谈小学数学教学中培养学生解答应用题的能力(范文)

时间:2019-05-13 01:33:50下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《谈小学数学教学中培养学生解答应用题的能力(范文)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《谈小学数学教学中培养学生解答应用题的能力(范文)》。

第一篇:谈小学数学教学中培养学生解答应用题的能力(范文)

谈小学数学教学中培养学生解答应用题的能力

关于培养学生解答应用题能力,《九年义务教育全日制小学数学教学大纲(试用)》中没有明确提出,但是在教学目的中讲到了使学生“能够运用所学的知识解决简单的实际问题”,这实质上包含了培养学生解答应用题的能力,当然在小学还是初步的。可以说,培养学生解答应用题的能力是使学生能够运用所学数学知识解决简单的实际问题的基本内容和重要途径。因为应用题反映了周围环境中常见的数量关系和各种各样的实际问题,需要用到不同的数学知识来解决。通过解答应用题,促使学生把所学的数学知识同实际生活和一些简单的科学技术知识联系起来,从而使学生既了解数学的实际应用,又初步培养了运用所学的数学知识解决实际问题的能力。另外数学作为一门工具学科,也应该把它用于解决实际问题作为教学的一个重点。这一点越来越多地被各国数学教育工作者所认识。例如,美国在80年代初就提出“解问题是80年代学校数学的重点;”在为90年代拟订的中小学数学课程标准中,再一次强调数学教育的目标之一是使学生成为“具有解数学问题能力的人”,“有效地应用数学方法解问题的人”。当然,培养学生解应用题能力的重要意义远不止于此,还可以发展学生的逻辑思维能力,培养学生良好的思维品质(如思维的灵活性、创造性)和道德品质等。而这些都是作为现代社会中具有较高的文化素养的公民所必须具备的能力和品质。

长期以来,我国的小学数学,无论从教材或从教学来说,对应用题教学是重视的,但是也存在不少问题,主要是偏重内容的教学,轻视能力的培养,加之教材的选择和编排不尽合理,教学的方法不尽适当,以致花的力量很大,收的效果较小。因此,如何提高学生解应用题能力,又使学生负担较轻,是一个值得认真研究探讨的问题。

二 解答应用题教学的改革趋势

近年来,国内外一些数学教育工作者和有经验的教师对解答应用题的教学,特别是如何培养能力进行了一些改革的尝试,取得了一些有益的经验。主要有以下几个发展趋势。

(一)应用题的内容趋于扩大

首先是加强联系实际的问题。不仅限于课本中编好的现成应用题,而是从实际生活中收集材料和数据,进行一些计算。例如,美国在进行加减计算时,让学生分类收集一些数字材料,然后进行统计和计算。英国在教学时给学生一张火车时刻表,不仅让学生能看懂某次车始发和到达的时刻,而且进行各种计算。通过一些实际作业使学生知道数学的概念和思想就存在于人们的活动当中,并且能够运用数学知识解决生活中的实际问题。我国有些教师也很注意实际生活中的数学问题。例如,一位教师出了这样一个题目:“某车间用一块长90分米、宽60分米的铁皮剪成半径是10分米的圆形铁片,该怎样下料才能使铁皮的利用率最高?”结果多数学生列成下式:90×60÷(3.14×10)≈17个;部分学生通过画图(左下

2图)得到答案是12个;还有一部分学生通过操作(如右下图)

得到答案是13个。通过讨论,使学生认识到最后一种下料方法利用率高,而第一种计算方法是脱离了这块铁皮的实际的。通过这样的问题使学生初步体会到在解决实际问题时绝不能生搬硬套所学的计算知识,还要注意对实际问题进行具体分析。

其次,运用数学知识所解的问题不限于实际生活中遇到的,还包括一些有助于培养学生运用数学知识进行探究能力的问题。例如,在下面的○里填上合适的数,使每相邻两个○里的数的和等于它们中间□里的数。让学生不仅写出不同的答案,而且找出填写的规律,并回答出能不能使开头和末尾的○里的数相同。由于解题的范围较广,很多国家不用“应用题”这个名称,直接叫做“问题”,日本原来叫做“应用题”,现改称“文章题”,以体现其范围的扩展。

(二)应用题的难度趋于降低

这个问题在多数国家已经得到解决。如日、美、英等国,解问题的面较广,较联系实际,但是难度较小。如日本课本中的文章题大多是两步计算的。有少数国家,如俄罗斯,原来应用题的难度较大,步数较多,后来难度已有所降低或适当后移。特别是在把小学三年制改为四年制以后,随着算术内容教学时间的延长,相应地应用题的教学时间也拉长了,应用题的难度也进一步降低。香港地区编订的《数学科学习目标》中规定整数四则应用题,“每题运算次数不超过两次”,分数、小数限解简易应用题。许多国家或地区采取这些措施,使应用题教学更适合小学生的年龄特点,无疑会有利于减轻学生的学习负担,更好地激发学生对解应用题的兴趣和积极性。我国在解应用题方面一直存在着偏难偏多的问题,特别是升学考试为了便于择优录取,往往出现超过大纲、课本范围的题目,给教学带来很大的压力和负担。近年来实施义务教育以后,强调全面提高民族素质,应用题教学开始注意适当降低难度,是一个可喜的现象。

(三)重视培养学生掌握解题的一般策略

这是培养学生解应用题能力的重要条件之一。它与应用题的教学目的和作用是紧密联系着的。长期以来,无论在国内或国外,都或多或少地把在小学数学课中要教会学生解答某些类型的应用题作为教学的最终目的。从这一看法出发,把教给学生应用题类型,记结语或公式作为基础知识。结果形成学生套公式的习惯,没有真正培养起解题能力。近些年来,越来越多的数学教育工作者认识到,应用题教学的最终目的,应是通过一些有代表性的问题的解答,使学生掌握解问题的一般策略或方法,从而达到真正培养学生解决简单的实际问题的能力。例如,日本伊藤武说过,过去解应用题,安于形式地机械地进行,把应用题分成若干类型,每一个类型都有一种确定的解法,结果容易使学生对确定的一些问题会解,而没学过的应用题就不会解了。前苏联弗利德曼著《中小学数学教学心理学原理》中说:“形成和发展学生解任何数学题(包括实用题)的一般技能,这是数学教学的基本职能之一”。1988年第六届国际数学教育会议也强调教学生学会使用解题的一般策略。有的代表指出,传统的教学解问题的方法往往是由教师给出一个范例,让学生模仿;教师不仅没有给学生准备真实的问题情境,也没有教给学生一般的解题策略,这样既不能提高学生解问题的能力,也不能提高他们解问题的积极性。有代表提出解数学问题的一般策略有:联系、分析、分类、想象、选择、作计划、预测、推论、检验、评价等。美国新拟订的《中小学数学课程和评价标准》中,每个学段的第一条标准就是学习和应用解问题的策略,只是要求的水平不同,体现逐步提高。目前美国的小学数学课本大都编入解题的一般策略,作为正式的教学内容。例如,一本五年级课本中出现以下一些内容:用图解,检验,有多余条件或缺少条件的,编题,多步题的解题步骤,估算得数,用表解。

近年来,我国一些数学教研人员和教师也开始注意研究如何教给学生一般的解题思路和方法,特别重视分析题里的数量关系。有的实验教材中也加强理解题意,摘录应用题条件,补充应用题的条件,检验应用题的解答等的训练。这对于提高学生解答应用题能力有很大的帮助。

(四)加强方程解法使之与算术解法相辅相成

从60~70年代的数学教育现代化运动开始,许多国家的小学数学增加了简易方程和列方程解应用题。但是列方程解应用题教学的起始期以及深度、广度,差异很大。例如,前苏联教学方程解法从小学二年级就开始了,而且有两步的应用题要求用方程解。这就涉及算术解法与方程解法之间的关系问题。近年来逐渐趋于一致。一方面,较多的国家或地区,如日本、俄罗斯、香港等,小学教学列方程解应用题限两、三步计算的,另一方面是在用算术方法解应用题有了一定基础再逐步出现列方程解应用题,这样可以使两种解法起到相辅相成的作用。

在我国,自80年代初小学开始增加列方程解应用题,一直有不同的看法。十多年的实践表明,增加简易方程和列方程解应用题,的确有助于发展学生的抽象思维,减少解应用题的难度,培养学生灵活解题的能力,并有利于中小学数学的衔接。但是在实际教学时还存在着不同的处理方法。特别是涉及分数除法应用题的教学,很多教师把用方程解作为向算术解法的过渡,最后还是强调算术解法,忽视方程解法。这样仍不能达到降低难度减轻学生负担的目的。近年来有些改革实验,强调算术解法与方程解法并重,相辅相成,取得较好的效果。例如,据《小学数学教师》1989年第3期载上海虹口区教育学院等按上述方法试验情况,第一次测试,试验班与控制班差异不明显,第二年秋追踪到中学进行测试,结果试验班成绩明显优于控制班,只学算术解法的学生到了中学产生了负迁移。另据《小学数学教师》1992年第2期载无锡市教委教研室等使用课程教材研究所编的实验教材,也取得类似的结果。两个实验班采取加强算术解法与方程解法的联系,并且两者并重,而两个对照班仍教给解题模式。结果单元教学完了,测试实验班和对照班成绩没有显著差异,但是寒假后再测试差异明显,实验班和对照班的成绩分别为87.3分和78.7分。但是根据北京一所小学的实验,单元教学完了在测试3步题和灵活解应用题时,实验班和普通班的成绩就出现明显差异。

三 义务教育《小学数学教学大纲(试用)》对提高解应用题能力采取的措施

《九年义务教育小学数学教学大纲(试用)》为了适应义务教育的性质和需要,切实提高小学生解答应用题的能力,根据国内外应用题教学改革的趋势,结合我国的实际情况,采取以下一些具体的改革措施。

(一)降低应用题的难度

《大纲(试用)》明确规定:整数、小数应用题最多不超过三步;分数、百分数应用题以

一、两步计算的为主,最多不超过三步(只限比较容易的)。删去了原大纲中的稍复杂的应用题以及综合性的不太繁难的应用题。由于全国各地的条件不平衡,作为义务教育,提出的统一要求不能太高,这样修改就使全国大多数学校大多数学生经过努力都能达到规定的要求,而且有利于学生的全面发展,为升入初中打下更好的基础。考虑到各地的条件不平衡,《大纲(试用)》中也注意有些弹性,规定四步应用题(比较容易的)作为选学内容,以便使少数条件较好的学校能充分发挥学生的积极性,更好地提高解题能力。

(二)加强联系实际

这比原大纲有明显加强。一方面增加了联系实际的内容,如百分数的应用中明确提出利息的计算,把求平均数问题与统计紧密结合起来等。另一方面在说明中强调“要引导学生了解数学知识的实际应用,从当地实际出发,进行调查,收集数据,在教师的帮助和指导下,编成数学问题,进行计算、解答,或作一些简单的统计,逐步培养学生这方面的兴趣、意识和解决实际问题的能力”。这对于培养学生具有自觉地把数学应用于实际的意识和态度,使数学真正成为学生手中的有用的工具,起着重要的作用。

(三)注意体现教给学生解题的一般策略

在《大纲(试用)》的说明中提出:“要引导学生分析数量关系,掌握解题思路。”这实际体现了培养学生掌握解题的一般策略。为了使之更加落实,在各年级的教学要求中还明确提出分阶段要求。例如,在五年制一年级要求学生知道题目中的条件和问题,二年级要求初步学会口述应用题的条件和问题,三年级把常见的数量关系作为知识点列入大纲,要求初步学会口述解题思路,进一步培养检查和验算的习惯,四年级要求掌握解应用题的一般步骤,五年级要求会有条理地说明解题思路。这样安排要求,有利于循序渐进地培养学生掌握解题的一般策略,逐步提高学生解应用题的能力。与此同时,《大纲(试用)》中还注意适当让学生掌握解题的特殊策略或方法。例如,说明和教学要求中都提到会按照题目的具体情况选用简便的解答方法。这样有利于培养学生思维的敏捷性和灵活性。

(四)适当加强方程解应用题及其与算术解法的联系

首先,在教学简易方程时增加了ax±bx=c这一类型,相应地扩展了用方程解应用题的范围。这不仅可以用来解答较多的整数、小数应用题,而且可以用来解答一些分数、百分数应用题(需用逆思考的)。这样还降低了所解的分数、百分数应用题的难度。例如,“饲养小组养白兔和黑兔共18只,学生接受,而且符合代数列方程解应用题的一般思路,从而为初中的学习做更好的准备。其次,《大纲(试用)》中强调五年级进一步提高用算术方法和用方程解应用题的能力,体现了加强两者间的联系以及灵活合理地运用两

知道方程解法和算术解法是密切联系着的,不是各自孤立的。也只有这样教学才能提高学生用两种方法解应用题的能力,从而进步发展学生在解题中的思维的灵活性和创造性。

四 对培养学生解答应用题能力的几点教学建议

下面根据近年来国内外改革的经验以及个人参加实验工作中的体会,对培养学生解答应用题能力提几点教学建议。

(一)抓好简单应用题的教学

大家都知道,解简单应用题是解复合应用题的基础,无论整数应用题或分数应用题都是一样,它们有共同的教学规律。打好整数、分数简单应用题的基础就为解复合应用题做好了准备。

怎么叫做打好解答简单应用题的基础?个人体会主要是使学生初步理解和掌握四则运算的意义,会分析简单应用题里的数量关系,然后能根据题里的数量关系正确选择运算方法,并养成检验的良好习惯。下面做一些具体的分析。

1.初步理解和掌握四则运算的意义。这是学习解答一切应用题的重要基础。正像有的教师所讲的,虽然应用题的内容是千变万化的,但都是四则运算在实际中的应用。往往有些学生不理解四则运算的意义,解答简单应用题时乱猜算法,或者根据题里的某个词语选定运算方法,这样是不能真正培养起解答应用题的能力的。关于四则运算的意义,要根据儿童不同年龄的认知特点分成不同的层次来教学。低年级要通过操作直观使学生理解每种运算的含义。例如减法,只要通过摆物品和图画等使学生懂得是从一个数里去掉一部分求剩下的部分是多少;高年级再进一步抽象,使学生懂得减法是已知两数和与其中一个加数求另一个加数是多少。高年级教学分数除法也是从乘法的逆运算的角度来理解的,这样就便于在解应用题时实际应用。

2.使学生学会分析数量关系。这是解答应用题的一项基本功。即使是简单应用题也存在着一定的数量关系,绝不能因为应用题简单而忽视对数量关系的分析。分析清楚题里已知条件和问题之间存在着什么样的数量关系,才好确定解决问题的方法。有些简单应用题的数量关系是明显的,学生容易弄清的。例如,“有5只黑兔,又跑来3只白兔,一共有几只兔?”学生很容易弄清,把原有的5只和跑来的3只合并起来,就可以知道一共有几只兔。但是有些简单应用题,学生分析数量关系就困难一些。例如,“有5只黑兔,白兔比黑兔多3只,白兔有多少只?”有些学生往往不清楚题里的数量关系,简单地看到“多3只”就判断用加法,结果与遇到求白兔比黑兔多几只的题发生混淆。因此,教学时最好通过操作、直观使学生弄清题里的数量关系。如下图,引导学生根据题里的条件分析出:白兔的只数多,可以分成两部分,一部分是和黑兔同样多的5只,另一部分是比黑兔多的3只,要求白兔的只数就要把这两部分合并起来,从而要用加法计算。由于通过操作和直观,在学生的头脑中对所学的应用题的数量关系形成了表象,经过多次练习,就能初步形成概括性的规律性的认识。这样教学,学生对每种应用题的数量关系都有一定的分析思路,就不容易发生混淆,也就不需要再教什么计算公式。

还可以举一道分数应用题。例如,“果园里有梨树480棵,占

还有一个判断哪个量是单位1的问题。通过线段图,学生容易理解,梨树的要把总棵数看作单位1。进一步再分析,题里没有告诉总棵数是多少,知道

用题的数量关系,并且可以防止学生根据一些关键词来机械地判断单位1和套用数量关系式。

3.紧密联系运算的意义来选择运算方法。在分析数量关系的基础上紧密联系运算的意义(或含义),把对运算的意义(或含义)的理解与应用直接联系起来,很容易确定运算方法。例如,当学生分析出要把两个数合并(结合应用题内容具体分析,如上面求白兔的只数的应用题),就联想到用加法;当分析出要从一个数里去掉一部分,就联想到用减法;当分析出要求几个几是多少,就联想到用乘法;当分析出要把一个数平均分成几份求一份是多少或者求一个数里有几个另一个数,就联想到用除法。对于分数应用题也是一样,当分析出要求一个数的几分之几是多少,联想到一个数乘以分数的意义,可以确定用乘法;反过来当分析出一个数(未知数)的几分之几等于多少(已知),要求未知的数(如上面求果树的总棵数的应用题),联想到可直接列方程解,或联想到分数除法的意义,可确定用除法。由于运算的意义(或含义)与分析应用题的数量关系建立起直接联系,学生在解答应用题的过程中一方面加深对运算意义(或含义)的理解,一方面学会应用运算的意义(或含义)来解题,从而提高学生自觉地应用所学的数学知识正确地解决实际问题的能力。

4.培养检验的良好习惯。解答简单应用题同进行四则计算一样,也要注意培养检验的习惯,这样一方面可以提高解题的正确率,另一方面可以为培养检验复合应用题的能力打下初步基础。检验应用题要比检验四则计算复杂一些,首先要重新读题,分析已知条件和所求的问题之间的关系是否正确,然后再看列式、计算、答案是否正确。较高年级还可以通过改编应用题并解答来进行检验。通过检验还可培养学生思维的深刻性,对解答结果的负责态度和自信心。

实践表明,很多城乡的教师按照上述原则和方法教学,收到良好的效果,学生容易接受,解题的正确率高,灵活应用知识的能力较强。但是也有一些教师采用另一种教学方法,即教给学生区分应用题类型,运用解题公式,结果给学生增加了学习难度,出现死记硬套的现象。目前对这个问题还有争论,下面谈谈个人的一点看法:

(1)从数学本身看,把简单应用题划分的类型以及概括的解题公式是否科学,还值得研究。简单应用题的内容范围很广,从科学的角度说,研究它的分类是完全可以的,实际上美、日等国也有些数学教育工作者对简单应用题进行分类。但是如何分类差异较大,目前国内流行的分类也不完全一致,因此这还是一个有待深入研究的问题。例如现代数学用笛卡尔积定义乘法,有些实际问题就不好区分被乘数和乘数。而这类问题就没有包括在目前流行的分类之中。把求一个数的几分之几是多少作为一个类型题也欠妥当,因为一个数乘以分数的意义就是求一个数的几分之几是多少,这样的应用题不过是分数乘法的意义的直接应用,根本没有什么分类型的问题。至于有些解题公式是否正确地全面地反映实际也值得研究。例如,所谓“标准量×分率=部分量”,容易使学生误解“部分量”都是小于“标准量”的,从而导致判断哪个量是“标准量”的错误。而且遇到这样的问题只要应用一个数乘以分数的意义就能解决,因此这种公式是多余的。

(2)从唯物辩证观点来看,应用题的数量关系是有内在联系的,分类型、套公式,往往把本来有联系的问题人为地割裂开来,不利于学生掌握。例如,有这样两道应用题:“食堂每天吃20千克面粉,3天吃多少千克面粉?”“食堂每天吃20千克面粉,吃的大米是面粉的3倍,每天吃大米多少千克?”如果分析两题的数量关系,都是求3个20千克是多少,因此要用乘法算。如果要把它们划分为两种不同类型的题,就割断了它们在数量关系上的内在联系,从而不利于学生以简驭繁地掌握应用题的分析和解答方法。

(3)从学生的认知特点来看,也值得研究。低年级学生的认知特点是以具体形象思维为主,教学解应用题同教学其它数学知识一样,也应结合操作、直观,使学生掌握应用题的分析和解答方法,而不宜教给抽象类型、公式,否则学生不理解,就容易死记硬套。在教学实践中常常看到,学生会解答一道应用题,却说不出是“部分数+部分数=总数”,还是“总数-部分数=部分数”。遇到两步应用题就更加困难。例如,“同学们做了30件玩具,自己留下6件,剩下的平均送给幼儿园的3个班,每班分得几件?”第一步是“总数-部分数=部分数”,有些好学生还能说出,而第二步就很难说出“求出的部分数变成了总数”。这些违反儿童认知规律的做法给学生增加了不必要的学习负担。

(4)从现代数学论的原则看,要教学生理解基本概念、基本原理,才能实现最大迁移;强调思维过程,要从以记忆为主的教学方法转到以思维为主的教学方法;注意发挥学生的主体作用,培养学生探究能力。而以教分类型、记公式为主的教学方法正好与上述的原则相违背,妨碍学生对数学基本概念、基本原理的理解和掌握,束缚学生的思维。

当然,提出简单应用题教学不宜分类型记公式的问题,并不意味着在任何情况下都不能教给学生公式。对某些内容在适当的时候教给学生必要的公式,如面积、体积计算公式等,还是可以的,但教学时也要注意使学生理解公式的来源,防止机械的记忆。

总之,简单应用题教学生分类型记公式,涉及培养什么人的问题以及如何提高民族素质的问题,从理论和实践上进行一些深入的探讨,是十分必要的。

关于抓好简单应用题教学还有其它一些问题,将在下面论述。

(二)加强应用题之间的联系

从实质上说,这是应用题的组织结构问题。应用题的组织是否合理,结构是否恰当,对于培养学生的解题能力具有十分重要的意义。过去的数学课本,由于对这个问题处理得不够好,给应用题教学造成一定的困难,直接妨碍学生解题能力的提高。经过近年来的实验研究,比较深刻地认识到,应用题的内容和解法虽然千变万化,但其内在联系十分紧密。只要根据应用题的内在联系,合理地组织教学,可以使学生较好地理解应用题的结构,较快地掌握应用题的分析和解答方法。

1.简单应用题的内在联系。即使简单应用题之间,也有着紧密的联系。下面以两组加减法简单应用题为例加以分析。

①有5只黑兔,8 ②黑兔和白兔一共有 ③黑兔和白兔一共有

只白兔,一共有

13只,有5只黑兔,13只,有8只白兔,多少只兔?

有多少只白兔?

有多少只黑兔?

④有5只黑兔,白兔 ⑤有5只黑兔,8

⑥有8只白兔,黑兔

比黑兔多3只,有

只白兔,白兔比

比白兔少3只,有

多少只白兔?

黑兔多几只?

多少只黑兔?

从上面6道题中,很容易看出①②③为一组,①是原型题,②③是①的逆思考;④⑤⑥为一组,⑤是原型题,④⑥是⑤的逆思考。同时第一组题与第二组题也有联系。例如,①④的条件和问题虽不相同,但分析数量关系时却要把两个已知数合并,从而要用加法解答。①⑤的条件都相同,但问题不同,数量关系不同,解答方法也不同。编写教材和教学时,不宜把重点放在分类型上,而要逐步地揭示它们的内在联系和区别,使学生更好地掌握题里的数量关系和解答方法。

分数应用题之间、分数应用题与整数应用题之间也有其内在联系。例如,教学分数乘、除法应用题之后,可与整数应用题进行联系。

通过联系对比,可以看出①②③是一组整数应用题,①是原型题;④⑤⑥是一组分数应用题,⑤是原型题。分数应用题分别与整数应用题相对应,数量关系相反,但解答方法是一致的,因为分数乘法的意义扩展了。教学时如能引导学生发现和总结规律,就会加深对两组应用题的理解。

2.复合应用题与简单应用题之间的联系。一般地说,复合应用题都是由几个简单应用题组合而成的,或者说是在简单应用题的基础上扩展起来的。因此它们之间有着密切的联系。但从简单应用题扩展到复合应用题又是个质的飞跃。以两步应用题为例,它们同简单应用题比较,不仅是已知条件增多,而且数量关系也复杂了。一般地说,简单应用题的问题是和两个已知条件直接联系和相对应着的,从两个已知条件可以判断所求的问题就是题里的问题;反过来,问题所需要的条件就是题里所给的条件。而在两步应用题中,问题是和题里所有的已知条件联系着的,是对所有的条件提出来的。这样就形成了问题和所需要的直接条件之间的“分离”现象,也可以说一个直接条件被隐藏起来,而需要根据问题和已知条件的关系把这个所需的条件找出来。从解答的角度说就是要提出一个中间问题。而要解答这个中间问题还要正确地选择已知条件。因此这比解答简单应用题需要较为复杂的分析和综合,需要进行间接的推理(即从两个判断推出一个新的判断)。

例如,两步应用题,“小明画5张画,小华比小明多画3张,他们一共画多少张?”要求两人一共画多少张,必须先知道小明和小华各画多少张,而题里没有直接告诉小华画多少张,所以要先求小华画多少张。这样的分析、推理显然比简单应用题复杂。

至于三步或更多步数的应用题,已知条件就更多,数量关系更复杂,分析推理的步骤也就更多。但分析推理的方法与两步应用题的基本相同。下面着重谈教学两步应用题如何加强与简单应用题的联系。主要有以下两点:

(1)解答一些连续两问的应用题。为了给学习两步应用题做好准备,除了打好简单应用题的基础(包括提问题、填条件)外,适当出现一些连续两问的应用题很有好处。这种应用题在向两步应用题过渡方面起着桥梁的作用。在这样的应用题中,关键在第二问,有时缺少一个已知条件,需要到前面的简单应用题里去找,往往正好是前面一题的计算结果;有时第二问中一个已知条件也没有,都要到前面一题里去找。例如,“学校里有8棵杨树,柳树比杨树多3棵,有多少棵柳树?两种树一共有多少棵?”第二问所需的两个已知条件,一个是前面一题的一个已知条件,另一个是前面一题的计算结果。由于适当进行这样的练习,就为两步应用题的分析和解答做了一定准备。

(2)教学两步应用题时由简单应用题引入,然后把它扩展成两步应用题。例如,“①学校买来20张颜色纸,用去14张,还剩多少张?②学校买来12张红色纸和8张黄色纸,用去14张,还剩多少张?”通过比较,使学生看出两步应用题与简单应用题的联系和区别,从而初步体会到两步应用题的结构,明确解答两步应用题必须分两步计算,先提出一个问题,进行计算,再解答原题里的问题。这样学生不仅容易掌握,还有利于激发学生的思考,培养学生分析问题的能力。以后还要经常做一些对比练习。

3.复合应用题之间的联系。这一点更为重要。通过复合应用题间的联系对比,可以加深学生对新学的应用题的结构、分析推理方法等的理解,从而较快地掌握复合应用题的解答方法,产生迁移的效果。复合应用题间的联系是多种多样的,需要进行认真的分析,选取适当的联系的途径,才能收到良好的效果。下面举出加强联系的几个方面的例子。

(1)纵向联系的:有些应用题是由已学的步数较少的应用题扩展而成的。教学时由已学的应用题引入,通过联系比较,很容易看出新的应用题的条件或问题有哪些变化,如何在已学的基础上进一步分析推理,获得新的应用题的解答方法。例如,“①汽车从甲地开往乙地,3小时行135千米。照这样计算,一共行了5小时,甲乙两地相距多少千米?②汽车从甲地开往乙地,3小时行135千米,照这样计算,还要行2小时才能到达乙地,甲乙两地相距多少千米?”

(2)横向联系的:有些应用题基本数量关系相同,只是已知条件有些变化,学生容易在已学的基础上类推出来,不需要作为新内容来讲,这样既调动学生思维的积极性,又可减少教学时间,收到举一反三的效果。例如,“①学校先买10瓶墨水,又买来8瓶。用去14瓶,还剩多少瓶?②学校买来3盒墨水,每盒6瓶。用去14瓶,还剩多少瓶?”

(3)联系对比的:有些应用题的条件问题相似,解法容易混淆,可以通过联系对比使学生区分它们的异同,从而提高解题的正确率。例如,“①

(三)重视教学解题的一般策略

这是培养学生解题能力的关键性问题。正如前边所讲的,会解答所学的应用题并不是最终的教学目的,而是通过所学的有代表性的应用题达到使学生掌握解题的一般策略。这在现今的信息社会尤为重要,要使学生成为能够处理信息的人,通过解答应用题培养学生解题的一般策略是一个重要途径。关于解题的一般策略,主要有以下几个方面:

1.条件和问题的收集。

为了解一道题首先要弄清楚题里给了哪些已知条件,要求解决什么问题。识别或收集条件和问题的过程也就是收集信息的过程,也是理解信息的过程。在低年级往往要求学生口述已知条件和问题,到高年级也可以教给学生用图(如线段图)或表解来表示已知条件和问题。学生清楚地表述和表示一道题的已知条件和问题是解题的重要前提。一般地说,题里的问题和所需的已知条件都已直接给出。但是为了更好地培养学生正确收集必要的信息的能力,在适当年级也可适当出现信息不完全的题目。例如有的题目可以缺少问题或一两个已知条件,让学生从实际中收集,加以补充;也可以适当出现一些有多余信息的题目,使学生能在较多的已知条件中,正确选择有用的和必需的来进行计算。实验表明,有能力的学生看到题很快指出不需要的数据,而能力较差的学生则需要教师的帮助,有的甚至在教师的帮助下也很难找到多余的数据。经常练习对于培养学生这方面的能力很有好处。

2.分析数量关系。

这是对所收集的信息进行加工的开始,也是解题的一个重要步骤。无论解简单应用题或复合应用题,都要认真分析题里的已知条件和已知条件之间,已知条件和问题之间的数量关系,才好确定解答的方法。分析数量关系一般有两种方法:一种是从条件入手,通称综合法;另一种是从问话入手,通称分析法。综合法比较容易掌握,但其缺点是学生往往看到前面相邻的两个已知条件就进行计算,而忽略后面的已知条件,未从整体考虑。提出的中间问题不一定是解这道题所需要的。从问话入手稍难一些,但能使学生从整体出发,根据所解的问题提出所需的条件,从而较正确地确定中间问题。实验表明,开始教学解两步应用题,宜于从条件入手,即使采取了这种分析的方法,也还会有部分中、差生难以提出中间问题,需要经过一段训练逐步掌握。但是逐步要转到训练学生从问话入手,这对提高学生解多步应用题的分析能力很有帮助。至于学生自己解题时用哪种方法分析,不必加以限制。考虑到进行分析需要一定的训练时间,课堂上解应用题时要给学生口头分析的机会,除了教师指定某个学生分析外,要让同桌的学生互相练习分析。不宜过早地让学生书面分析,这样费时间,会减少解答应用题的数量。学生有了口头分析的基础,可在课外安排少量的书面分析作业。此外,订正时也要重视让学生进行口头分析。

3.拟订解答计划。

这是对信息进行加工的继续。就解决一般的问题来说,它是必不可少的步骤。但在小学数学中,解答简单应用题时则没有必要,只在解答复合应用题时才有必要,而且有时边分析边拟订解答计划边解答,往往与上一步的分析数量关系或下一步的解答合并起来。从掌握解题的一般策略来说,还是单把它划为一个阶段为好。拟订解答计划是在理解题意、分析数量关系的基础上确定解答需要分成几步,每步要解答什么问题。这是分析、推理的直接成果。正确地拟订解答计划,表明学生对所解的题目有了整体上的理解,同时又对解决问题的具体步骤做出了合乎逻辑的规划。能否在解答之前正确地拟订解答计划也是考察学生能力的重要的标志之一。实验表明,好的学生一般能在解答之前订好解答计划,而较差的学生往往能正确解答,却不一定能正确地提出每一步所要解决问题。因此,教学时在这方面适当加以训练,对培养学生的逻辑思维有一定的好处。

4.解答。

这是对信息进行加工的最后阶段。如果说前面各阶段主要是思维的过程,那么这个阶段要产生思维的结果。当然这个阶段也是有思维过程的。例如解答每一步要选择哪两个已知数,进行哪种运算,如何使计算正确等,都要深思熟虑,这样才能达到最终的正确结果。教学的任务就是要引导学生既重视思维的过程,也重视思维的结果,达到正确解答应用题的目的。这里需要提出的是,往往学生把算法选对了,但把得数算错了;或者竖式里的得数算对了,最后抄错了数。因此这个阶段特别要注意培养细心认真的良好习惯。

5.检验与评价。

对应用题的解答的检验与评价实质上是对信息的检验与评价。这一步教学不仅对提高应用题解答的正确率有帮助,而且有助于培养学生良好的检验习惯,对信息的正确评价的能力。有经验的教师对这方面的教学比较重视,收到较好的效果。但是也常常遇到教师虽然重视了,但有少数学生仍没有养成良好的检验习惯,甚至有少数好的学生做得很快,但是检查不出错误。因此在培养检验习惯的同时,还要适当教以检验的方法。检验方法有多种,通常低年级只要教学生从审题到解答逐一检查。中、高年级有些题可以逐步教给学生用不同解法来检验。例如,原来应用题是用连减计算的,检验时可以把两个减数相加,再从被减数里减,去,看两次算得的结果是否相同。以后还可以适当教学生把求得的结果作为已知条件,把另一个已知的量作为未知的,然后倒推求出结果看是否与已知的相符。这只作为一种检验方法教给学生在解答中练习应用,不宜作为考试要求。通过检验要培养学生对自己的解答具有负责态度和自信心。检验之后还要能对自己的解答进行评价。为了培养学生评价能力,可以开展相互评价,或教师给学生一些案例让学生练习评价。有条件的话,还可以教给学生估算得数。

解题的一般策略除上述几方面外,还有预测、解释等。这里从略。总之,今后应用题教学要真正做到培养学生的解题能力,不是在加深应用题的难度上下功夫,而是要通过有代表性的又为学生容易接受的题目,着重培养学生解题的一般策略,使学生能够产生迁移,这样即使遇到一些未解过的题目,学生经过自己的分析、推理也能找出解答的方法。

(四)重视变式练习

练习在培养解答应用题能力中起着重要的作用。但是练习要合理地组织,才能收到良好的效果。其中特别是适当安排一些变式练习,对于克服简单的机械重复,提高解题效率,培养灵活的解题能力,具有十分重要的意义。实验表明,通过变式练习,很多学生能够排除应用题中非本质特征的干扰,正确地分析题里的数量关系和选择运算方法,求得正确的答案。应用题的变式练习从低年级起就要做一些安排。主要有以下几个方面:

1.改变叙述的顺序。例如,乘法应用题,第一个已知条件不仅有需做被乘数的,还要有需做乘数的。复合应用题,有些相邻的两个已知条件可以进行计算的,也要有些不可以进行计算的,使学生能在真正理解题里的数量关系的基础上正确地选配已知数进行计算。

2.改变叙述的方式。例如,加法应用题,不宜每题的问题都出现“一共”,已知条件中也可以出“飞走”“跑掉”等词语,以防学生简单地根据个别词语错误地判断运算方法。在高年级教学分数应用题更要注意适当变化叙述方

这样可以防止学生死记“相当于”后面就是“单位1”,而加强分析数量关系。

3.有多余的条件。在解题的一般策略中已经谈过。也可以把它看作是一种变式练习。由于有多余的条件,对原来所解的正常的题目来说,在内容和形式上都有了一些非本质的变化,这就促使学生更认真地分析数量关系,正确地选择已知数和运算方法,而不受这些非本质特点的干扰,从而有利于发展学生的思维。例如,教学两步应用题后出现这样的应用题:“同学们做了8朵红花,7朵黄花。送给幼儿园3个班,一共送了10朵,还剩多少朵?”实验表明,如果去掉“3个班”,绝大多数学生都能做对;加上“3个班”后,出现了各种各样的错误,其中按三步计算的达30%。

4.改变个别已知条件或问题,使其具有不同的或特殊的解法。例如,教学正比例之后出现这样的应用题,“果园里有梨树100棵,桃树与梨树的棵数比是4∶5,有桃树多少棵?”学生很容易用比例解答出来。如果把第二

棵数的比才能用比例解答。又例如,“玩具厂原计划每天生产玩具42件,8天完成。实际只用6天。实际每天比原计划多生产多少件?”学生一般都能列成算式:42×8÷6—42。如果把“6天”改为“7天”,虽然仍可照上面方法列式解答,但是还有特殊解法,有的学生会列成简便算式:42÷7。因此它有利于发展学生的直觉思维。

解答应用题的变式练习是多种多样的,这里只选常见的有代表性的几个方面举例说明。由此也能看出它们在提高学生灵活的解题能力,发展学生思维方面的作用。

(五)适当增加探究性的题目

如前所述,国外应用题教学改革的一个趋势是扩展应用题的范围,其中增加探究性的题目又是重点。我国应用题教学要进行改革,也应突破传统的应用题的范围,适当增加探究性的题目,以利于提高学生的解题能力,发展学生思维的创造性。初步考虑,可以注意以下几个方面:

1.适当出一些开放性的题目。

所谓开放性的题目就是题目的答案可以有多个。长期以来我们教学应用题的答案都是唯一的,这样把学生的思维束缚得很死,不利于培养学生的探究能力,如前面第二部分所举在○里填数的题目就是一个开放性的题目。第一个○里可以填不同的数,但是也有一定的范围限制。即最小是3,最大是13。又例如,周长是12厘米的长方形,长和宽都是整数,它的长、宽可能各是多少厘米?

2.适当出一些探索规律性的题目。

通过探索规律可以培养学生抽象概括的能力,发展思维的创造性。出题目时要注意具有多层次,以便于区分学生的不同思维水平。例如,下面的题有3个层次,第1小题是通过直观进行计算,第2小题离开直观进行计算,第3小题脱离具体计算概括公式。

(l)照下图的样子用小棒连着摆正方形。

□□ 摆2个用()根

□□□ 摆3个用()根

□□□□ 摆4个用()根

(2)连着摆6个正方形,要用()根小棒。写出算式。

(3)如果不数小棒,你能找出一般的计算公式吗?

实验表明,学生的答案呈现不同的思维水平。例如,有的学生第2小题就做错了,有的学生第2题虽然做对,但不会在此基础上概括出一般计算公式。

3.适当出一些非常规的题目。

上面举的一些例子有开放性、探索规律等特点,但是还与常规计算有较密切的联系。这里则指的是不一定用到常规计算的题目。例如,“有甲、乙、丙、丁4个学生赛跑,结果可能排出不同的名次。算一算一共可以排成多少种不同的名次。”这道题就不能利用常规计算而要借助图表找出正确答案。

以上探究性题目可都不作为教学要求,也不作为考试内容。

小学数学是随着社会、科学技术、生产和生活的发展需要不断变化的,其中的应用题教学必然也要随着发生变革。目前,无论从教材或教学来看,对应用题进行了一些改革,但是还很不够,需要进一步实验、探索,使其更加完善,以适应社会发展的需要,为培养人才打下更好基础做出贡献。

结合数学教学,浅谈培养学生良好的学习习惯

当今教育,正在进行新一轮课改。以培养创新精神和实践能力为重点,促进每个学生身心健康发展,培养良好的品德,强调基础教育要满足每个学生终身发展的需要,培养学生终身学习的愿望和能力。笔者结合常年数学教学实践认为,培养学生良好的学习习惯仍是一个很重要的环节。

学习习惯是指学习活动中形成的固定态度和行为。学习习惯对学生的学习有直接的影响,良好学习习惯是促进学生取得较好学习成绩的重要因素。良好的学习习惯养成了,学生将受用终生,而良好习惯要从小培养,“从娃娃抓起”。不良习惯一旦形成再纠正,那将是件很困难的事情。

结合数学教学,培养良好的习惯,包括那些内容呢?《小学数学教学义务大纲》指出“在教学过程中,要注意培养学生认真、严格、刻苦砖研的学习态度,独立思考,克服困难的精神,认真仔细、书写整洁,自觉检查的习惯”。以及学生乐于课前准备、活于课堂探究、勇于课后延伸;及时复习和独立完成作业等习惯。新课标还要求转变学生的学习方式,`培养学生合作学习、探究学习等综合学习方法,转变学生的学习态度,变“要我学”为“我要学”养成良好的学习习惯,培养学生对学习的责任心和终身学习的能力。

那么怎样结合数学教学培养学生良好的学习习惯呢?笔者认为应从以下六点做起:

第一、贯彻新理念、实施新教法,改进学生学习方式,改善学生学习状态。倡导发现学习,探究性学习及研究性学习,使学生积极参与到学习过程中来。变“要我学”为“我要学”,培养良好的学习习惯。教师在课堂教学中一方面要创设教学情境,激发学生的学习兴趣,使学生养成认真听讲的习惯;另一方面要根据数学课堂教学的特点,采用适当方法,培养学生自主探究、合作交流、自信学习、不断反思的学习习惯。

第二、让学生懂得为什么要培养这种学习习惯,使学生明确要这样做的意义。让学生明白怎样做才算好,怎样做才能做得好;让学生明白要这样做的意义。例如,要求学生计算四则混合运算式题时,必须要先认真审题。这样做不但能从整体上把握好运算顺序,寻找简便计算方法,而且还能避免因看错抄错数据、运算符号而产生错误。学生明白了,就会认真审题,逐渐形成认真审题的学习习惯。再如学生写字时老师要经常告诉学生正确的写字姿势,即头要端正,不要歪斜甚至伏在手臂上,眼睛离笔尖一尺左右;腰要正直稍有前倾,不要俯向桌面;双臂要撑开些,保持一定距离,如果两臂缩拢,会书写不灵便;双足放平,脚踏实地,不要一前一后,或交叠一起。对于写字姿势不好的学生随时纠正,同时讲一些危害性。学生就会逐渐形成良好的写字姿势习惯。

第三、紧密结合教学过程,严格要求,认真检查。培养良好的学习习惯是一个长期的细致的过程,必须结合教学过程进行。从小抓起,长抓不放。例如,独立完成作业的习惯,教师要提出具体要求。学生做作业时,老师不仅要注意学生做得是否正确,还要检查学生是否按老师提出的要求来做,是否独立完成作业,按要求做的,及时表扬。做得好的,再加奖励一个“笑脸”或是一朵“小花”,示范给其他同学看。让做得好的学生体验成就感,从而激励其向更好的方面发展。同时牵引写的不好学生向好的方面发展。对有抄袭作业等有坏毛病的学生,应以鼓励性语言教育为主。如:“你如果独立完成,思路肯定是最独到的,相信自己!”、“如果你用心去写,肯定会把字写的最漂亮!”,随时反馈学生信息,对于学生点滴的进步以及时表扬,耐心帮助他们,使其逐渐养成良好的作业习惯。

第四、赞赏学生独特性和富有个性化的理解与表达,培养学生勇于创新的良好习惯。课堂上或是作业中,对于同一道题,不同学生思路不同,方法不同却“殊途同归”,自然包含着学生各自不同的独创因素,即创新意识,对于学生敢于另辟蹊径的做法、想法教师应该及时给予肯定、表扬。甚至是不成熟的、或是错误的见解。教师都应从不同侧面赞赏学生独特性和富有个性化的理解与表达。让情感在这里交融,知识在这里增值。切忌抹杀学生的独到思维。另外课后练习适当增加拓展创新性的题目。引导学生勇于探索钻研一题多解,以题简意深的题目激发学生的学习兴趣,求得新颖、独到、变通的回答。从而培养学生勇于创新的良好学习习惯。

第五、教师以身作则,起表率作用。如教师工整合理的板书,就会直接影响学生,学生也会像老师那样字迹工整地认真书写。即教育无小事,事事皆教育,教师无小节,节节皆楷模。因此,教师要在培养学生良好的学习习惯上,言传身教,起楷模作用。

第六、良好的学习习惯的形成决非一朝一夕能够形成,我们每个老师都应对学生以高度负责的精神,主动、努力地耐心培养。同时要与学生家长保持经常性的联系。了解学生在家学习情况,和家长一起研究、探讨、合作,寻找最佳方法,帮助学生养成良好的学习习惯。

对新数学课程教学的探讨

本学期我们使用了北师大出版的《数学》(七年级上册),感觉新的教学理念下,教学内容、教学方法都有很大的变化。我们对教材、教学方式、教学效果进行了一些初步的探讨。

几乎每一节的引入都创设了一个实际生活情景,如第一节的用火柴摆正方形,分析正方形的个数与火柴根数关系;第四节的矩形娱乐场的面积问题。这些能较好的体现出数学来源于生活,又运用于生活的哲理。

在习题中设置了以人体体重估计人体血液质量的问题,说明人体健康指数是人体质量(千克)与人体身高(米)平方的商。这些习题特别贴近生活,学生回家后都饶有兴趣地测量爸爸妈妈的身高体重,计算双亲的健康指数和血液质量,学生们反映:父母普遍对此感兴趣,并纷纷夸奖自己的孩子。显然,这是一次激发学生学习兴趣,并让学生尝试成功的良好机遇,也在老师与家长之间架起了一座沟通的桥梁。在接下来的一次家长会上,我第一句话就说:“虽然我们没见过面,但你们的身高、体重、健康指数我都知道”,这一句话使会场的气氛顿时活跃起来,后面的话就好谈多了。

在新教材中,多项式、单项式的概念;多项式按降幂或升幂排列已经没有了踪影;添括号法则也不见了。而这恰是旧教材细、繁、难的地方,去的干净利落,不免人人欢喜。新增的代数式与实际意义的转化问题,可培养学生的创新精神,如有同学在解释8a3的意义时写到:有八个房间,每个间房有a个大箱子,每个大箱子中有a个小箱子,每个小箱子中有a瓶水,八个房间共有8a3瓶水。这种想法非常有新意。新一轮课程改革就是要改革教学过程中过分注重接受、记忆、模仿学习的倾向,倡导学生主动参与,交流、合作、探究等多种学习活动,改进学习方式,使学生真正成为学习的主人;成为具有发现、分析和解决实际问题能力的人。要使学生形成科学态度,学会科学方法;具有独立思考、自主探究的精神与求实创新的意识。

在初一数学教学第三章《字母能表示什么》中,我们要学生自主去探索、去发现用火柴棍摆成的各种图案与用火柴的总数的规律;用桌子椅子摆成的图案与用椅子的总数的规律;还鼓励学生去探索简单数列的通项公式。由此激发了学生自主探究的热情,促进了学生主体意识的觉醒。从而他们主动去寻找各种规律。其中一个典型的事例就是初一(8)班的孔秋强同学一天他来到老师办公室,兴匆匆地对我说:“老师我发现了一个规律:2的质数次方减去1是一个质数。”我进行了一些计算和验证,结论的确如此。

当时我不能证明结论的正确,也不能否定结论。这下可把我难住了。但我心里依然是高兴的。如果这结论真的成立,我的学生就发现了一个重要的定理,如果不成立,他也是进行了积极的探究。对质数的知识他掌握的比我还多了,他教给了我检验一个质数的方法。但是这个规律能否成立呢?这可真成了一个难题!我说你:“你再上网查一查,我也再想一想,不行的话,过两天珠海有个全国数学课程试验研讨会,我参加时,再请教有关专家。”在珠海的会议上一位来自山东的专家解开了我的谜团,他说:“早在17世纪,巴黎的僧侣马林?梅森(Marin Mersenne)曾断言267-1是质数,这就是著名的梅森猜想,在其后的250年内未曾引起过异议。时间到了1903年,在美国数学会的一次会议上,哥伦比亚大学的弗兰克?纳尔逊?科尔(Frank Nelson Cole)以"论大数的因式分解"为题作了一场报告,只用计算的方法就推翻了这个猜想,搞垮了这座250年的数学大厦。”这说明孔秋强也有与梅森类似的猜想。著名的梅森猜想历经250年才被否定,虽然孔秋强的发现如同梅森猜想一样最终被否定,但是他在数学学习中主动探索的精神是多么可贵!他能自主经历一场与数学大家一样的思维探索过程又是多么令人惊喜!

在这个问题的探索中,不但孔秋强同学增长了质数的知识,也促进了我的学习,我发现学生主体在推动我前进。不学习、不探究、不创新我将落后于学生,落后于时代,我感到活动教学的巨大威力。

在代数式与实际意义转化部分,有些题配的太难,如解释(a+b)(a-b)的实际意义,在没学平方差公式的前提下,学生很难想到它是两个正方形的面积差。

建议将第90页摆火柴的例子归到第111页探索规律中,而用116页的第4题引入“字母能表示什么”,效果会更好。建议增加合并同类项、代数式求值、去括号的课时量。代数式的意义的要求要明确,说明意义包括指实际意义和算法意义两个方面,强调实际意义的代数式形式不应过难,否则学生很难找规律。

建议老师在小结时可按数列和图形分类研究。关于数列找规律主要观察三种关系:前项、后项关系;相隔项(奇、偶项)的关系;找到的规律是否与各项内容相符。关于图形,无论是摆火柴,还是摆桌子都可分头、身、尾等部分观察发现规律。给学生一个观察研究的方法,找规律就不难了。

第111页随堂练习折纸求几条折痕问题,学生很难发现规律。按教参上建议折痕数与分裂后细胞数比较,学生越听越糊涂。后来我把这个题重新编排了一下:将一张长方形的纸对折,如图(用书上原图)可得到一条折痕。继续对折,对折时每次折痕与上次折痕保持平行,问:

(1)对折1次后折痕可将原长方形分成多少个小长方形?对折2次后呢?对折3次后呢?对折n次后呢?

(2)折痕数与小正方形数有关吗?

(3)对折n次后折痕是多少条?

设置问题的层次后,大部分学生能听懂了。我讲起来也轻松了!

第133页习题4.4中的第2题最好加问这些角中哪个是锐角、那些是钝角、那些是直角?可一题多用。

总之,新教材带来了教学内容、教学方式的巨大变化,给教师、学生的发展提供了创新的空间。在以后的教学过程中,我们将进一步探讨有关问题。

第二篇:如何培养小学二年级学生解答简单应用题的能力

如何培养小学二年级学生解答应用题的能力 镇头小学石琳静

[摘要]我们在教学中应从生活实际出发,培养学生的判断和分析能力,引领学生专心倾听、认真审题、独立思考、解决问题的好习惯,我要求学生每做一道应用题,都要坚持做到“读、找、想、算、答”五步。即一要准确地读三遍题;二要找出条件和问题;三要想好算法;四要正确地列式计算;五要作答。

[关键词]解题步骤要求审题习惯审题方法判断和分析能力

在小学数学教学中,应用题占了相当大的比重。简单应用题是小学生学习应用题的开始,对于小学二年级学生来说,要准确的解答应用题就要从提高解题能力上下功夫,为今后学习复杂应用题打下坚实的基础。如何培养低年级学生的解决问题的能力呢?

一、帮助学生明确应用题的解题步骤和要求

我要求学生每做一道应用题,都要坚持做到“读、找、想、算、答”五步。即一要准确地读三遍题;二要找出条件和问题;三要想好算法;四要正确地列式计算;五要作答。

为了使学生养成习惯,课上只要讲应用题,我自己都坚持按五步去做,给学生做示范,用自己的行动去影响学生。

二、帮助学生养成良好的审题习惯

要正确地解答应用题,首先要能准确地读题,正确理解题意。我要求学生每读一遍题,就在题的前边画一道,读完三遍,画出“△”。然后用单横线画出两个条件。分别注明①和②,用双横线画出问题,边画边小声读出条件和问题。为了帮助学生养成习惯,我还经常检查学生是否按要求去做了。

在理解题意的基础上,进一步分析已知条件和问题的关系。正确地选择算法,是正确解答问题的关键。为了帮助学生弄清楚在什么情况下用加或减,在什么情况下用乘或除,我让学生用分组讨论的方法进行练习。我把全班62名学生分成16个小组,每小组指定一个组长。当拿出一道应用题时,就让小组讨论基本数量关系,每人说一遍,会的教不会的,以好带差。还要求学生分析数量关系,并把所想的那句话写下来。如分析了“做4个朵花要用2张纸,有8张可以做几朵花?”后要写出“8张里面有几个2张?”分析了“兔有7只,鸡的只数是兔的5倍,有鸡多少只?”要写出“7只的5倍是多少只?”

通过以上练习,使学生知道在列式前必须分析数量关系。

三、教给学生审题方法,提高学生分析较灵活题的能力

所谓灵活题,一种是语言结构与普通提问不同,如“小荣认识56个字,小光认识48个字,普通提问是“小光比小荣少认几个字?”如改为“小光再认几个字就和小荣认的同样多?”有的学生就不懂了。

另一种灵活题就是“逆向叙述题”,其叙述顺序与生活行为顺序不一致。学生对这种题理解起来也感到困难。

为了提高学生理解灵活题的能力,助学生掌握几种理解题意的方法。

1.实物演示法

如,我常用一些图片演示“发了→还剩→原有”的关系;或用一把小木棒演示“用了→还剩→原有”的关系。帮助学生学会借助实物演示来理解题意。

2.换一个说法理解较难懂的语句

如:在解决一道题中“一年级有学生52人,二年级有学生50人,三年级和一年级同样多,三个年级一共有学生多少人?”通过讨论使学生弄懂它的意思,知道“三年级也是52人。”再如“学生做了红花、黄花、蓝花各8朵,一共做了多少朵?”就是“红花有8朵,”“黄花也有8朵,蓝花也有8朵”。

3.画线段图理解数量关系

教学时,我帮助学生学会看线段图,就帮助他们学会画线段图,并在线段图上注明条件和问题,以此来帮助分析数量关系。

4.借助生活经验理解题意

有的学生对“吃了→还剩→原有”等逆向叙述题不理解,我就举学生熟悉的事“你吃了4块糖,桌子上还剩5块糖,你原来有几块糖?”来帮助学生理解。

5、引导学生学会根据应用题的叙述进行逆向思维。

如读了“商店卖出圆珠笔34枝,比卖出的钢笔多12枝,卖出钢笔多少枝?一共卖出多少枝笔?之后,脑子里应思考“比卖出的钢笔多12枝,也就是卖出的钢笔比圆珠笔少12枝”,这样就可避免列成34+12的错误。又如读了“有人在车站上等车,车来了,上去10人,还有8人没上去,车站原来有多少人等车?”学生脑子里就应浮现出车站上等车及上车的情景。

四、让学生经常进行判断和分析

我发现学生在解答应用题时,常因个别词或巧合数字的干扰,选择了错误的算法。

如“学校买来红粉笔19盒,白粉笔35盒,每星期用去6盒,几星期用完?”个别学生抓住了“用去”这个词,就用减法解答。每次出现这样的问题,我都让学生分析数量关系,明确正确解法,并引导学生讨论,原题怎么改变,才用减法解答。

又如“缝纫组要做24套衣服,已经做了3套,再做多少套可以全部做完?”因为那一段时间常做除法,有五分之一的学生见到24和3,马上列出24÷3的式子。通过分析数量关系,学生知道错了,我接着让学生说,这道题条件和问题怎么变一下,才用除法解答呢? 这样的判断和分析,对提高学生解答应用题的能力也很有帮助。

总之,低年级解决应用题是整个小学解决问题的基础,学生在这个学段解决问题的能力将直接影响到他们以后的学习。因此,必须从基础抓起,关注低年级学生解决应用题能力的培养。我们二年级下册第一单元的教学内容就是“解决问题”,而且在每个单元里都有解决问题。课本结合现实生活的具体情境,使学生初步理解数学问题的基本含义。在这里教材以学生生动活泼的课外活动内容为素材,展示学生在实际活动中碰到的计算问题。通过这部分学习,使学生经历与同学合作解决问题的过程,特别是初步理解什么是数学问题,现实生活存在着需要解决的数学问题等,这样学生就逐步形成了从日常生活中发现并提出简单数学问题的能力。学生也只有投身于教学活动之中,靠自己去“悟”、去“做”、去“经历”、去“体验”,数学的知识和方法才会在现实的活动中理解和发展,学生解决问题的能力才会提高。[参考文献]

1、蔡菲;课堂因细节而闪亮[A];江苏省教育学会2006年年会论文集(理科专辑)[C];2006年

2、吉林省抚松县万良中心小学于建新;为课堂教学增添生机与活力[N];中国教育报;2008年

第三篇:浅谈小学数学教学中如何培养学生猜想能力修改版

浅谈小学数学教学中如何培养学生猜想能力 摘要:本文针对数学猜想在数学发展中所起的作用,阐述了在小学数学教学中培养学生猜想能力的原因,以及小学数学常用的猜想方法。并从具体的教学过程中阐述了如何引导学生学会猜想,从而达到培养学生的数学猜想能力的目的。

关键词:小学数学;方法;猜想能力;数学猜想

数学猜想是人们依据已有的数学知识和经验,运用非逻辑的思维方法,凭借直觉而作出的假设和预测,它是人们探索数学规律、发现数学知识的手段和策略。数学猜想是一种创造性数学思维,由于它具有创造性,从古至今人们都非常重视数学猜想的研究,历史上许多著名的猜想推动了数学的发展。然而在小学数学教学中,运用猜想可以营造学习氛围,能激起学生饱满的热情和积极的思维,培养学生克服困难的坚强意志。小学生猜想能力的培养,不仅能够调动学生学习的积极性、主动性,促使学生主动获取知识,而且有利于培养学生的直觉思维、探索精神和创新意识,发展学生的推理能力。在小学数学教学的一个方面是对学生进行思维训练,而猜想是一种创新思维活动,所以培养小学生的猜想能力对小学数学教学来说是十分重要。[1] 本文将对小学数学猜想能力的培养作简要的阐述,先来了解数学猜想能力培养在数学教学中的原因。

一、小学数学教学中培养学生猜想能力的原因

严密的逻辑推理是合理的,是可靠的,那么,为什么还要在小学数学教学中培养学生的猜想能力呢?因为数学中的许多定律、定理都是首先通过猜测而得以发现,然后再经过逻辑论证才得以成立。美国著名的认知心理学家和教育家布鲁纳曾这样描述:“说某人是具有良好的直觉思维能力的数学家,意即当别人向他提出问题时,他能够迅速作出很好的猜测,判断某事物是不是这样”。首先,小学数学新课标要求也明确指出:“除了培养学生分析、综合、比较、抽象、概括等逻辑能力外,还要培养学生的观察、操作、猜测等思维能力”。[3]波利亚强调:合情推理就是数学猜想。《小学数学新课程标准》中明确指出:归纳和类比是合情推理的主要形式,并指出:第一学段“初步学会选择有用的信息进行简单的归纳和类比”,第二学段“进行归纳、类比与猜测,发展初步的合情推理能力”,第三学段“体会证明的必要性,发展初步的演绎推理能力”。其目的是有序地培养学生的推理能力,但小学阶段以发展学生初步的合情推理能力为主要目标。其次,是由小学生的认知特点决定的。鉴于小学生的年龄与认知特点,他们不可能通过具有严格标准的逻辑推理来发现和掌握数学原理和概念。因此,在小学数学教材中大量地采用了像数学猜想、枚举归纳、类比迁移等合情推理的方法。再次,是小学生学习小学数学的过程要求。波利亚说过:“数学家的创造性工作成果是论证推理,即证明;但是这个证明是通过合情推理,通过猜想而发现的。只要数 1

学的学习过程稍能反映出数学发明过程的话,那么应当让猜测、合情推理占有适当的位置。”费赖登塔尔认为,学生学习数学是一个有指导的再创造的过程,数学学习本质是学生的再创造。数学猜想能力培养的点滴体会数学知识的学习并不

[4]是简单的接受,而必须以再创造的方式进行。因此,在小学数学学习的过程中,应给学生提供具有充分再创造的通道,以激励学生进行再创造的活动。把数学知识学习的过程展开、还原,让学生经历观察、比较、归纳、类比„„即合情推理提出猜想,然后再通过演绎,推理证明猜想正确或错误。

从上述中我们可以看到,数学猜想是培养学生创造性思维的重要形式,因而使学生具备一些猜测意识和掌握一些猜测方法,有助于培养创造性人才。下面简要谈谈如何培养小学生的数学猜想能力。

二、怎样在小学教学中培养学生的猜想能力

(一)创设氛围,让学生敢猜

心理学研究表明,良好的情绪能使学生的精神振奋,不良的情绪则会抑制学生的智力活动。因此,教师要为学生创设一种民主、和谐、平等的学习氛围,在这种氛围中,学生身心放松,思维活跃,新奇的猜想才可能出现。当学生提出猜想时,不能因为学生讲不清其中的道理而指责学生“瞎猜”,“胡说八道”,而应该进行充分地表扬和鼓励,耐心地帮助他们思考。在一个“学习共同体”中,每个学生(包括所谓的后进生)都应该得到尊重和理解。[7]久而久之,学生就不会有所顾虑,遇到新问题时便敢于猜想。对于小学数学而言,鼓励学生运用已有的数学知识猜测数学问题的解法、猜测数学问题的结果、猜测数学问题可能形成的新概念或新命题,实际上调动了少年儿童的数学好奇心。[8]

如教学“分数的初步认识”后,教师让学生用一张长方形纸折出它的1/2,让学生操作后反馈,有多种折法,教师肯定后提问:“还有其他折法吗?”学生们都回答:“没有。”教师微笑着举起一张学生折过的长方形纸,上面折过的4道折痕清晰可见,教师让学生们观察这4道折痕,很快一名学生举手说:“这4道折痕都相交在中间一点。”其他同学也点头赞同,教师表扬了这位同学,并且趁机启发:“大家有什么猜想吗?”部分同学摆弄着手里的长方形纸片,思考着,片刻,突然一位学生站起来说:“我猜想经过这中间的一点任意折一次,也能折出它的1/2。”教师依然微笑着,不置可否。这时,很多同学已经忙开了:他们按照这种方法试了起来,还有学生把折成的两份剪了下来,重合后,发现是一样大的,立即兴奋得跳了起来。学生们热情高涨,有的还不厌其烦地试第二次,第三次„„。虽然他们说不清为什么,但都体会到了这种猜想是成立的。

(二)注重方法的渗透,让学生会猜

良好的认知结构是学生猜想的前提条件,学生的每一个猜想都是他们的生活经验与已有知识的拓展。教师在教学中要帮助学生不断沟通知识间的联系,构建

成知识网络。由原有的认知结构到猜想的提出又离不开思维经验, 可以说,思维经验是猜想的重要保证。在教学中,教师要有意识地渗透一些数学思想方法,使学生感悟领会并灵活运用,引导学生不断总结思维方法,从而丰富学生的思维经验,使学生的猜想合理化。

例如:教学“平行四边形的面积”一课,学生通过“剪、移、拼”,发现了平行四边形也可以转化成长方形,并通过观察、操作,知道了这个长方形的长等于平行四边形的底,宽等于平行四边形的高,在这个表象的基础上,问“你们猜一猜,平行四边行的面积怎么求呢?”,学生在操作中能合理的猜出平行四边形面积公式,并能说出原因。既培养了学生的探索精神,又从中获得了成就感。因此,借助操作,获得表象,并借助表象,促进学生合理的猜测。

(三)形成猜想的意识,掌握猜想,验证的思想方法

目前,教材在处理数学思想方法方面有两种基本思路:一是将数学思想方法当作数学知识进行教学,逐步使学生掌握数学的思想和方法,特别是一些具体的、技巧性较强的方法,如倒推法、假设法等;二是通过解决实际问题,使学生在掌握数学知识的同时,形成那些对人的素质有促进作用的基本思想方法。教师在教学中,一方面要让学生认识到猜想的结论有时并不正确,还需要经过验证。使学生在经常性参与“猜想--验证”学生活动的过程中潜移默化接受这种科学的思想方法。数学猜想既然是根据某些已知事实材料与数学知识,对未知量及关系所作出的一种预测性推断,那么它必然表现出真伪性。[6]正因为这样,我们在小学数学教学过程中培养学生的“猜想——证明”的过程。但是在小学阶段并不要求用严密的理论逻辑来证明,只是简单的列举一些相关的事实。

如:在教学《比长短、高矮》时,我没有按教材中的直接由图引入,而是将一支铅笔藏在背后,然后提问:我的铅笔长还是短?学生一脸茫然,我激励他们:猜一猜?多有趣的问题,学生的兴趣一下被提起来了,抢着猜:长、短。还有的说:不知道,因为没有比较。我紧接着又提出:猜一猜,我的铅笔和你的比较,谁长?谁短?学生马上争着来和我的铅笔进行比较,从而进一步掌握了比较的方法。整个过程学生通过有趣的猜测,对知识进行了主动的探究,争做学习的小主人,验证自己的想法。这样设计,不仅激发了学生的学习兴趣,增强思维的强度,而且培养了学生的空间想像力,体验了“猜想--验证”的完整过程。

猜想既是科学发现的先导,也是解决实际问题的一种重要手段,更是一种重要的思维策略。我们要重视应用猜想这一教学方式,使猜想成为新课程实施后课堂教学一道亮丽的风景。

(四)教给学生猜想的方法

数学猜想的方法很多,如:不完全归纳法、类比法、变化条件法、物理模拟法、联系观察法、逐级猜想法、比较法、经验直觉法等,在这就不一一例举了,在小学数学里主要讲解以下几种方法。

(1)运用归纳法进行猜想

所谓归纳猜想是依据一类事物中的特殊对象的实验事实,通过归纳对这类事物的一般属性进行猜想,这样的思维方法叫归纳猜想.著名的“哥德巴赫猜想”--“任何大于4的偶数可以表示为两个奇素数的和”,就是通过归纳一些特殊的结论而提出的猜想。在教学实践中,同样可以通过培养学生的归纳能力来发展学生的猜想能力。我们在数学教学中应当为学生提供几个代表性的事实,从几个简单的、个别的、特殊的情况中寻找一般属性,通过归纳获得猜想。

例如:教学“能被2整除的数的特征”时,教师先让学生计算2、3、4、5、6、7、8„„20分别除以2,接着把不能被2整除的数放在一个圈内,把能被2整除的数放在另一个圈内,然后让学生猜想能被2整除的数有什么特征,学生从第一圈内发现不能被2整除的个位上有1、3、5、7、9,从第二圈内发现能被2整除的数的个位上是0、2、4、6、8,进而发现个位上是0、2、4、6、8的数都能被2整除。可以用同样的方法教学能被5整除的数的特征。

(2)利用比较进行猜想

比较猜想主要是根据已知条件,联想与之相近的事物,比较他们的异同点,然后对结论进行推测,这样的思维方法叫比较猜想。由于许多事物之间有着千丝万缕的联系,某个概念、法则、性质、公式等与其它概念性质、法则、公式等往往有着相关的联系。在数学教学中,我们应引导学生抓住事物之间联系,抓住概念、性质、公式之间联系,通过联想获得猜想例如:教学长方形和正方形周长计算时,要求学生将12个1平方厘米的正方形拼成不同的长方形,并收集数据如下:

长宽长方形周长

12厘米1厘米12平方厘米

6厘米2厘米12平方厘米

4厘米3厘米12平方厘米

然后要求学生观察数据:回答:长方形周长与长方形长和宽之间有什么联系?这个问题一提出,学生立刻产生强烈的求知欲,经过小组的充分讨论,归纳出:长方形周长=长×宽,接着老师再拿出长方形纸板、引导学生用1平方厘米的正方形摆成长方形加以验证,这样学生通过观察,猜想验证,由自己发现得出结论的过程,不仅变被动为主动学习,而且拓展了学生思维的视野。

我们可以看出每一种方法都不是独立的,而是相互渗透的。

四、结语

数学猜想能力的培养是一个曲折而漫长的过程,培养学生的数学猜想能力,老师要懂得猜想在小学数学教学中的重要意义,掌握一定的猜想方法,在小学数学教学中充分运用数学猜想,不但能培养学生的猜想能力,活跃课堂氛围,而且培养了学生的创新思维。所以,我们在小学数学教学中应该注重数学猜想教学,更应该注重对学生数学猜想能力的培养。

参考文献

[1] 陈仁杰.数学猜想能力培养的点滴体会[J].《数学月刊 中学版》2008年第13期

[2] 李文林 主编.王元论哥德巴赫猜想[M].山东教育出版社 ,1999,1

[3] 小学数学新课程标准[S].北京:人们教育出版社,2002,5

[4] 黄凌云.数学猜想能力与数学个性的培养[J].山东师范大学数科院01级1班

[5] 杜义超.应重视发展学生的数学直觉猜想能力[J].江苏教育-2003年11B期

[7] 马云鹏.小学数学教学论[M] 第二版.北京:人民教育出版社2006,131

[6] 徐本顺解恩泽.数学猜想集[M].湖南科学技术出版社,1999,231

[8] 王宪昌.主编.数学思维方法[M].北京:人民教育出版社,2000,124

[9] [美]G.波利亚 著.数学与猜想[M] 第二卷 合情推理模式.北京:科技出版社2006,177

[10] [美]G.波利亚 著.教学与猜想[M] 第一卷 数学中的归纳和类比.北京:科学出版社,2006

第四篇:浅谈小学数学教学中培养学生创新能力

浅谈小学数学教学中培养学生创新能力

摘 要:教育不仅要使学生掌握知识、发展能力,而且教育更应发展学生的创新意识。小学数学是基础教育的一门重要学科,也是学习和掌握现代科学技术必不可少的基础教育,在发展和培养学生的抽象逻辑思维中起着重要的作用,在培养学生创新素质方面有着得天独厚的优势。在数学教学中,教师要通过有意识地对学生施以教育和影响,促使他们去发现新事物、揭示新规律、创新新方法和解决新问题,着重研究和解决如何培养学生对数学的创新意识、创新思维和创新能力的问题。

关键词:小学数学;创新能力;培养方法

中图分类号:G622 文献标识码:B 文章编号:1002-7661(2015)20-071-01

创新教育是以培养人的创新能力和创新能力为基本价值取向的教育,其核心是创新能力的培养。“创新是一个民族进步的灵魂”。从这个意义上说,教育不仅要使学生掌握知识、发展能力,而且教育更应发展学生的创新意识。小学数学是基础教育的一门重要学科,也是学习和掌握现代科学技术必不可少的基础教育,在发展和培养学生的抽象逻辑思维中起着重要的作用,在培养学生创新素质方面有着得天独厚的优势。在数学教学中,教师要通过有意识地对学生施以教育和影响,促使他们去发现新事物、揭示新规律、创新新方法和解决新问题,着重研究和解决如何培养学生对数学的创新意识、创新思维和创新能力的问题。

一、营造创新氛围

小学生的求知欲的形成要经历过好奇---求知---探索三个阶段。好奇是儿童的天性,世界上许多重大发明和新技术的发现往往从好奇开始。牛顿的万有引力的发现离不开对苹果自由落地的好奇。陈景润的歌德巴赫猜想离不开1+2等于3的好奇。好奇心使人富有追根求源的精神。乐于深索事物的奥妙,发现其中的奇异。课堂上因此要引导学生勇于提出好奇问题。例如:在教学圆锥体体积公式时,学生在看完书后,往往对“等底等高”这个条件不太注意。这时我巧设陷阱设置悬念。学生进行倒水实验:用圆锥体容器盛满水倒入圆柱体容器。过了一会,一个小组倒了水,还没灌满;而另一小组的同学却大叫:“水溢出来了!”这是什么缘故呢?学生们议论纷纷。

二、质疑鼓励创新

“疑”是创新思维的火花,“问”是追求的动力,是创新的前提。世界上许多发明创造正是从质疑问难开始,从解疑入手。因此在教学过程中,应从小学生的好奇、好问、求知欲望旺盛等特点出发,把质疑、解疑作为教学过程的重要组成部分。如何鼓励学生质疑,指导解疑,需要讲究策略。

1、浅显的问题学生自己解答

日常教学可以发现,学生大多提出的问题是一般性的问题,教师可以不必急于解难。应鼓励学生自己解答,使学生既敢于质疑,又能解疑,以树立信心。

2、难点问题学生讨论解决

教学中遇到的疑点或难点以及比较含蓄或潜在的内容,应启发学生思考讨论,在思考讨论的过程中逐步解疑,在探索讨论中有所发现和创新。如教学“面积的认识”,为了使学生理解面积的概念,教师先教学认识“物体的表面”,让学生摸课本的表面、桌面等直观感知。由于教师举的实例其表面都是规则的长方形,学生也很容易看出面是有大小的,这时教师有意识地让学生质疑,提问:我们认识了物体的表面,你还想到什么?这一问,打开了学生思维的闸门,提出了一连串的问题:“文具盒的表面有6个都是长方形的面,一个足球的表面是什么形状?”“苹果、茶杯的表面是指哪一部分?”学生提出问题后,教师让学生展开讨论,就有学生按照自己的理解方式,对“物体的表面”作了颇有新意的描述:“我们看得见,摸得着的部分是物体的表面。”这样新奇的回答,都是在教师的指导下,使得学生从生疑到释疑过程思维活跃,并能自己解决。

三、利用逆向思维创新

创新思维简单的说就是有创见的思维如对已有知识经验进行不同方向不同程度组合进行再创造。从而获得新异独特的有价值的新经验、新知识、新方法等创造成果。在教学中在培养学生正向思维的同时鼓励学生从相反角度去看待和认识事物去思维。这样往往别开生面,独具一格常常导致新奇独特发现,取得突破性进展。分析应用题的数量关系在掌握顺向思路的同时引导学生理解逆向思路。如“红花比黄花多4朵”让学生不改变题意说出黄花比红花少4朵、红花减少4朵和黄花一样多。又如六一班学生数是六二班生数的11/

12、让学生说出六二班是六一班的12/

11、六一班生数和六二班的比是11:

12、六一班人数比六二班少1/12等。在平时教学中教师不仅要训练学生的集中思维同时还给学生创设较多的训练发展思维的机会,设置一些开放性习题,使学生不但善于单向思维而且习惯于多向思维发展学生求异思维。例如,在“年月日”这一内容时,教师没按课本顺序而是在介绍年月日有关科学知识的基础上让学生自己动手计算一年多少天?学生纷纷利用自己原有的知识想出不同的计算方法。各自说出了自己的思路充分提高了学生思维的灵活性。

总之,在小学数学教学过程中,培养创新人才要利用数学知识,来培养学生的创新意识,创新思维及创新能力,而培养创新能力又不是一朝一夕能够办到的,它没有速成法,培养学生的创造性思维是长期而艰巨的过程。教师首先要转变教学观念,树立创新教育观,其次要改革传统的教学方法,针对学科的特点,结合教学内容,做到适时、适度贯穿于教学始终,同时也要针对小学生的年龄特点,紧密联系学生的生活实际,做到有趣、有效。

第五篇:谈学生解答应用题的策略

谈学生解答应用题的策略

长期以来,我国的小学数学,无论从教材或从教学来说,对应用题教学是重视的,但是也存在不少问题,主要是偏重内容的教学,轻视能力的培养,加之教材的选择和编排不尽合理,教学的方法不尽适当,以致花的力量很大,收的效果较小。因此,如何提高学生解应用题能力,又使学生负担较轻,是一个值得认真研究探讨的问题。一 培养学生解答应用题能力的重要性

关于培养学生解答应用题能力,《九年义务教育全日制小学数学教学大纲(试用)》中没有明确提出,但是在教学目的中讲到了使学生“能够运用所学的知识解决简单的实际问题”,这实质上包含了培养学生解答应用题的能力,当然在小学还是初步的。可以说,培养学生解答应用题的能力是使学生能够运用所学数学知识解决简单的实际问题的基本内容和重要途径。因为应用题反映了周围环境中常见的数量关系和各种各样的实际问题,需要用到不同的数学知识来解决。通过解答应用题,促使学生把所学的数学知识同实际生活和一些简单的科学技术知识联系起来,从而使学生既了解数学的实际应用,又初步培养了运用所学的数学知识解决实际问题的能力。另外数学作为一门工具学科,也应该把它用于解决实际问题作为教学的一个重点。这一点越来越多地被各国数学教育工作者所认识。例如,美国在80年代初就提出“解问题是80年代学校数学的重点;”在为90年代拟订的中小学数学课程标准中,再一次强调数学教育的目标之一是使学生成为“具有解数学问题能力的人”,“有效地应用数学方法解问题的人”。当然,培养学生解应用题能力的重要意义远不止于此,还可以发展学生的逻辑思维能力,培养学生良好的思维品质(如思维的灵活性、创造性)和道德品质等。而这些都是作为现代社会中具有较高的文化素养的公民所必须具备的能力和品质。

二 解答应用题教学的改革趋势

近年来,国内外一些数学教育工作者和有经验的教师对解答应用题的教学,特别是如何培养能力进行了一些改革的尝试,取得了一些有益的经验。主要有以下几个发展趋势。

(一)应用题的内容趋于扩大

首先是加强联系实际的问题。不仅限于课本中编好的现成应用题,而是从实际生活中收集材料和数据,进行一些计算。例如,美国在进行加减计算时,让学生分类收集一些数字材料,然后进行统计和计算。英国在教学时给学生一张火车时刻表,不仅让学生能看懂某次车始发和到达的时刻,而且进行各种计算。通过一些实际作业使学生知道数学的概念和思想就存在于人们的活动当中,并且能够运用数学知识解决生活中的实际问题。我国有些教师也很注意实际生活中的数学问题。例如,一位教师出了这样一个题目:“某车间用一块长90分米、宽60分米的铁皮剪成半径是10分米的圆形铁片,该怎样下料才能使铁皮的利用率最高?”

2结果多数学生列成下式:90×60÷(3.14×10)≈17个;部分学生通过画图(左下图)得到答案是12个;还有一部分学生通过操作(如右下图)

得到答案是13个。通过讨论,使学生认识到最后一种下料方法利用率高,而第一种计算方法是脱离了这块铁皮的实际的。通过这样的问题使学生初步体会到在解决实际问题时绝不能生搬硬套所学的计算知识,还要注意对实际问题进行具体分析。

其次,运用数学知识所解的问题不限于实际生活中遇到的,还包括一些有助于培养学生运用数学知识进行探究能力的问题。例如,在下面的○里填上合适的数,使每相邻两个○里的数的和等于它们中间□里的数。让学生不仅写出不同的答案,而且找出填写的规律,并回答出能不能使开头和末尾的○里的数相同。由于解题的范围较广,很多国家不用“应用题”这个名称,直接叫做“问题”,日本原来叫做“应用题”,现改称“文章题”,以体现其范围的扩展。

(二)应用题的难度趋于降低

这个问题在多数国家已经得到解决。如日、美、英等国,解问题的面较广,较联系实际,但是难度较小。如日本课本中的文章题大多是两步计算的。有少数国家,如俄罗斯,原来应用题的难度较大,步数较多,后来难度已有所降低或适当后移。特别是在把小学三年制改为四年制以后,随着算术内容教学时间的延长,相应地应用题的教学时间也拉长了,应用题的难度也进一步降低。香港地区编订的《数学科学习目标》中规定整数四则应用题,“每题运算次数不超过两次”,分数、小数限解简易应用题。许多国家或地区采取这些措施,使应用题教学更适合小学生的年龄特点,无疑会有利于减轻学生的学习负担,更好地激发学生对解应用题的兴趣和积极性。我国在解应用题方面一直存在着偏难偏多的问题,特别是升学考试为了便于择优录取,往往出现超过大纲、课本范围的题目,给教学带来很大的压力和负担。近年来实施义务教育以后,强调全面提高民族素质,应用题教学开始注意适当降低难度,是一个可喜的现象。

(三)重视培养学生掌握解题的一般策略

这是培养学生解应用题能力的重要条件之一。它与应用题的教学目的和作用是紧密联系着的。长期以来,无论在国内或国外,都或多或少地把在小学数学课中要教会学生解答某些类型的应用题作为教学的最终目的。从这一看法出发,把教给学生应用题类型,记结语或公式作为基础知识。结果形成学生套公式的习惯,没有真正培养起解题能力。近些年来,越来越多的数学教育工作者认识到,应用题教学的最终目的,应是通过一些有代表性的问题的解答,使学生掌握解问题的一般策略或方法,从而达到真正培养学生解决简单的实际问题的能力。例如,日本伊藤武说过,过去解应用题,安于形式地机械地进行,把应用题分成若干类型,每一个类型都有一种确定的解法,结果容易使学生对确定的一些问题会解,而没学过的应用题就不会解了。前苏联弗利德曼著《中小学数学教学心理学原理》中说:“形成和发展学生解任何数学题(包括实用题)的一般技能,这是数学教学的基本职能之一”。1988年第六届国际数学教育会议也强调教学生学会使用解题的一般策略。有的代表指出,传统的教学解问题的方法往往是由教师给出一个范例,让学生模仿;教师不仅没有给学生准备真实的问题情境,也没有教给学生一般的解题策略,这样既不能提高学生解问题的能力,也不能提高他们解问题的积极性。有代表提出解数学问题的一般策略有:联系、分析、分类、想象、选择、作计划、预测、推论、检验、评价等。美国新拟订的《中小学数学课程和评价标准》中,每个学段的第一条标准就是学习和应用解问题的策略,只是要求的水平不同,体现逐步提高。目前美国的小学数学课本大都编入解题的一般策略,作为正式的教学内容。例如,一本五年级课本中出现以下一些内容:用图解,检验,有多余条件或缺少条件的,编题,多步题的解题步骤,估算得数,用表解。

近年来,我国一些数学教研人员和教师也开始注意研究如何教给学生一般的解题思路和方法,特别重视分析题里的数量关系。有的实验教材中也加强理解题意,摘录应用题条件,补充应用题的条件,检验应用题的解答等的训练。这对于提高学生解答应用题能力有很大的帮助。

(四)加强方程解法使之与算术解法相辅相成数学教育现代化运动开始,许多国家的小学数学增加了简易方程和列方程解应用题。但是列方程解应用题教学的起始期以及深度、广度,差异很大。例如,前苏联教学方程解法从小学二年级就开始了,而且有两步的应用题要求用方程解。这就涉及算术解法与方程解法之间的关系问题。近年来逐渐趋于一致。一方面,较多的国家或地区,如日本、俄罗斯、香港等,小学教学列方程解应用题限两、三步计算的,另一方面是在用算术方法解应用题有了一定基础再逐步出现列方程解应用题,这样可以使两种解法起到相辅相成的作用。

实践表明,增加简易方程和列方程解应用题,的确有助于发展学生的抽象思维,减少解应用题的难度,培养学生灵活解题的能力,并有利于中小学数学的衔接。但是在实际教学时还存在着不同的处理方法。特别是涉及分数除法应用题的教学,很多教师把用方程解作为向算术解法的过渡,最后还是强调算术解法,忽视方程解法。这样仍不能达到降低难度减轻学生负担的目的。近年来有些改革实验,强调算术解法与方程解法并重,相辅相成,取得较好的效果。

下载谈小学数学教学中培养学生解答应用题的能力(范文)word格式文档
下载谈小学数学教学中培养学生解答应用题的能力(范文).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    谈初中数学教学中如何培养学生的质疑能力.

    谈初中数学教学中如何培养学生的质疑能力 摘要:创新始于质疑,提出问题比解决问题更为重要。本文着重探讨初中数学教学中学生质疑能力的培养方法和途径。教师要为学生创设良好......

    小学数学应用题及解答方法大全

    小学数学应用题及解答方法大全 超人资讯 百家号06-0921:40 小学数学除了简单的计算,到了小学高年级阶段,开始出现应用题。应用题是把含有数量关系的实际问题用文字叙述出来所......

    谈小学数学教学中如何培养学生学习习惯[本站推荐]

    谈小学数学教学中如何培养学生学习习惯 【内容摘要】 良好的学习习惯是学生必备的素质,是学生学好数学的基本保证。在小学数学中,教师要使学生逐渐养成认真听课、积极思考、大......

    浅谈小学数学教学中培养学生的创新能力

    教学论文 论文题目:浅谈小学数学教学中培养学生的创 学 校 学 科 姓 名 时 间 2014 新能力 始兴县逸夫小学 小学数学 茹 清 年9月16日 浅谈小学数学教学中培养学生的创新......

    浅谈小学数学教学中如何培养学生解决问题的能力

    浅谈小学数学教学中如何培养学生解决问题的能力 当前的小学数学教学,越来越重视把数学和生活相联系,越来越关注学生解决问题能力的获取。因此,在各级各类的测试中,考查学生解决......

    小学数学教学中培养学生的预习能力

    小学数学教学中培养学生的预习能力”研究报告 苏州工业园区唯亭实验小学 执笔人:张月芳一、课题提出的背景 1.新课改实施中产生的迷惘及思考 2009年10月30日至11月1日,本人有......

    小学数学教学中培养学生合情推理能力

    小学数学教学中培养学生合情推理能力内容摘要数学教学十分强调推理的严谨性,过分渲染逻辑推理的重要性而忽视了生动活泼的合情推理,使人们误认为数学就是一门纯粹的演绎科学。......

    小学数学教学中如何培养学生解决问题的能力

    小学数学教学中如何培养学生解决问题的能力 作者姓名:何树兴 单位名称:五龙中心学校新庄科完小 详细地址:云南省曲靖市师宗县五龙乡五龙中心学校 联系电话:*** 【......