第一篇:2011中考集训之中档题—几何证明题
中考集训之中档题——几何证明题一、三角形
1、(肇庆2010)(8分)如图,已知∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,CE与AB相交于F.
(1)求证:△CEB≌△ADC;
(2)若AD=9cm,DE=6cm,求BE及EF的长.
E
C2、(深圳2010)(本题7分)如图8,△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90º,D在AB上.
(1)求证:△AOC≌△BOD;(4分)
(2)若AD=1,BD=2,求CD的长.(3分)
O
图8
A
二、平行四边形、特殊的平行四边形
1、(广州2010)如图5,在等腰梯形ABCD中,AD∥BC.
求证:∠A+∠C=180°
2、(佛山2010)已知,在平行四边形ABCD中,EFGH分别是AB、BC、CD、DA上的点,B F C3、(湛江2010)(10分)如图,在□ABCD中,点E、F是对角线BD上的两点,且BE=DF.
求证:(1)△ABE≌△CDF;(2)AE∥CF. D
C
4.(肇庆2010)如图,四边形ABCD是平行四边形,AC、BD交于点O,∠1=∠2.
(1)求证:四边形ABCD是矩形;(2)若∠BOC=120°,AB=4cm,求四边形ABCD的面积. D5、(汕头2010)如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD、等边△ABE.已知∠BAC=30º,EF⊥AB,垂足为F,连结DF.
(1)试说明AC=EF;
(2)求证:四边形ADFE是平行四边形.
且AE=CG,BF=DH,求证:AEH≌CGF
E
B
C
第20题图
6、(茂名2010)如图,已知OA⊥OB,OA=4,OB=3,以AB为边作矩形ABCD,使AD=a,C 过点D作DE垂直OA的延长线交于点E.
(1)证明:△OAB∽△EDA;
(2)当a为何值时,△OAB≌△EDA?*请说明理由,并求此时点 BD C到OE的距离.
O A E图
1C
D
B
O A E
图
27.(梅州2010)如图,在△ABC中,点P是边AC上的一个动点,过点P作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)求证:PE=PF;
(2)*当点P在边AC上运动时,四边形BCFE可能是菱形吗?说明理由;
AP
3(3)*若在AC边上存在点P,使四边形AECF是正方形,且.求此时∠A的大
BC2小.
N
三、梯形
1.(深圳2006)如图7,在梯形ABCD中,AD∥BC, ABDCAD,ADC120.(1)(3分)求证:BDDC
证明:
(2)(4分)若AB4,求梯形ABCD的面积. 解:
B
C2、(08年深圳中考)如图5,在梯形ABCD中,AB∥DC,DB平分∠ADC,过点A作AE∥BD,交CD的延长线于点E,且∠C=2∠E. AB(1)求证:梯形ABCD是等腰梯形.
(2)若∠BDC=30°,AD=5,求CD的长.
EDC
图
5四、直角三角形的边角关系的应用
1.(湛江2010)如图,小明在公园放风筝,拿风筝线的手B离地面高度AB为1.5m,风筝飞到C处时的线长BC为30m,这时测得∠CBD=60º.求此时风筝离地面的高度(精确到0.1m,3≈1.73).
2.(深圳2009)如图,斜坡AC的坡度(坡比)为1:3,AC=10米.坡顶有一旗杆BC,旗杆顶端B点与A点有一条彩带AB相连,AB=14米. 试求旗杆BC的高度.
D
A3、(深圳2007)如图5,某货船以24海里/时的速度将一批重要物资从A处运往正东方向的M处,在点A处测得某岛C在北偏东60的方向上.该货船航行30分钟后到达B处,此时再测得该岛在北偏东30的方向上,已知在C岛周围9海里的区域内有暗礁.若继续向
第二篇:2012中考几何证明题集训
2012中考几何证明题集训
1、如图,AB是⊙O的直径,CB是弦,OD⊥CB于E,(1)请写出两个不同类型的正确结论;
(2)若CB=8,ED=2,求⊙O的半径。
B
D2、如图,AB是⊙O的直径,BC是⊙O的切线,切点为点B,点D是⊙O上的一点,且AD∥OC。求证:AD·BC=OB·BD
C
BA3、如图,AB是⊙O的直径,AD是弦,∠DAB=22.5°,延长AB到点C,使得∠ACD=45°
(1)求证:CD是⊙O的切线;
(2)若AB=22,求BC的长
交⊙O于D,连结AC A4、已知:如图,以Rt△ABC的直角边AB为直径的半圆O,与斜边AC交于D,E是BC边上的中点,连接DE,求证:DE与半圆O相切。
5、如图,已知CD是△ABC中AB边上的高,以CD为直径的⊙O分别交CA、CB于点E、F,点G是AD的中点.
求证:GE是⊙O的切线。
6、已知:如图△ABC内接于⊙O,OH⊥AC于H,过A点的切线与OC的延长线交于点D,∠B= 30°,.请求出:
(1)∠AOC的度数;(2)劣弧AC的长(结果保留π);(3)线段AD的长(结果保留根号).7、如图,在平面直角坐标系中,⊙M与x轴交于A、B两点,AC是⊙M的直径,过点C的直线交x轴于点D,连
接BC,已知点M的坐标为(0),直线CD的函数解析式为y=+5. ⑴求点D的坐标和BC的长;⑵求点C的坐标和⊙M的半径;⑶求证:CD是⊙M的切线.
8、如图(1),AB是⊙O的直径,AC是弦,直线EF和⊙O相切于点C,AD⊥EF,垂足为D。(1)求证:∠DAC=∠BAC;
(2)若把直线EF向上平行移动,如图(2),EF交⊙O于G、C两点,若题中的其他条件不变,这是与∠DAC相等的角是哪一个?为什么?
D
(2)
(1)
9、(1)如图1,已知矩形ABCD中,点E是BC上的一动点,过点E作EF⊥BD于点F,EG⊥AC于点G,CH⊥BD于
点H,试证明CH=EF+EG;(2)若点E在BC的延长线上,如图2,过点E作EF⊥BD于点F,EG⊥AC的延长线于点G,CH
⊥BD于点H,则
EF、EG、CH三者之间具有怎样的数量关系,直接写出你的猜想;
(3)如图3,BD是正方形ABCD的对角线,L在BD上,且BL=BC, 连结CL,点E是CL上任一点, EF⊥BD于点F,EG⊥BC于点G,猜想EF、EG、BD之间具有怎样的数量关系,直接写出你的猜想;(4)观察图
1、图
2、图3的特性,请你根据这一特性构造一个图形,使它仍然具有EF、EG、CH这样的线段,并满足(1)或(2)的结论,写出相关题设的条件和结论.图
1D
D图
3C10、如图,△ABC是等边三角形,F是AC的中点,D在线段BC上,连接DF,以DF为边在DF的右侧作等边△DFE,ED的延长线交AB于H,连接EC,则以下结论:①∠AHE+∠AFD=180°;②AF=B,C重合)运动,其他条件不变时
1BCECDC
2BC;③当D在线段BC上(不与
BHBD
是定值;④当D在线段BC上(不与B,C重合)运动,其他条件不变时
是定值;
A
(1)其中正确的是-------------------;(2)对于(1)中的结论加以说明;
F
HB
G
D
E
C11、如图12,在△ABC中,D为BC的中点,点E、F分别在边AC、AB上,并且∠ABE=∠ACF,BE、CF交于点O.过点O作OP⊥AC,OQ⊥AB,P、Q为垂足.求证:DP=DQ.
12、如图。,BD是△ABC的内角平分线,CE是△ABC的外角平分线,过点A作AF⊥BD,AG⊥CE,垂足分别为F、G。
探究:线段FG的长与△ABC三边的关系,并加以证明。
说明:⑴如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写
3步);⑵在你经历说明⑴的过程之后,可以从下列①、②中选取一个补充或更换已知条件,完成你的证明。
注意:选取①完成证明得10分;选取②完成证明得7分。
①可画出将△ADF沿BD折叠后的图形;
②将CE变为△ABC的内角平分线。(如图2)
附加题:探究BD、CE满足什么条件时,线段FG的长与△ABC的周长存在一定的数量关系,并给出证明。
13、设点E是平行四边形ABCD的边AB的中点,F是BC边上一点,线段DE和AF相交于点P,点Q在线段DE上,且AQ∥PC.(1)证明:PC=2AQ.
(2)当点F为BC的中点时,试比较△PFC和梯形APCQ面积的大小关系,并对你的结论加以证明.
14、已知△ABC中,AB=AC=3,∠BAC=90°,点D为BC上一点,把一个足够大的直角三角板的直角顶点放在D处.
(1)如图①,若BD=CD,将三角板绕点D逆时针旋转,两条直角边分别交AB、AC于点E、点F,求出重叠部分AEDF的面积(直接写出结果).(2)如图②,若BD=CD,将三角板绕点D逆时针旋转,使一条直角边交AB于点E、另一条直角边交AB的延长线于点F,设AE=x,重叠部分的面积为y,求出y与x的函数关系式,并写出自变量x的取值范围.(3)若BD=2CD,将三角板绕点D逆时针旋转,使一条直角边交AC于点F、另一条直角边交射线AB于点E.设CF=x(x>1),重叠部分的面积为y,求出y与x的函数关系式,并写出自变量x的取值范围.
15、如图,△ABC中,∠BAC=90°,AD⊥BC,E为CB延长线上一点,且∠EAB=∠BAD,设DC=kBD,试探究EC与EA的数量关系。
16、如图,△ABC中,∠BAC=90°,AD⊥BC,DE⊥AB,DF⊥AC,若AB=kAC,试探究BE与CF的数量关系。
17、如图,在△ABC和△PQD中,AC=kBC,DP=kDQ,∠C=∠PDQ,D、E分别是AB、AC的中点,点P在直线BC上,连接EQ交PC于点H。猜想线段EH与AC的数量关系,并证明你的猜想,若证明有困难,则可选k=1证明之。
18、在△ABC中,O是AC上一点,P、Q分别是AB、BC上一点,∠B=45°,∠POQ=135°,BC=kAB,OC=mAO。试说明OP与OQ是数量关系,选择条件:(1)m=1,(2)m=k=1。
19、如图,∠BAC=90°,AD⊥BC,DE⊥AB, AB=kAC,探究BE与AE是数量关系。
(1)如图1所示,在四边形ABCD中,AC=BD,AC与BD相交于点O,E、F分别是AD、BC的中点,联结EF,分别交AC、BD于点M、N,试判断△OMN的形状,并加以证明;
(2)如图2,在四边形ABCD中,若ABCD,E、F分别是AD、BC的中点,联结FE并延长,分别与BA、CD的延长线交于点M、N,请在图2中画图并观察,图中是否有相等的角,若有,请直接写出结论:;
(3)如图3,在△ABC中,ACAB,点D在AC上,ABCD,E、F分别是AD、BC的中点,联结FE并延长,与BA的延长线交于点M,若FEC45,判断点M与以AD为直径的圆的位置关系,并简要说明理由.B
F
C
B
F
A
ME
D图 1图2图3
第三篇:中考几何证明题集锦(精选)
几何证明题集锦
1、如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD、等边△ABE.已知∠BAC=30º,EF⊥AB,垂足为F,连结DF.
(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.(10分)
E2、已知,如图,在正方形ABCD中,点E、F分别在AB上和AD的延
长线上,且BE=DF,连接EF,G为EF的中点.求证:⑴CE=CF;
⑵DG垂直平分AC.EB3、在△ABC中,AC=BC,ACB90,点D为AC的中点.(1)如图1,E为线段DC上任意一点,将线段DE绕点D逆时针旋转90°得到线段DF,连结CF,过点F作FH于点H.判断FH与FC的数量关系并加以证明.
(2)如图2,若E为线段DC的延长线上任意一点,(1)中的其他条件不变,你在(1)中得出的结论是否发生改变,直接写出你的结论,不必证明.(12分)
A
A
FC,交直线AB
F
DE
F
D
C
C
图
1E
图
2B
H4、如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.⑴ 求证:△AMB≌△ENB;
⑵ ①当M点在何处时,AM+CM的值最小;②当M点在何处时,AM+BM+CM的值最小,并说明理由; ⑶ 当AM+BM+CM的最小值为分
BC
31时,求正方形的边长.(14
AD
第四篇:中考数学几何证明题
中考数学几何证明题
在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.(1)在图1中证明CE=CF;
(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;
第一个问我会,求第二个问。需要过程,快呀!
连接GC、BG
∵四边形ABCD为平行四边形,∠ABC=90°
∴四边形ABCD为矩形
∵AF平分∠BAD
∴∠DAF=∠BAF=45°
∵∠DCB=90°,DF∥AB
∴∠DFA=45°,∠ECF=90°
∴△ECF为等腰Rt△
∵G为EF中点
∴EG=CG=FG
∵△ABE为等腰Rt△,AB=DC
∴BE=DC
∵∠CEF=∠GCF=45°→∠BEG=∠DCG=135°
∴△BEG≌△DCG
∴BG=DG
∵CG⊥EF→∠DGC+∠DGB=90°
又∵∠DGC=∠BGE
∴∠BGE+∠DGB=90°
∴△DGB为等腰Rt△
∴∠BDG=45°
分析已知、求证与图形,探索证明的思路。
对于证明题,有三种思考方式:
(1)正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。
(2)逆向思维。顾名思义,就是从相反的方向思考问题。运用逆向思维解题,能使学生从不同角度,不同方向思考问题,探索解题方法,从而拓宽学生的解题思路。这种方法是推荐学生一定要掌握的。在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显,数学这门学科知识点很少,关键是怎样运用,对于初中几何证明题,最好用的方法就是用逆向思维法。如果你已经上初三了,几何学的不好,做题没有思路,那你一定要注意了:从现在开始,总结做题方法。同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。例如:可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去……这样我们就找到了解题的思路,然后把过程正着写出来就可以了。这是非常好用的方法,同学们一定要试一试。
(3)正逆结合。对于从结论很难分析出思路的题目,同学们可以结合结论和已知条件认真的分析,初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。正逆结合,战无不胜。
第五篇:中考几何证明题复习
中考复习
(二)中考复习:几何证明题
说明一:在直角三角形中,或是题中出现多个直角时,要证明两个角相等,涉及到的知识点:
同角(或等角)的余角相等。
例1:已知:如图,在△ABC中,∠ACB=90,CDAB于点D,点E 在AC上,CE=BC,过E点作AC的垂
线,交CD的延长线于点F.求证:AB=FC
说明二:(1)一般情形,题中有多个问题时,第二问都与第一问有直接的关系,利用第一问的结论解题。(2)判别菱形的方法:例:如图,在平行四边形ABCD中,AE
(1)求证:△ABE∽△ADF;(2)若AG
例3:如图,设在矩形ABCD中,点O为矩形对角线的交点,∠BAD的平分线AE交BC于点E,交OB于点F,已知AD=3, AB
⑴求证:△AOB为等边三角形;⑵求BF的长.A
AH
BC
A
E
于E,AF
CD
于F,BD与AE、AF分别相交于G、H.
B
D,求证:四边形ABCD是菱形.
D
B
E
C
说明:在解梯形的题中,一般需要作辅助线。
例4:如图,在梯形ABCD中,AD∥BC,BD⊥DC,∠C=60°,AD=4,BC=6,求AB的长。
说明:证明正方形的方法:例:如图,已知:在四边形ABFC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且CF=AE。(1)试探究,四边形BECF是什么特殊的四边形;
(2)当A的大小满足什么条件时,四边形BECF是正方形? 请回答并证明你的结论.例:如图,在梯形ABCD中,AD∥BC,BC=4,点M是AD的中点,△MBC是等边三角形.(1)求证:梯形ABCD是等腰梯形;
(2)动点P、Q分别在线段BC和MC上运动,且∠MPQ60保持不变.设PCx,MQy,求
y与x的函数关系式;
C
(3)在(2)中当y取最小值时,判断△PQC的形状,并说明理由.
A
M
D
60°
B
P
C
圆中计算与相关证明
说明:关于圆的计算,若出现直径,要联想到:直径所对的圆周角是直角;
若出现切线,要连接圆心和切点,就出现直角;
如弦长,联想到垂径定理(垂直,平分弦,构建直角三角形)
例:如图,AB是半圆O上的直径,E是 ⌒BC的中点,OE交弦BC于点D,过点C作⊙O切线交OE的延长线于
点F.已知BC=8,DE=2.⑴求⊙O的半径;⑵求CF的长;⑶求tan∠BAD 的值。
说明:证明圆的切线的办法:(1)连半径,证垂直;(2)作垂直,证半径。例:如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,ACCD,D30°,(1)求证:CD是⊙O的切线;(2)若⊙O的半径为3,求弧BC的长.(结果保留π)
例:如图,在Rt△ABC中∠ABC=90°,斜边AC的垂直平分线交BC与D点,交AC与E点,连接BE。(1)若BE是△DEC的外接圆的切线,求∠C的大小?(2)当AB=1,BC=
2,求△DEC外接圆的半径。
A
B
O B
如图,⊙O的直径AB=4,C、D为圆周上两点,且四边形OBCD是菱形,过点D的直线EF∥AC,交BA、BC的延长线于点E、F.
(1)求证:EF是⊙O的切线;(2)求DE的长.
说明:出现三角函数值,必须在直角三角形中,或作垂直或找出相等的角,该角在直角三角形中。如图,等腰三角形ABC中,AC=BC=6,AB=8.以BC为直径作⊙O交AB于点D,交AC于点G,DF⊥AC,垂足为F,交CB的延长线于点E.(1)求证:直线EF是⊙O的切线;(2)求sin∠E的值.
如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC,过D作DE⊥AC,垂足为E.
(1)求证:AB=AC;(2)若⊙O的半径为4,∠BAC=60º,求DE的长.
C
F
B