用途,我们通过举例来说明。[范例解析]

例1 右面正方形方格中的数字,怎样移动才能使横行和竖行三个数相加的和相等?

分析

我们可从图中观察到:竖行三数的和都是6,它们相等,打上“√”号,而横行三数的和都不相等,因此,要调整位置的是横行的数字。我们只要按照下面图3-19箭头所示进行交换调整,问题就得到解决。

说明

凡是符合条件的横行或竖行打上“√”,可使问题一目了然,方便调整。

例2 图中有“+”、“-”、“×”、“÷”四种运算符号。移动这些符号,使每行每列的四种符号不相同。

分析

通过观察,发现3-20中只有从左数第二列符号与题目要求不

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

同,因此我们先考虑列的情况,第一列多“+”号,缺“÷”号,而第三列多“÷”号缺“+”,如下图交换后,把符合条件的行与列打上“√”。

经过

精心收集

精心编辑 精致阅读

如需请下载!

下载小学数学解题的19种方法总结word格式文档
下载小学数学解题的19种方法总结.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    小学数学应用题解题策略归纳(合集)

    小学数学应用题解题策略归纳 解答应用题一直是许多孩子做数学题的“心头大患”,因为它既要综合应用小学数学中的概念性质、法则、公式、数量关系和解题方法等最基本的知识,还......

    小学数学解决问题解题策略

    小学数学解决问题解题步骤 防城区峒中镇小学 韦达良 【内容摘要】:在小学数学教育教学中,解决问题(也说应用题)顾名思义就是利用数学方法去解决一些实际问题,最简单的建模就是我......

    GCT数学解题方法总结

    GCT数学解题方法总结照现在GCT数学的发展来看,难度是越来越大了,但是从最近几年考题来看,其中还是有相当大的一部分基础题,能否及格,这一部分的基础题就是非常关键的了。 纵观历......

    六年级数学解题竞赛活动总结

    六年级数学解题竞赛活动总结 为提高学生的解决问题能力,充分开发他们的数学潜能,培养学生良好的数学素养,我们于11月上旬举行了六年级数学解题竞赛活动,现将竞赛活动情况简要......

    初中数学专题解题方法大总结

    解题方法大总结 猜想与归纳类问题: 大胆猜测,反复试验,说清道理。大多数是从计算方法上找规律。 说理型试题: 分析时遵循:从已知看可知,由未知想需知。 说理时遵循:从已知条件出发,......

    数学经典解题方法

    1、配方法 所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配......

    数学:解题心得

    数学:解题心得 探索法:即“尝试”,从简单到复杂,从特殊到一般。 ① 代入特殊值 ②分析特殊情况(考虑极端) 注:任何难题,都不要寄希望于通过空想得出答案,而要代之以积极的探索,为“灵......

    一般数学解题方法

    初中数学解题方法之我见 1、配方法 所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配......