复数+平面向量+三角函数(解析版)(共5篇)

时间:2019-05-13 13:05:12下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《复数+平面向量+三角函数(解析版)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《复数+平面向量+三角函数(解析版)》。

第一篇:复数+平面向量+三角函数(解析版)

【高中文科数学专题复习之___】

复数+平面向量+三角函数

一、要点梳理

1、复数的有关概念

(1)复数的概念

形如a+bi(a,b∈R)的数叫做复数,其中a,b分别是它的实部和虚部。若b=0,则a+bi为实数,若b≠0,则a+bi为虚数,若a=0且b≠0,则a+bi为纯虚数。

(2)复数相等:a+bi=c+dia=c且b=d(a,b,c,d∈R).(3)共轭复数:a+bi与c+di共轭a=c,b=-d(a,b,c,d∈R).。

(4)复平面

建立直角坐标系来表示复数的平面,叫做复平面。x轴叫做实轴,y轴叫做虚轴。实轴上的点表示实数;除原点外,虚轴上的点都表示纯虚数;各象限内的点都表示非纯虚数。

(5)复数的模

向量OZ的模r叫做复数z=a+bi的模,记为|z|或|a+bi|,即

2、复数的几何意义 复平面内的点Z(a,b)(a,b∈R);(1)复数z=a+bi

平面向量OZ(a,b∈R)(2)复数z=a+bi。

3、复数的运算

(1)复数的加、减、乘、除运算法则

设z1=a+bi,z2=c+di(a,b,c,d∈R),则

①加法:z1+ z2=(a+bi)+(c+di)=(a+c)+(b+d)i;

②减法:z1-z2=(a+bi)-(c+di)=(a-c)+(b-d)i;

③乘法:z1· z2=(a+bi)·(c+di)=(ac-bd)+(ad+bc)i;④除法:一一对应一一对应z1abi(abi)(cdi)(acbd)(bcad)i(cdi0)z2cdi(cdi)(cdi)c2d

2(2)复数加法的运算定律

复数的加法满足交换律、结合律,即对任何z1、z2、z3∈C,有z1+z2=z2+z1,(z1+z2)+z3=z1+(z2+z3)。

注:任意两个复数不一定能比较大小,只有这两个复数全是实数时才能比较大小。

4.向量的坐标运算

(1)A(x1,y1),B(x2,y2),则AB(x2x1,y2y1)

(2)设i,j为x,y轴正向单位向量,若ABxiyj,则记AB(x,y)

xxyyxxyy(3)若a(x1,y1),b(x2,y2)则ab(1ab(1 2,12)2,12)

a(x1,y1)abx1x2y1y

2aa//b

二、习题精练

x1y

1x1y2x2y1abx1x2y1y20 x2y.(2013年新课标Ⅱ卷)设复数z满足(1i)z2i,则z

A.1i

B.1i

C.1i

D.1i

(A).(2013年山东)若复数z满足(z3)(2i)5(i为虚数单位),则z的共轭复数为(D)

A.2i

B.2i

C.5i

D.5i

(C).(2013年广东)若复数z满足iz24i,则在复平面内,z对应的点的坐标是

A.2,4 B.2,4 C.4,2 D.4,2

(B).(2013年辽宁)复数的Z

模为 i1

CD.2

A.2

B

5.(2013年高考四川)如图,在复平面内,点A表示复数z,则图中表示z的共轭复数的点是(B)

A.A B.B C.C D.D 6 .(2013年新课标1)若复数z满足(34i)z|43i|,则z的虚部为

A.

4B.

(D)

C.4 D.

5(B)

7.(2013年浙江)已知i是虚数单位,则(1i)(2i)

A.3i

B.13i

C.33i

D.1i

8.把函数y=sin2x的图象按向量→a=(-,-3)平移后,得到函数y=Asin(ωx+)(A>0,ω>0,||=62的图象,则和B的值依次为

A.

312

C.3

(B)D.-3

B.,3

9.已知A、B、C为三个锐角,且A+B+C=π.若向量→p=(2-2sinA,cosA+sinA)与向量→q=(cosA-sinA,1+sinA)是共线向量.(Ⅰ)求角A;

C-3B(Ⅱ)求函数y=2sin2B+cos的最大值.3→【解】(Ⅰ)∵p、→q共线,∴(2-2sinA)(1+sinA)=(cosA+sinA)(cosA-sinA),则sin2A=,4又A为锐角,所以sinA=

3A=2

3

(π-B)-3B

3C-3B

(Ⅱ)y=2sin2B+cos=2sin2B+cos

213

=2sin2B+cos(2B)=1-cos2B+sin2B

322

31

=+1=sin(2B-)+1.226

5

∵B∈(0,),∴2B-∈(-),∴2B-=B=ymax=2.2666623

3→10.已知向量→a=(3sinα,cosα),→b=(2sinα,5sinα-4cosα),α∈(,2π),且→a⊥b. 2(Ⅰ)求tanα的值;

α(Ⅱ)求cos(+的值.

23→→→→解:(Ⅰ)∵a⊥b,∴a·b=0.而→a=(3sinα,cosα),→b=(2sinα, 5sinα-4cosα),→故→a·b=6sin2α+5sinαcosα-4cos2α=0.

41由于cosα≠0,∴6tan2α+5tanα-4=0.解之,得tanα=-,或tanα

314

∵α∈,2π),tanα<0,故tanα=(舍去).∴tanα=-.

223

3α3

(Ⅱ)∵α∈(2π)∈(π).

2244α1αα5α2

5由tanα,求得tan,tan=2(舍去).∴sincos,32222525

ααα25153

∴cos(=cossinsin=-

232323525210

→11.设函数f(x)=→a·b.其中向量→a=(m,cosx),→b=(1+sinx,1),x∈R,且f()=2.2(Ⅰ)求实数m的值;(Ⅱ)求函数f(x)的最小值.→解:(Ⅰ)f(x)=→a·b=m(1+sinx)+cosx,由f(=2,得m(1+sin+cos=2,解得m=1.222(Ⅱ)由(Ⅰ)得f(x)=sinx+cosx+12sin(x+)+1,4

当sin(x+)=-1时,f(x)的最小值为12.AA→A

12.已知角A、B、C为△ABC的三个内角,其对边分别为a、b、c,若→m=(-,sin),n=,222A1→sin,a=23,且→m·n=.

(Ⅰ)若△ABC的面积S=3,求b+c的值.(Ⅱ)求b+c的取值范围.

AAAA1→→【解】(Ⅰ)∵m=(-,sin),→n=(cos,sin,且→m·n= 22222

AA11

∴-cos2+sin2,即-cosA=

2222

2

又A∈(0,π),∴A=3

又由S△ABC=bcsinA=3,所以bc=4,2

由余弦定理得:a2=b2+c2-2bc·cosb2+c2+bc,∴16=(b+c)2,故b+c=4.bca2

(Ⅱ)由正弦定理得:=4,又B+C=-A=

sinBsinCsinA32

sin3



∴b+c=4sinB+4sinC=4sinB+4sin(B)=4sin(B),3332

∵0<B<,则<B+<sin(B,即b+c的取值范围是,4.333323

第二篇:三角函数与平面向量的地位

.三角函数与平面向量的地位

二.考试内容与要求

(一)三角函数:三角函数有16个考点

(1)理解角的概念的推广.弧度制的意义.能正确的进行弧度与角度的计算.(2)掌握任意角的正弦,余弦,正切的定义,了解余切,正割,余割的定义,了解周期函数与最小正周期的意义.(3)掌握同角三角函数的基本关系式,掌握正弦、余弦的诱导公式,掌握两角和与差的正弦、余弦、正切公式,掌握二倍角的正弦、余弦、正切公式,并能正确运用三角公式进行简单的三角函数的化简,求值以及恒等式证明

(4)理解正弦函数、余弦函数,正切函数的图象和性质,会用”五点法”画出正弦函数,余弦函数和正切函数的简图,理解的物理意义

(5)掌握正弦定理,余弦定理,并能初步运用它们解斜三角形.会由已知三角函数求角,并会用符号arcsinx,arccosx,arctanx表示角.

第三篇:三角函数与平面向量综合练习范文

三角函数与平面向量综合练习

1等边ABC的边长为1,设ABa,BCb,ACC,则abbcca()

3131B.C.D. 222

22.若是第三象限角,且sincossin,则是()222A.

A.第二、四象限角B.第二象限角C.第三象限角D.第四象限角

3.已知P是ABC所在平面内的一点,若,R。则点P一定在()A.ABC内部B.AC边所在直线上

C.AB边所在直线上D.BC边所在直线上

4.已知ABC中,点D在BC边上,且2,rs,则rs的值()

24B.C.3D.0 3

35.已知平面向量a(1,2),b(2,m),且a//b,则2a3b=()A.

A、(5,10)B、(4,8)C、(3,6)D、(2,4)

6.已知向量a(1,2),b(2,3).若向量c满足(ca)//b,c(ab),则c()A.(,B.(77

93777777,C.(,)D.(,393993

7.函数y4sin(2x

3的单调减区间是_____________

8.在AOB中,(2cos,2sin),(5cos,5sin),若5,则AOB的面积为__________

9.若|a|1,|b|2,cab,且ca,则向量a与b的夹角为.

010.若a1,b2,与的夹角为60,若(3a5b)(mab),则m的值为.

11.已知O,A,M,B为平面上四点,则(1),(1,2),则()

A.点M在线段AB上B.点B在线段AM上

C.点A在线段BM上D.O,A,M,B四点共线

12.如图,在ABC中,BAC120,AB2,AC1,D是边BC上一点,DC2BD,则A __________.B C

13.过ABC的重心G任作一直线分别交AB,AC于点D,E,若m,n(mn0),求证:

14.记向量n()(cos,sin)

(1)求两向量的数量积()(0)113. mn

(2)令函数f(x)(2x)(0)4(x)()(xR),求函数f(x)的最小值及相应的x 

15.已知函数f(x)x)cos(x)(0π,0)为偶函数,且函数yf(x)图象的两相邻对称轴间的距离为

π(2)将函数yf的值;

8π.(利用公式:sin()sincoscossin)(1)求2πf(x)的图象向右平移个单位后,得到函数yg(x)的图象,求g(x)6的单调递减区间.

16.利用向量证明:在△ABC中,a,b,c为A,B,C的对边,则有

a2=b2+c2-2bccosA,b2=c2+a2-2cacosB,c2=a2+b2-2abcosC.

第四篇:5-平面向量与复数综合练习

5—平面向量与复数综合练习

11111.i为虚数单位,++=()iiiiA.0B.2iC.-2iD.4i

2.设i,j是不共线的单位向量,a=5i+3j,b=3i-5j,则a⊥b是i⊥j的()

A.充分不必要条件B.必要不充分条件

C.充要条件D.既非充分又非必要条件

3.若复数z=1+i,i为虚数单位,则(1+z)·z=()

A.1+3iB.3+3iC.3-iD.

3→→→→→4.若四边形ABCD满足AB+CD=0,(AB-AD)·AC=0,则该四边形一定是()

A.直角梯形B.菱形C.矩形D.正方形

5.平面向量a与b的夹角为60°,a=(2,0),|b|=1,则|a+2b|=()

A.3B.23C.4D.1

22+i6.数的共轭复数是()1-2i

33AB.C.-iD.i 5

57.已知向量a、b不共线,c=ka+b(k∈R),d=a-b.如果c∥d,那么()

A.k=1且c与d同向B.k=1且c与d反向

C.k=-1且c与d同向D.k=-1且c与d反向

8.a,b为平面向量,已知a=(4,3),2a+b=(3,18),则a,b夹角的余弦值等于()

881616A.B.-C.D.- 6565656

5→→→→9.已知两点M(-2,0),N(2,0),点P为坐标平面内的动点,满足|MN|·|MP|+MN·NP=0,则动点P(x,y)的轨迹方程为()

A.y2=8xB.y2=-8x

C.y2=4xD.y2=-4x 110.在△ABC中,AB=a,AC=b,且BD=DC,则AD=()

241211412A.a-bB.a+bC. a-bD.a+b 3333333

311.若向量a=(1,1),b=(2,5),c=(3,x)满足条件(8a-b)·c=30,则x=________.12.设复数z满足(1+i)z=2,其中i是虚数单位,则z=________.13.|a|=1,|b|=2,且a⊥(a-b),则向量a与向量b的夹角是________.

1→1→3→→→14.在四边形ABCD中,AB=DC=(1,1)BA+BC=BD,则四边形ABCD的面积为________. →→→|BA||BC||BD|

15.已知A(3,0),B(0,3),C(cos α,sin α).

π→→→→→→(1)若AC·BC=-1,求sin(α的值;(2)若|OA+OC|=13,且α∈(0,π),求OB与OC的夹角.

4→→→→16.已知向量OP=(2cos x+1,cos 2x-sin x+1),OQ=(cos x,-1),定义f(x)=OP·OQ.(1)求函数f(x)的最小正周期;

→→(2)若x∈(0,2π),当OP·OQ<-1时,求x的取值范围.

32→→17.设O为坐标原点,已知向量OZ1,OZ2分别对应复数z1,z2,且z1=+(10-a2)i,z2=(2a-a+51-a

→→5)i(其中a∈R),若z1+z2可以与任意实数比较大小,求OZ1·OZ2的值.

18.已知△ABC的角A、B、C所对的边分别是a、b、c,设向量m=(a,b),n=(sin B,sin A),p=(b-2,a-2).

(1)若m∥n,求证:△ABC为等腰三角形;

π(2)若m⊥p,边长c=2,角C=,求△ABC的面积. 3

→→→→→→19.已知两点M(-1,0),N(1,0),且点P使NM·NP,PM·PN,MP·MN成公差为非负的等差数列.

→→(1)求点P的轨迹方程;(2)若θ为PM与PN的夹角,求θ的最大值及此时点P的坐标.

答案及解析

1.【解析】 原式=-i+i+(-i)+i=0.【答案】 A

2.【解析】 a·b=(5i+3j)·(3i-5j)

22=15|i|-16i·j-15|j|=-16i·j.∴a⊥b是i⊥j的充要条件.

【答案】 C

3.【解析】 ∵z=1+i,∴(1+z)·z=(2+i)(1+i)=1+3i.【答案】 A

→→→→4.【解析】 由AB+CD=0知,AB=DC,∴四边形ABCD是平行四边形.

→→→又(AB-AD)·AC=0,→→∴DB·AC=0,即AC⊥BD,因此四边形ABCD是菱形.

【答案】 B

5.【解析】 ∵|a|=2,且|b|=1,∴|a+2b|2=(a+2b)2=a2+4a·b+4b2

=4+4×2×1×cos 60°+4×12=12.∴|a+2b|=23.【答案】 B

2+i2+i1+2i2+i+4i-26.【解析】 ∵===i,51-2i1-2i1+2i2+i∴i.1-2i

【答案】 C

7.【解析】 ∵c∥d且a,b不共线,∴存在唯一实数λ,使c=λd.∴ka+b=λa-λb,k=λ,k=-1,∴∴ 1=-λ,λ=-1.

【答案】 D

8.【解析】 ∵a=(4,3),2a+b=(3,18),∴b=(3,18)-2(4,3)=(-5,12),5,1216a·b4,3·-∴cos〈a,b〉==|a|·|b|5×1365

【答案】 C

→→→9.【解析】 ∵MN=(4,0),MP=(x+2,y),NP=(x-2,y),→→→→∴|MN|·|MP|+MN·NP

=x+2+y+4(x-2)=0.x+2+y=2-x,化简得y2=-8x.【答案】 B

10.B

11.【解析】 由(8a-b)·c=30,得18+3x=30,x=4.【答案】 4

21-i212.【解析】 z==1-i.1+i1+i1-i

【答案】 1-i

13.【解析】 设向量a与b的夹角为θ,由a⊥(a-b),得

a·(a-b)=0,即|a|2-a·b=0,∴|a||b|cos θ=|a|2,|a|

2π∴cos θ=,故θ=.|b|24

π【答案】 4

14.3

→→15.【解】(1)∵AC=(cos α-3,sin α),BC=(cos α,sin α-3),→→∴AC·BC=(cos α-3)cos α+sin α(sin α-3)=-1,得cos2α+sin2α-3(cos α+sin α)=-1,2∴cos α+sin α 3

π2∴sin(α+)=.43

→→(2)∵|OA+OC|=13,1∴(3+cos α)2+sin2α=13,∴cos α 2

π313∵α∈(0,π),∴α=,sin α=C(),3222

→→33∴OB·OC=,2

→→设OB与OC的夹角为θ,且θ∈[0,π],3→→2OB·OC3π则cos θ=.故θ=为所求. →→326|OB|·|OC|

→→16.【解】(1)f(x)=OP·OQ

=2cos2x+cos x-cos 2x+sin x-1=sin x+cos x

π=2sin(x+),4

则f(x)的最小正周期为T=2π.π2→→(2)由OP·OQ<-1,得sin(x+<-42

又x∈(0,2π),5ππ7π3π则x+π<x<.4442

3π故x的取值范围是(π,. 2317.【解】 依题意z1+z2为实数,由z1-(10-a2)i,a+5

32∴z1+z2=[(a2-10)+(2a-5)]i的虚部为0,a+51-a

∴a2+2a-15=0,解得a=-5,或a=3.又分母不为零,∴a=3,3此时z1=i,z2=-1+i,8

3→→即OZ1=,1),OZ2=(-1,1),8

5→→3∴OZ1·OZ2=×(-1)+1×1=.88

18.【解】(1)证明 ∵m∥n,∴asin A=bsin B,由正弦定理,得a2=b2,∴a=b.∴△ABC为等腰三角形.

(2)由题意可知m·p=0,即a(b-2)+b(a-2)=0.∴a+b=ab.由余弦定理可知,4=a2+b2-ab=(a+b)2-3ab,即(ab)2-3ab-4=0,∴ab=4(舍去ab=-1),11π∴S=absin C=×4×sin3.22319.【解】(1)设点P的坐标为(x,y),又M(-1,0),N(1,0),→→→→→→则PM=-MP=(-1-x,-y),PN=-NP=(1-x,-y),MN=-NM=(2,0). →→∴NM·NP=2(1-x),→→→→PM·PN=x2+y2-1,MP·MN=2(1+x),依题意得

222x2+y2-1=21+x+21-x,x+y=3,⇔ x≥0.21+x-21-x≥0

∴点P的轨迹方程为x2+y2=3(x≥0).

→→(2)(2)∵PM·PN=(-1-x,-y)·(1-x,-y)

=x2+y2-1=2,→→|PM|·|PN|=-1-x+-y1-x+-y

=4-x.→→PM·PN1∴cos θ==.→→4-x|PM|·|PN|

∵0≤x≤3,1π∴≤cos θ≤1,∴0≤θ23

π∴θ的最大值为x=0,3

∴点P的坐标为(0,3).

第五篇:第二单元 数列、三角函数、平面向量教学设计2

沧源民族中学高三年级数学复习教学设计第六周2011年3月19日星期六

第二单元数列、三角函数、平面向量

第一讲三角函数(6课时)

主备教师肖平聪

一、教学内容及其解析

1、三角函数式的化简与求值:两角和的正弦、余弦、正切;二倍角的正弦、余弦、正切;诱导公式的运用。

2、三角函数的图象与性质:正弦函数、余弦函数、正切函数图象及其性质。

3、三角形中的三角函数问题:正弦定理、余弦定理以及三角形面积公式的运用。

二、目标及其解析

1、能灵活运用三角函数的有关公式,对三角函数进行变形与化简。

2、理解和掌握三角函数的图像及性质。

3、能用正弦定理、余弦定理解三角形问题。

三、问题诊断分析:

高考中,三角函数主要考查学生的运算能力、灵活运用能力,在客观题中,突出考察基本公式所涉及的运算、三角函数的图像基本性质,尤其是对角的范围及角之间的特殊联系较为注重。解答题中以中等难度题为主,涉及解三角形、向量及简单运算。三角函数部分,公式较多,易混淆,在运用过程中,要观察三角函数中函数名称的差异、角的差异、关系式的差异,确定三角函数变形化简方向。

四 教学过程设计

1、三角函数式的化简与求值

问题1两角和的正弦、余弦、正切的公式?

问题2二倍角的正弦、余弦、正切的公式呢?

问题3三角函数的诱导公式呢?

例题(见高考调研二轮重点讲练p30)

变式训练(见高考调研二轮重点讲练p30)

2、三角函数的图象与性质

问题1三角函数的正弦函数、余弦函数、正切函数图象怎么画?

问题2三角函数的正弦函数、余弦函数、正切函数的性质有哪些?

例题(见高考调研二轮重点讲练p31-33)

变式训练(见高考调研二轮重点讲练p31-33)

3、三角形中的三角函数问题

问题1正弦定理、余弦定理是什么?

问题2三角形面积公式怎么用?

例题(见高考调研二轮重点讲练p33)

变式训练(见高考调研二轮重点讲练p33)

五、目标检测:(见二轮复习用书p34)

六、配餐作业:(见二轮复习用书p34-36)热点集训作业和2011届先知专题卷专题.

下载复数+平面向量+三角函数(解析版)(共5篇)word格式文档
下载复数+平面向量+三角函数(解析版)(共5篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    平面向量复习题

    平面 向 量向量思想方法和平面向量问题是新考试大纲考查的重要部分,是新高考的热点问题。题型多为选择或填空题,数量为1-2题,均属容易题,但是向量作为中学数学中的一个重要工具......

    平面向量说课稿(精选5篇)

    平面向量说课稿 我说课的内容是《平面向量的实际背景及基本概念》的教学,所用的教材是人民教育出版社出版的普通高中课程标准实验教科书数学必修四,教学内容为第74页至76页.......

    平面向量概念教案(范文大全)

    平面向量概念教案 一.课题:平面向量概念 二、教学目标 1、使学生了解向量的物理实际背景,理解平面向量的一些基本概念,能正确进行平面向量的几何表示。 2、让学生经历类比方法......

    平面向量教案(精选五篇)

    平面向量教案 课 件www.xiexiebang.com二、复习要求 、向量的概念; 2、向量的线性运算:即向量的加减法,实数与向量的乘积,两个向量的数量积等的定义,运算律; 3、向量运算的......

    平面向量的应用

    平面向量的应用平面向量是一个解决数学问题的很好工具,它具有良好的运算和清晰的几何意义。在数学的各个分支和相关学科中有着广泛的应用。下面举例说明。一、用向量证明平面......

    平面向量教案(精选5篇)

    平面向量的综合应用 执教人: 执教人:易燕子 考纲要求: “从学科的整体高度和思维价值的高度考虑问题,在知识网络交汇点设计试题,使 考纲要求: 对数学基础知识的考查达到必要的深......

    文科生高效提分热点解读2三角函数与平面向量[定稿]

    热点二 三角函数与平面向量 三角函数与平面向量在高考中的题量大致是三小一大,分值约为28分。从近几年的高考来看,三角函数小题的命题热点有:一是利用诱导公式、同角三角函数的......

    高考二轮复习数学理配套讲义2平面向量、复数

    微专题2 平面向量、复数命题者说考题统计考情点击2018·全国卷Ⅰ·T1·复数的运算2018·全国卷Ⅰ·T6·平面向量的线性运算2018·全国卷Ⅱ·T1·复数的运算2018·全国卷Ⅱ......