第一篇:初二第八章《平行线的有关证明》单元试卷
初二第八章平行线的有关证明单单元测试
一、选择题(每题3分,共30分)1.下列语句不是命题的是()
A.两直线平行,同位角相等B.直线AB垂直于CD C.若|a|=|b| 则a2=b2D.同角的补角相等 2.下列命题是真命题的是()
A.一组对边平行,另一组对边相等的四边形是平行四边形。
B.四边相等的四边形是菱形。C.对角线互相垂直且相等的四边形是正方形。D.一组对边平行,另一组对边相等的四边形是等腰梯形。3.下列命题是假命题的有()个。
①若a2=4,则a=2②若a>b则a2>b2 ③若a>b,b>c 则a>c④若|a|=|b|则a=bA.1B.2C.3D.44.如图,直线a、b都与直线c相交,给出条件:①∠1=∠2②∠3=∠6 ③∠4+∠
7=180°④∠5+∠8=180°,其中能判别a//b的条件是()。A.①③B.②④C.①③④D.①②③④ 5.已知△ABC的三个内角满足∠B+∠C=3∠A,则此三角形()。A.一定有一个内角为45°B.一定是直角三角形C.一定有一个内角为60°D.一定是纯角三角形 6.如图,AB//CD,则、、 之间的关系是()。A.+ +=360°B.- +=180° C. +-=180°D. + +=180°
7.如图,∠A=32°,∠B=45°,∠C=38°则∠DFE=()。A.120°B.115°C.110°D.105°
E
228.如图,DH//EG//BC,且DC//EF,那么图中与∠1相等的角(不包括∠1)的个数是()。A.3B.4C.5D.6
D
B
E
(第7题图)
C
9.甲、乙、丙、丁四位同学猜测自己的数学成绩,甲说:“如果我得优,那么乙也得优”。乙说:“如果我得优,那么丙也得优”。
丙说:“如果我得优,那么丁也得优”,大家都没有说错,但只有三个人得优,请问甲、乙、丙、丁中谁没有得优()。
A.甲B.乙C.丙D.丁
10.如图,AB//CD,∠ =142°,∠C=80°,那么∠M=(A.52°B.42°C.10°D.40°
二、填空题(每题4分共20分)
11.命题“全等三角形的面积相等”的题设是,结论是。把“对顶角相等”写成“如果„„那么„„”的形式是。12.如图,直线a、b被直线c所截,且a//b,如果∠1=60°,那么∠2=度。13.如图,已知AB//ED,若∠ABC=120°,∠CDE=132°,则∠BCD=度。
(第12题图)
(第13题图)
14.如图,△ABC是直角三角形,∠C=90°,∠A,∠B的平分线交于点E,则∠AEB=度。
B
C
E
D
15.如图,已知△ABC中,∠ABC的平分线与∠ACE的平分线交于点D,若 ∠A=50°,则∠D=度。
三、解答下列各题(16、17每题6分,18、19、每题7分,20、21、22每题8分,共50分)。
16.已知,如图,∠1+∠2=180°,求证:∠3=∠4.17.已知:如图△ABC中,AD平分外角∠EAC,AD//BC,求证:△ABC是等腰三角形。
18.如图,四边形ABCD中,①AD//BC ②AB=CD ③∠ABD=∠CDB ④OA=OC(1)以其中两个作为题设,另两个作为结论组成一个正确的命题,题设是结论是;(2)证明上述命题的正确性。
19.求证:两条直线平行,同旁内角的角平分线互相垂直。(提示:先依图,写出已知,求证,然后进行证明)
20.如图,P是△ABC内一点,(1)求证:∠BPC>∠A(2)若∠A=100°,∠ABP=25°,∠ACP=20°求∠BPC的度数。
21.如图,直线l1∥l2,直线l3与直线l1,l2分别交于C,D两点,有一点P在C,D之间运
动(不与C,D两点重合),在它运动过程中,试分析∠1、∠2、∠3三者之间的关系?你能选用两种方法说明得到的关系吗?
B
D P
l2
22.把矩形ABCD沿对角线AC折叠,得到如图所示的图形。(1)求证:△AFC是等腰三角形;(2)若∠EAF=30°,求∠EAC的度数;(3)若AB=8㎝,BC=6㎝,求△AFC的面积。
第二篇:第八章平行线的有关证明单元备课
平行线的有关证明单元备课
【单元分析】:本章是在前面对几何结论已经有了一定的直观认识的基础上编排的。前几册对有关几何结论也曾进行过简单的说理,但是并没有严格地给出证明.虽然本章只是证明的初步,但是它对认识证明的必要性,了解作为证明基础的公理、定义、定理等非常重要。同时,通过有关平行线和三角形的一些简单定理的证明,初步掌握证明的要求和格式,这对发展证明素养也十分重要。本章的定位是让学生初步体会证明的必要性,因此,本章所配备的例题和习题大都不难。但是,其中设计的实际问题和世界名题不少。这样设计的意图是,既可以强化基础、引起数学的兴趣,又为引导学生关注现实、进行深入思考预留了时间和空间。
【单元目标】:本章内容的设计与编写以下列目标为出发点:
(1)理解证明的必要性和设置公理的必要性;
(2)关注现实,并通过具体的例子了解定义、命题、定理的含义,会区分命题的条件和结论,知道反例的意义和作用。
(3)初步掌握用综合法证明的格式,会证明两直线平行的有关判定定理,两直线平行的有关性质定理,三角形内角和定理及其推论。
(4)体会推理的严谨性和结论的确定性,初步树立步步有据的推理意识,发展推理论证能力,提高表达能力与合作交流能力。
(5)通过对欧几里德《原本》的介绍,感受公理化方法对数学发展和人类文明的价值。
【单元重点】:
平行线的判定定理、性质定理及三角形内角和定理。证明意识的建立。
【单元难点】:
证明的过程与格式。
【课时安排】:
本章教学时间约需11课时,具体分配如下:
1、定义与命题2课时
2、证明的必要性1课时
3、基本事实与定理1课时
4、平行线的判定定理1课时
5、平行线的性质定理1课时
6、三角形的内角和定理3课时
回顾与思考2课时
第三篇:平行线的证明
平行线的证明:命题:判断一个事情的句子。
命题一般由条件和结论组成。通常可以写成如果…那么…的形式。如果引出的是条件那么引出的是结论。
正确的为真命题不正确的为假命题
要证明一个命题是假命题通常要举一个例子,使它具备问题得条件不具备问题得结论,我们称这样的例子为反例。
经过证明的真命题为定理
平行线的判定:两条直线被第三条直线所截,如果内错角相等,那么两条直线平行。
(内错角相等,两直线平行)
两条直线被第三条直线所截,如果同位角相等,那么
两条直线平行。
(同位角相等,两直线平行)
两条直线被第三条直线所截,如果同旁内角互补,那么两条直线平行。
(同旁内角互补,两直线平行)
平行线的性质:两直线平行同位角相等
两直线平行内错角相等
两直线平行同旁内角互补
平行线及其判定练习题
一、选择题:
1.如图1所示,下列条件中,能判断AB∥CD的是()
A.∠BAD=∠BCDB.∠1=∠2;C.∠3=∠4D.∠BAC=∠ACD
A
D
AE
DA
E
C
(1)(2)(3)2.如图2所示,如果∠D=∠EFC,那么()
A.AD∥BCB.EF∥BCC.AB∥DCD.AD∥EF3.如图3所示,能判断AB∥CE的条件是()
A.∠A=∠ACEB.∠A=∠ECDC.∠B=∠BCAD.∠B=∠ACE4.下列说法错误的是()
A.同位角不一定相等B.内错角都相等
C.同旁内角可能相等D.同旁内角互补,两直线平行
5.不相邻的两个直角,如果它们有一边在同一直线上,那么另一边相互()A.平行B.垂直C.平行或垂直D.平行或垂直或相交
二、填空题:
1.在同一平面内,直线a,b相交于P,若a∥c,则b与c的位置关系是______.2.在同一平面内,若直线a,b,c满足a⊥b,a⊥c,则b与c的位置关系是______.CD3.如图所示,BE是AB的延长线,量得∠CBE=∠A=∠C.(1)由∠CBE=∠A可以判断______∥______,根据是(2)由∠CBE=∠C可以判断______∥______,根据是
三、训练平台:(每小题15分,共30分)
1.如图所示,已知∠1=∠2,AB平分∠DAB,试说明DC∥AB.A
2.如图所示,已知直线EF和AB,CD分别相交于K,H,且EG⊥AB,∠CHF=600,∠E=•30°,试说明AB∥CD.E
AC
四、提高训练:
K
H
BD
如图所示,已知直线a,b,c,d,e,且∠1=∠2,∠3+∠4=180°,则a与c平行吗?•为什么?
de
abc
五、探索发现:
如图所示,请写出能够得到直线AB∥CD的所有直接条件.24AC
B
657D
六、中考题与竞赛题:
(2000.江苏)如图所示,直线a,b被直线c所截,现给出下列四个条件:•①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能说明a∥b的条件序号为()
A.①②B.①③C.①④D.③④
c
41a
57b
第四篇:平行线的证明
优毅教育2014年3月22日春季数学同步提高课导学案设计人:杜老师学生:
第八章平行线的有关证明
一、知识点归纳
(一)关于命题、定理及公理
1.对名称和术语的含义加以描述,作出明确的规定,也就是给出它们的。
2.判断一件事情的句子,叫做。3.每个命题都由和两部分组成。4.正确的命题称为,不正确的命题称为。想要判定一个命题是假命题只需要,而要说明一个命题是真命题则需.(二)平行线的性质及判定
判定:(1)(公理)(2)(3)性质:(1)(公理)(2)(3)
1.如图1,已知直线a,b与直线c相交,下列条件中不能判定直线a与直线b平行的是()
A.∠2+∠3=180°B.∠1+∠5=180°
C.∠4=∠7D.∠1=∠8
5.公认的真命题称为公理(所有公理)6.推理的过程称为。7.经过证明的真命题称为。
8.由一个公理或定理直接推出的定理,叫做这个公理或定理的同步练习:
1.把命题“对顶角相等”改写成“如果„„那么„„”形式为。2.请给出命题:“如果两个数的积是正数,那么这两个数一定都是正数”是(真命题或假命题),理由:______________________________________。3.下列语句不是命题的是()
A.2008年奥运会的举办城是北京B.如果一个三角形三边a,b,c满足a=b+c,则这个三角形是直角三角形C.同角的补角相等D.过点P作直线l的垂线4.下列命题是真命题的是()
ca3 25b
7图1图23.如图2,用两个相同的三角板按照如图方式作平行线,能解释其中道理的定理是()
A同位角相等两直线平行 B.同旁内角互补,两直线平行 C内错角相等两直线平行D平行于同一条直线的两直线平行4.已知,如右图AB∥CD,若∠ABE = 130°,∠CDE = 152,则∠BED =__________.AFB
E5、如下图,平行直线AB和CD与相交直线EF、GH相交,图中的同旁内角共有()对.6、如下图1,在△ABC中,∠ABC=90°,∠A=50°,BD∥AC,则∠CBD的度是.A.a一定是负数B.a0
C.平行于同一条直线的两条直线平行
D.有一角为80°的等腰三角形的另两个角都为50° 5.举例说明“两个锐角的和是锐角”是假命题.第5题图
中考(平行线)
1.(山东济宁)在一次夏令营活动中,小霞同学从营地A点出发,要到距离A点1000m的C地去,先沿北偏东70方向到达B地,然后再沿北偏西20方向走了500m到达目的地C,此时小霞在营地A的A.北偏东20方向上B.北偏东30方向上C.北偏东40方向上D.北偏西30方向上 5.(湖南郴州)下列图形中,由ABCD,能得到12的是()
6.(2010湖北襄樊)如图1,已知直线AB//CD,BE平分∠ABC,交CD于D,∠CDE=150°,则∠C的度数为()A.150° B.130° C.120° D.100°
图1.
2.(山东威海)如图,在△ABC中,∠C=90°.若BD∥AE,7.(甘肃)如图,AB∥CD,EFAB于E,EF
交CD 于F,已知160°,则2()∠DBC=20°,则∠CAE的度数是 A.30°B.20°C.25°D.35° A.40°
B.60°D C.70°D.80°E A
B A E3.(山东聊城)如图,l∥m,∠1=115º,∠2=95º,则
∠3=()8.如图1,直线a∥b,C与a、b均相交,则
=()
A.120ºB.130ºC.140ºD.150º
4.(山东省德州)如图,直线AB∥CD,∠A=70,∠C=40,则∠E等于
第2题图
C9.(荷泽)如图,直线PQ∥MN,C是MN上一点,CE交
PQ于A,CF交PQ于B,且∠ECF=90°,如果∠FBQ=50°,则∠ECM的度数为
A.60° B.50° C.40° D.30°
M
Q N
(A)30°(B)40°(C)60°(D)70°
C 5题图
10.(新疆维吾尔)如图,小明课间把老师的三角板的直角顶点放在黑板的两条平行线a、b上,已知∠1=55°,则∠2的度数为()
A.45°B.35°C.55°D.125°
11.(2010贵州遵义)如图,梯子的各条横档互相平行,若∠1=80°,则∠2的度数是 A.80°B.100°C.110°D.120 °
15.(福建三明)如图,已知∠C=100°,若增加一个条件,使得AB//CD,试写出符合要求的一个条件:。
(三)三角形的内角和外角的定理
1.三角形内角和定理:。2.三角形一个外角等于和它不相邻的两个内角的和。
12.(2010广东肇庆)如图1,AB∥CD,∠A=50°,∠C=∠E,则∠C等于()
B.25°
D.40°
3.三角形的一个外角大于任何一个和它不相邻的内角。
1、(2011•昭通)将一副直角三角板如图所示放置,使含30°
角的三角板的一条直角边和含45°角的三角板的一条直角边重合,则∠1的度数为()
13.(2010山东日照)如图,C岛在A岛的北偏东50o方向,C岛在B岛的北偏西40方向,则从C岛看A,B两岛的视角∠ACB等于.
o
A、45°B、60°
C、75°D、85°
2、(2011•台湾)如图中有四条互相不平行的直线L1、L2、L3、L4所截出的七个角.关于这七个角的度数关系,下列何者正确()
14.(2010山东烟台)将两张矩形纸片如图所示摆放,使其中一张矩形纸片的一个顶点恰好落在另一张矩形纸片的一条边上,则∠1+∠2=_____________。
A、∠2=∠4+∠7B、∠3=∠1+∠6C、∠1+∠4+∠6=180°D、∠2+∠3+∠5=360°
3、(2011•台湾)若△ABC中,2(∠A+∠C)=3∠B,则∠B的外角度数为何()
4、(2011•台湾)若钝角三角形ABC中,∠A=27°,则下列何者不可能是∠B的度数?()A、37B、57C、77D、975、直角三角形中两锐角平分线所交成的角的度数是()
6、(2009•荆门)如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()
2.如图所示,XOY=90°,点A、B分别在射线OX,OY上移动,BE是ABY的平分线,BE的反向延长线与OAB的平分线相交于点C,试问ACB的大小是否变化,如果保持不变,请给出证明,如果随点A、B的移动变化,请给出变化范围。
7、关于三角形的内角,下列判断不正确的是()
A、至少有两个锐角B、最多有一个直角
C、必有一个角大于60°D、至少有一个角不小于60°
8、如图,BE、CF都是△ABC的角平分线,且∠BDC=110°,则∠A=()
3.一件商品如果按定价打九折出售可以盈利20%;如果打八
9如图,将等边三角形ABC剪去一个角后,则∠1+∠2的大
小为()
折出售可以盈利10元,问此商品的定价是多少?
4.一个两位数,比它十位上的数与个位上的数的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数.
10、若一个三角形的两个内角的平分线所成的钝角为145°,则这个三角形的形状为()
解答题
1.已知:如图15,AD⊥BC于D,EG⊥BC于G,∠E =∠3。求证:AD平分∠BAC。
第五篇:平行线证明 2
第九讲平行线的证明
1、定义的概念:
对名称和术语的含义加以描述,作出明确的规定,就是给出它们的定义。例子:下列语句属于定义的是()
A、明天是晴天
B、长方形的四个角都是直角
C、等角的补角相等
D、平行四边形是两组对边分别平行的四边形
2、命题:
判断一件事情的句子,叫做命题。
注意:(1)命题必须是一个完整的句子,通常是陈述句,包括肯定句和否定句。
(2)命题必须对某件事情作出肯定或否定的判断。
(3)错误的判断性语句也是命题。
(4)一般命题都可以写成“如果....那么.....”的形式。
例子:下列语句中哪些是命题?哪些不是命题?
(1)相等的角不是对顶角
(2)同位角相等,两直线平行
(3)过点O作直线AB的平行线
(4)若x2=y2,则x=y
(5)老师今天表扬你了吗?
3、正确的命题称为真命题,不正确的命题称为假命题。
4、公认的真命题称为真理。
5、演绎推理的过程称为证明。
6、经过证明的真命题称为定理。
7、平行线的判定
(1)同位角相等两直线平行。
(2)同旁内角互补两直线平行。
(3)内错角相等两直线平行。
8、平行线的性质
(1)两直线平行,同位角相等
(2)两直线平行,内错角相等
(3)两直线平行,同旁内角互补
基础练习
一、选择题
1、下列图形中,由AB∥CD,能得到12的是()
A B A BCD D C 2
2、如图,直线A. LB C.
D.
1∥L2 ,则∠α为().A.1500B.1400C.1300D.12003、下列命题:
1①不相交的两条直线平行; ②梯形的两底互相平行;
③同垂直于一条直线的两直线平行; ④同旁内角相等,两直线平行.(第2题图)其中真命题有()
A.1个B.2个C.3个D.4个
4、下列命题:
①两个连续整数的乘积是偶数;②带有负号的数是负数;
③乘积是1的两个数互为倒数;④绝对值相等的两个数互为相反数.其中假命题有()
A.1个B.2个C.3个D.4个 A
5、如图,AB∥CD,那么∠BAE+∠AEC+∠ECD =()A.1800B.2700C.3600D.5400
6、下列说法中,正确的是()
A.经过证明为正确的真命题叫公理B.假命题不是命题
E
C
D
C.要证明一个命题是假命题,只要举一个反例,即举一个具备命题的条件,而不具备命题结论的命题即可
D.要证明一个命题是真命题,只要举一个例子,说明它正确即可.7、下列选项中,真命题是().A.a>b,a>c,则b=cB.相等的角为对顶角
C.过直线l外一点,有且只有一条直线与直线l平行D.三角形中至少有一个钝角
8、下列命题中,是假命题的是()
A.互补的两个角不能都是锐角B.如果两个角相等,那么这两个角是对顶角 C.乘积为1的两个数互为倒数D.全等三角形的对应角相等,对应边相等.9、下列命题中,真命题是()
A.任何数的绝对值都是正数B.任何数的零次幂都等于
1C.互为倒数的两个数的和为零 D.在数轴上表示的两个数,右边的数比左边的数大
10、如图所示,下列条件中,能判断AB∥CD的是()
A.∠BAD=∠BCDB.∠1=∠2;C.∠3=∠4D.∠BAC=∠ACD
二、填空题
11、观察如图所示的三棱柱.用符号表示下列线段的位置关系:
ACCC1 ,BCB1C1 ;
C
B(第13题图)(第12题图)
(第11题图)
12、如图三角形ABC中,∠C = 900,AC=23,BC=32,把
AC、BC、AB的大小关系用“>”号连接:.13、如图,直线AB、CD相交于点E ,DF∥AB,若∠AEC=1000,则∠D的度数等于.D
(第14题图)
14、如图,把长方形ABCD沿EF对折,若∠1=500,则∠
15、图中有对对顶角.三.解答题
16、如图,AB∥CD,AD∥BC,∠A﹦∠B.求∠A、∠B、∠C、∠D的度数.D
C17、如图,AB∥CD,直线EF交AB、CD于点G、H.如果GM平分∠BGF,HN平分∠CHE,那么,GM与HN平行吗?为什么?
EA B
CH
F 0018、如图,AB∥CD,∠BAE=30,∠ECD=60,那么∠AEC度数为多少?
A
E
D C19、如图,B处在A处的南偏西450方向,C处在B处的北偏东800方向.(1)求∠ABC.(2)要使CD∥AB,D处应在C处的什么方向?(12分)
D20、如图所示,已知直线a,b,c,d,e,且∠1=∠2,∠3+∠4=180°,则a与c平行吗?•为什么?(13分)
de
abc
参 考 答 案
一、1.B2.D3.B4.B5.C6.C7.C8.B9.D10.D
二、11.(1)⊥
12.AB >BC >AC13.80014.115015.9
三、16.1350,450,1350,450
提示:可以用方程.设∠B=x0 ,根据AD∥BC,得x+3x=180(两直线平行,同旁内角互补),解得x=45.以下略.17.GM∥HN.理由:因为GM平分∠BGF,HN平分∠CHE,所以∠MGF= ∠BGF,∠NHE=
∠CHE,又因为AB∥CD,所以∠BGF=∠CHE(两直线平行,内错角相等),所以∠MGF=2
∠NHE.所以GM∥HN(内错角相等,两直线平行).18.如图,过E作EF∥AB,则∠1=∠A=300
(„„);
因为AB∥CD,所以EF∥CD(如果两条直线 都与第三条直线平行,那么这
两条直线也互相平行),C 所以∠2=∠C=600(„„),那么∠AEC=∠1+∠2=300+600=900.19.(1)∠ABC=800-450=350.(2)要使CD∥AB,D处应在C处的南偏西450方向.20.解:平行.∵∠1=∠2, ∴a∥b,又∵∠3+∠4=180°, ∴b∥c, ∴a∥c.D