第一篇:浅谈口诀在中学数学教学中的作用
发挥口诀在中学数学教学中的作用
新疆乌鲁木齐市第十五中学王峻
在中学数学教学中,有很多基础知识、基本技能以及运算规律、方法需要我们掌握,在这些方面,如果能够比较好的把这些知识、技能、规律、方法进行归纳、总结上升为精炼、准确的口诀,就可以极大地便于学生记忆和掌握。这些数学口诀是有学生的数学活动的过程中产生、发现,然后由师生一起总结归纳,由特殊到一般,由具体到抽象,发现规律,总结为简短易记的口诀,通过口诀的记忆,来比较好的掌握数学基础知识、基本技能以及运算规律、方法。以下通过一些例子来说明:
例1:在有理数的加减运算中,学生发现:8+(+5)=8+5,8+(-5)=8-5,8-(+5)=8-5,8-(-5)=8+5,再换成其他有理数也是如此,由此总结出:“正正得正,正负得负,负正得负,负负得负”的口诀。
例2:在求一元一次不等式组的公共部分时,也可以总结出:“同大取大,同小取小,大小小大取中间,大大小小取无解”。
例3:在应用题中也有类似的情况,如“相遇用加,追及用减,顺流用加,逆流用减”,指的是,相遇时,两车走的路程之和为两车开始时相距的路程,追及时,两车走的路程之差为两车开始时相距的路程,顺流时,船速等于船在静水中的速度加水速,逆流时,船速等于船在静水中的速度减水速。
例4:在完全平方公式的教学中,很多学生想当然的写成(ab)2a2b2,(ab)2a2b2,为了强化教学效果,避免类似的错误,可以引导学生背诵如下口诀:“完全平方真重要,展开三项不能忘,前平方,后平方,还有二倍在中间”,这样再犯的错误就少了许多。例5:在平面直角坐标系的教学中,强调“三个相反”:P(x,y)在x轴上,则y=0, 在y轴上,则x=0;P(x,y)到x轴的距离为y的绝对值,到y轴的距离为x的绝对值;P1(x1,y1)与P2(x2,y2),若x1x2,则p1p2∥y轴,若y1y2,则p1p2∥x轴,总结为“三个相反”。
例6:在P(x,y)关于x轴对称得P1(x,-y),P(x,y)关于y轴对称得
“关于P2(-x,y),P(x,y)关于坐标原点对称得P3(-x,-y),总结口诀为:
谁对称谁不变,关于坐标原点对称,两个都要变”。
例7:在高中数学中也有大量的例子。比如±α,90°±α,180°±α,270°±α,360°±α的三角函数转化公式的记忆中,可总结为“奇变偶不变,符号看象限”。
由此可见较好的利用口诀,确实可以带来比较好的教学效果。在应用口诀教学时,必须注意以下几个问题:
1、运用口诀不能淡化数学知识的产生、发展的过程,口诀应由师生共同总结和归纳,要得到学生的理解和认同。不能只强调口诀而忽视对数学基础知识、基本技能以及运算规律、方法本身的理解和应用,更不能把数学学习变成一种机械的学习。
2、口诀必须短小精炼,朗朗上口,所以教师必须反复、逐字逐句的推敲,必须严谨、准确。
3、口诀的应用必须建立在充分的理解的基础上,这样才会产生比较好的效果。
第二篇:浅谈数学史在中学数学教学中的作用
浅谈数学史在中学数学教学中的作用
石嘴山市第一中学刘园
摘要:
新课程是要有深层次的课程理念和课程制度的创新;新课程观认为课程不仅是知识,同时也是经验,是活动。在新课程理念指导下,中学数学教师也应该更加立体、系统的把数学知识呈献给学生。数学史在中学数学教学中的作用是非常重要的,作为数学教师理解数学史内涵也是必不可少的。数学史对数学教育有多方面的作用,数学史可以优化教学过程、培养科学思维、激发学习兴趣、学习科学方法、树立哲学理念,培养爱国思想等方面有着独特的作用。
关键词:数学史中学数学教学数学美教育作用引言
我作为一名中学数学教师,深刻的体会到中学数学教学面对的尴尬:想学,学不懂;想教,教不会。这大大影响了数学教学质量的提高和创新能力的培养。学生都觉得数学很重要,可是面对生涩难懂的概念,一串串没见过的数学符号,很多学生选择了死记硬背,甚至抄书来强迫自己学习数学知识,久而久之,对学习数学的体会就是枯燥乏味、毫无兴趣。无兴趣,无激情就更谈不到创造力了,最终的结果一定是非常糟糕的。而教师为了讲好数学课也下了很大功夫,查资料,备例题,选方法等等手段都用上了,可是就是有一些学生听不懂,学不会,最后只能回到“题海战术”上,用大量的练习强迫学生“搞懂”,结果也必然是事与愿违。当然以上的问题的产生有多方面的原因,解决的办法也有很多,我认为在教学中利用数学史知识,渗透数学史建立学生正确的数学观是一个很好的解决办法。
我国教育行政管理部门是十分重视数学史教学的。中国数学史已经成为中学数学教材的一个重要组成部分。现行中学数学课本中直接介绍中国数学史的有很多处,涉及数学家、数学名著、数学成就和方法等有几十个地方,并以习题、注释、课文、附录等多种形式出现。
数学史是一门独立的学科,它以数学学科的产生、发展的历史作为研究对象,阐明其历史进程,揭示其一般规律,它既是数学的一个分支,又是学科史的一个分支。中学数学教师对数学史都或多或少的有所了解。为了达到数学学科的教学目标,对数学史的教学应提出明确的要求:要使学生懂得数学来源于实践又反作用于实践,数学知识是相互联系和不断变化发展的,初步形成辩证唯物主义观点。结合有关内容的教学,使学生了解我国国情、社会主义建设成就以及数学史料,提高学生的爱国主义热情和民族自尊心、自信心。数学史的内涵
列宁说: “一种科学的历史是那门科学最宝贵的一部分,科学只能给我们知识,而历史却能给我们以智慧。”
数学史研究大体上分为“内史”和“外史”两个方面。“内史”研究以考查数学理论成果的历史形态为主,包括数学成果产生的年代、最初的形态和后来的演变、创立者的贡献、数学成果的传播等。“外史”研究以考查数学发展与社会生活各方面的关系为主,包括数学发展与哲学、科学技术、经济、军事、宗教等方面的关系,以及数学家生平和思想、数学事业发展、数学教育等方面的问题。从“数学史”的完整定义中我们可以看到它既有知识结论,又记录了数学知识形成的思维过程、活动以及数学的发展、进步等。因此我们说数学史既是一部完整的数学思想史,同时又是一部数学发展史。数学史这种特殊地位,是由数学作为一种文化的特点决定的。中学数学教学中渗透数学史的教育作用
3.1 运用数学史进行新课导入
良好的开头是成功一半,一个精彩的“引课”可以抓住学生的注意力,激发学生的兴趣,增强求知欲。如人教版必修1的第一课就是集合,这是高一学生升入高中后要接触到的第一个数学知识,老师其实没必要在第一天上课就开始讲课本,如果用一节课简要介绍一下历史上的三次数学危机,那一定会达到很好的效果。这三次数学危机包括了无理数的产生过程,同时学生可以了解历史上著名的毕达哥拉斯学派;勾股定理为什么又叫百牛定理、毕达哥拉斯定理的原因;知道莱布尼兹和牛顿的伟大数学贡献;对“无穷”有一个初步的了解;知道微积分诞生的伟大意义;了解集合论的产生以及到现在都没有得到彻底解决的“集合悖论”。由此引出“集合”这个词,让学生知道集合论是数学的基石,而我们的高中数学就是从这里展开的。这样的高中开篇课,一定能激发同学们极大的数学学习热情。
3.2用数学史作为教学结尾
一堂课的结束预示着下堂课的开始,一个好的结尾可以让学生浮想联翩、主动探索,同时激发求知欲。譬如陈景润的老师在讲完整数的性质后说:“自然科学的皇后是数学,数学的皇冠是数论,而哥德巴赫猜想是皇冠上的一颗明珠,这是一颗金光闪耀的明珠,你们谁能把它摘到手呢?”正是老师的这番话在陈景润的心里播下了研究哥德巴赫猜想的种子。恰当的运用数学史的知识作为一堂课的结尾,能激起学生的探究欲望,达到“余音绕梁,三日不绝”的效果。
3.3 介绍知识产生的过程
数学的根源深扎在过去,如果我们不去追溯古今数学思维的演变及进化,就难以理解数学何以成为现在这样子,就可能片面的认为数学就是单纯的知识、技巧的堆砌,是单纯的逻辑推导的一个完整的体系。为此,我们有必要让我们的学
生更多地去了解知识产生的过程,让他们在教师的指导下,亲自经历知识的源与流,从数学家的废纸篓里寻找知识地源泉,感受数学思想地熏陶和方法地冶炼。这样,他们才能吸取数学知识地原汁,掌握数学知识这座宝殿的精华,提高能力和素质,成为知识的主人。如在讲授函数概念的时候,可先介绍通过瑞士数学家约翰.伯努利对函数概念进行了扩张,把“由变数X和常数所构成的式子,叫做X的函数”,再后来欧拉将可以“解析表示的量”称为函数,以后又经历了多次扩张,才得到如今中学教材中函数的概念。只有学生了解了函数经过多次扩张的发展史,才能更进一步认识和掌握它。
3.4 运用数学史开展研究性学习
研究性学习是以“培养学生具有永不满足、追求卓越的态度,培养学生发现问题、提出问题、从而解决问题的能力”为基本目标;以学生从学习生活和社会生活中获得的各种课题或项目设计、作品的设计与制作等为基本的学习载体;以在提出问题和解决问题的全过程中学习到的科学研究方法、获得的丰富且多方面的体验和获得的科学文化知识为基本内容;以在教师指导下,以学生自主采用研究性学习方式开展研究为基本的教学形式的课程。我们可以设计《数学史和数学人物》这样的课题,让学生在研究过程中自主、自由地接受数学文化的熏陶,这必将对培养学生的数学素养和学习兴趣起到极大的作用。
3.5 开展丰富多彩的课外活动
很多数学老师同时也肩负着班主任工作,我们可以利用数学史来开展丰富多彩的课外活动,譬如主题班会设计为“中国数学家对世界的贡献”;班级开设“数学角”;定期举办班级趣味数学知识竞赛;教师可以开设“数学信箱”,让同学们把感兴趣的数学问题以电子邮件的方式发送给教师,然后教师引导同学们开展小组探究等。这些活动具有一定的计划性和多样性,在课外活动时同学们没有压力,身心放松,在愉快的环境中获得知识更能收到切实的效果,而且课外活动时同学们可以自己动手收集资料,化被动学习为主动学习,培养学生主动的学习习惯,同时对其他学科的学习也是有帮助的。数学史对中学生学习的意义
4.1 激发学生学习数学的动机
1972年8月24日,美国数学家魏尔德在全美数学教师协会大会演讲中说:“大家都知道一项最困难的问题,是学生自认对数学没有任何需要,愤恨被迫学习数学,假如他能够精神自主的话就不要学习数学。处理这类情形,只强调数学的技术是不够的,对有能力欣赏数学在历史上所扮演的角色的学生,如果老师还不能使学生们被数学所吸引,这位教师就不应再任教了”。在魏尔德看来,数学史素养对一个数学教师来说是不可或缺的,因此他大力提倡在大学中开设数学史课程。
以下故事对激发学生学习的兴趣是有利的。
法布尔与牛顿二项式定理的故事:法国著名昆虫学家法布尔(J.H.Fabre, 1823~1915)师范毕业后被分配到乡下一个条件十分简陋的、全校教师只能挤在一张校长餐桌上吃饭的学校教书。尽管读师范时学过一些平面几何知识,但作为文科生的他,数学知识、特别是代数知识依然相当贫乏。用他自己的话说,开一个平方根,证明一个球表面积公式,已经是科学的顶点了。打开一张对数表,立即头晕目眩。可是有一天,一个报考桥梁工程专业的年龄与他相仿的不速之客登门造访。原来,这位年轻人的考试科目中有数学,为了通过这场考试,他希望法
布尔能辅导他学代数。真是病急乱投医。法布尔先是吃惊,接着是犹豫;但最后,不知从哪儿来的勇气,他竟然答应人家了:后天开始上课。
自己不懂游泳,却要教别人游泳,怎么办?勇敢的办法是自己先跳进海里!这样,在濒临淹死的时候也许会产生一股强大的求生力量。可是,法布尔不光对代数一窍不通,而且连一本代数书都没有:他想跳进代数学的深渊,可是连深渊都没有。他想去买一本,可是囊中羞涩,况且他那里可不是巴黎,想买就能买到的。离上课只有24小时。
有了。有位教自然科学课的先生,是学校领导层的人物,尽管在学校里他有两个单间,但平时住城里,也算是上流社会的人物了。法布尔猜想他房间里必有代数书;但由于人家高高在上,又怎敢开口言借?只有一个办法:偷。如果那时中国作家鲁迅已经写出小说《孔乙己》来该多好,这样法布尔也许就不会责备自己了。正逢休假日,四顾无人,法布尔幸运地用自己房间的钥匙打开了那城里度假的主人的房间。天从人愿!双腿有些发抖的小偷从书柜里搜索出三指厚的一本代数书来。
神不知鬼不觉,法布尔回到了自己的房间。他急切地打开书本,一页又一页地翻看着,了无兴趣。大半本书翻过去了,突然,他的眼光停在了一个章名上:“牛顿二项式”。誉满全球的17世纪英国大科学家牛顿,他的二项式是怎会回事?强烈的好奇心促使法布尔拿起笔,一边看,一边在纸上写字母的排列和组合,整整一个下午在排列和组合中度过。不可思议,法布尔竟然完全搞懂了!
这下,他可以从容地应付明天的数学课了。这真是与众不同的课,人家从头开始,而法布尔则几乎是从末尾开始。他时而耐心地讲授,时而和那忠实而认真的学生进行讨论,第一次课成功了。牛顿二项式定理大大增加了法布尔的自信心。法布尔继续向更多的代数知识点发起冲击,壁炉里的火光伴着他熬了一夜又一夜。在知难而进的老师和认真忠实的学生共同努力下,他们最后啃完了代数课本。那年轻人如愿以偿,通过了考试。那本代数书被偷偷地放回了原处。后来法布尔继续向解析几何发起冲击,最后拿到了数学学士学位。
这则故事说明,数学并不是部分人的专利,只要付出努力,基础数学是可以学好的。这样的故事对树立学生的学习自信心是有好处的。
另外,阿贝尔22岁证明了一般五次以上代数方程不存在求根公式;伽罗瓦18岁的时候创建群论;施泰纳出身农家,14岁还没有学过写字,18岁正式开始读书,后来经过自己的努力在30岁的时候成为了19世纪伟大的几何学家等等这些实例都是激发学生学习数学动机的良好材料。
4.2 有助于帮助学生培养正确的数学思维方式
现行的数学教材都是经过反复推敲,语言十分精炼简洁。为了保持知识的系统性,把教学内容按定义、定理、证明、推论、例题的顺序编排,对数学知识的内涵,以及相应知识的创造过程介绍也偏少。这样虽然有利于学生接受知识,但是容易是学生认为数学知识就是现有定义,接着总结出性质,定理,然后用来解决问题的错误观点。数学史的学习,可以让学生在学习系统的数学知识的同时,对数学知识的产生过程有一个比较清晰的认识,从而培养学生正确的数学思维方式。譬如,传统的欧式几何的演绎体系是产生不了微积分的,它是牛顿、莱布尼兹在古希腊的“穷竭法”,“求抛物线弓形面积”等思想的启发下,经过创造得到的。而且经过说学家们的不断补充、完善下,经过几十年才逐步成熟起来的。通过这种创造过程的了解,使学生体验到一种活的、真正的数学思维过程,而不是单纯的教师传授的知识。在这种不断学习、不断探索、不断研究的过程中逐渐形
成正确的数学思维方式。
4.3 学习数学史可以培养学生美学修养
我国当代数学家徐利治教授指出:“数学教育与教学的目标之一,应当让学生获得对数学美的审美能力,从而既有利于他们对数学学科的爱好,也有利于增长他们的创造发明能力。”这就是说在数学教育中应遵循美的原则,使学生更好的感知、理解数学美。数学是美的,无数数学家都被这种美所折服。能欣赏美的事物是人的一个基本素质,数学史的学习可以引导学生领悟数学美。很多著名的数学定理、原理都闪现着美学的光辉。例如毕达哥拉斯定理(勾股定理)是书等数学中的一个大家都比较熟悉的简洁而深刻的定理,有着极为广泛的应用,两千年来它激起了无数人对它的兴趣,意大利著名画家达.芬奇、印度国王Bhaskara、第20任美国总统Carfield等都给出过它的证明。1940年,美国数学家鲁米斯在他所著《毕达哥拉斯命题艺术》的第二版中收集了它的370中证明方法,充分展现了这个定理的无穷魅力。黄金分割同样优美和充满魅力,早在公元前6世纪它就为毕达哥拉斯学派所研究。同时,在感受和欣赏几何图形的对称美、尺规作图的简单美、体积三角公式的统一美、非欧几何的奇异美等,可以形成对数学良好的情感体验,数学素养和审美素质也得到了提高。这种美感充分的激发和调动了学生的求知欲和创造欲,有效地培养了学生的审美创造能力,这是德育教育的一个新的突破口。
4.4 有助于树立爱国主义思想,弘扬民族精神
美国史学家纳贝尔说:“中国许多世纪以来,一直是人类文明和科学的巨大中心。”英国科学史学家李约瑟指出:“在人类了解自然和控制自然方面,中国人是有过贡献的,而且贡献是伟大的。”我们应该让学生知道中华民族为人类科学技术的发展和进步所作出的伟大贡献,教师如果在教学中能结合这些知识进行讲解,不仅能培养学生的民族自豪感、社会责任感,还能使他们树立为祖国和家乡的繁荣富强而努力学习的志向。讲课时,在介绍数学家时要注意介绍中国古代和近代数学家,宣传我国古代的科学技术成绩曾遥遥领先于世界的辉煌成就,大力颂扬为祖国为人类科学进步,勇攀高峰、艰苦创业的中国数学家的事迹,教育学生向他们学习。小结
综上所述,数学史在中学数学教学中是非常重要的,数学史教育在促进学生智力、能力和非智力因素的全面发展,形成辩证唯物主义世界观和培养良好的道德品质的过程中所起的作用不可忽视。教师应充分发挥数学史在数学教育中的作用,促进数学史与中学数学教育的融合,提高学生数学学习的兴趣,加深学生对数学的理解,感受数学家的严谨的态度和锲而不舍的精神,数学史知识的运用必然会推动中学数学教育的巨大发展。
参考文献:
【1】中华人民共和国教育部制定 普通高中数学课程标准(实验)人民教育出版社.2003
【2】李迪.中国数学史简编M沈阳:辽宁人民出版社.1984
【3】卢鄂.数学没学概论.辽宁人民出版社.1994
【4】李俨.杜石然.中国古代数学简史.北京:中华书局.
第三篇:数学史在中学数学教学中的运用和作用
数学史在中学数学教学中的运用和作用
摘要:随着数学教学改革的逐步深入,数学史也越来越受到数学教育教学工作者的重视。中学数学新课程标准中将数学史列为中学数学学习阶段的选修内容。为了全面了解数学科学,探索数学发展的规律,为了数学教育的目的,都应开展数学史的教学与研究,进一步认识数学史在数学教育中的地位和价值,充分发挥数学史知识在进行素质教育方面的重要作用。为了帮助学生了解数学在人类文明发展中的作用,逐步形成真正的数学观,本文将探讨数学史在中学数学中的地位和作用。
关键词:数学史;中学数学;地位;作用
“以铜为镜,可以正衣冠;以古为镜,可以知兴替;以人为镜,可以知得失。”而以史为镜,可以明事理;数学史对于揭示数学知识的现实来源和应用,对于引导学生体会真正的数学思维过程,创造一种探索与研究的数学学习气氛,对于激发学生对数学的兴趣,培养探索精神,对于揭示数学在文化史和科学进步史上的地位与影响进而揭示其人文价值,都有重要意义。
历史的发展过程告诉我们,在一个专题、一个概念或一个结果的发展中,哪些思想、方法代表着该内容相对于以往内容的实质性进步,从而更深刻地理解它。历史可以为我们提供那些答案是“不可能”或“不存在”的问题,而对这些问题的探索,是数学研究的一个极为重要的方面,也是数学思维品质的一个重要方面。比较历史上的不同时期、不同民族或地区对同类问题的不同处理方式,或同类方法的不同地位与应用,可以启发学生的解题思路,并从中比较优劣,体会到数学思维的真谛。
下面我们就来探讨数学史在中学数学中的地位和作用。
一、为什么要学习数学史 1.学习数学史能培养学生的数学思维
现在的数学教材都是经过了反复推敲的,语言非常精练简洁。为了保持知识的系统性,把教学内容按定义、定理、.证明、推论、例题的顺序编排,缺乏自然的思维方式,对数学知识的内涵,以及相应知识的创造过程介绍也偏少。虽利于学生接受知识,但很容易使学生产生数学知识就是先有定义,接着总结出性质、定理,然后用来解决问题的错误观点。所以,在教学与学习的过程中存在着这样一个矛盾:一方面,教育者为了让学生能够更快更好的掌握数学知识,将知识系统化;另一方面,系统化的知识无法让学生了解到知识大都是经过提问、猜想、论证、检验、完善,一步一步成熟起来的。影响了学生正确数学思维方式的形成。
2.学习数学史能培养学生对数学学习的兴趣和数学家的优秀品质
学习数学史可以引导学生学习数学家的优秀品质。任何一门科学的前进和发展的道路都不是平坦的,无理数的发现,非欧几何的创立,微积分的发现等等这些例子都说明了这一点。数学家们或是坚持真理、不畏权威,或是坚持不懈、努力追求,很多人甚至付出毕生的努力。阿基米德在敌人破城而入危及生命的关头仍沉浸在数学研究之中,为的是“我不能留给后人一条没有证完的定理’’。对那些在平时学习中遇到稍微繁琐的计算和稍微复杂的证明就打退堂鼓的学生来说,介绍这样一些大数学家在遭遇挫折时又是如何执著追求的故事,对于他们正确看待学习过程中遇到的困难、树立学习数学的信心会产生重要的作用。
3.学习数学史可以提高学生的美学修养
数学是美的,无数数学家都被这种数学的美所折服。能欣赏美的事物是人的一个基本素质,数学史的学习可以引导学生领悟数学美。很多著名的数学定理、原理都闪现着美学的光辉。例如毕达哥拉斯定理(勾股定理)是初等数学中大家都十分熟悉的一个非常简洁而深刻的定理,有着极为广泛的应用。两千多年来,它激起了无数人对数学的兴趣,黄金分割同样十分优美和充满魅力。
二、数学史在中学数学中的地位
数学史是学习数学、认识数学的工具。人们要弄清数学概念、数学思想和方法的发展过程,增长对数学的通识,建立数学的整体意识,就必须运用数学史作为补充和指导。特别是,现代数学的体系犹如“茂密繁盛的森林“,使人“站在外面窥不见它的全貌,深入内部又可能陷身迷津”,数学史的作用就是指引方向的“路标殄,给人以启迪和明鉴。数学史与数学哲学、科学哲学,与社会中、文化史的各个方面都有密切的联系,内容涉及什么是数学。数学与人类思想的革新、数学和其他科学技术的关系。数学和社会进步等方面,不仅具有沟通文、理的性质,而且有助于深刻理解数学的文化内涵,对于培养文、理兼通,学、才、识兼备的数学专业人才有重要意义。因此,学习数学史是以素质教育为目标的数学教育的内在要求,它对于培养学生的人文主义精神以及数学观念、数学能力、数学整体意识有特殊意义。
三、数学史在中学数学中的作用
随着数学教学改革的逐步深入,数学史越来越受到数学教育教学工作者的重视。国际上成立了数学史与数学教育研究组,国内很多师范院校已将数学史作为数学专业的一门选修课或必修课,中学数学新课程标准中将数学史列为高中数学学习阶段的选修内容。不仅如此,初中数学课程各章中也介绍了有关的数学史,因此,数学史在数学教学中的重要作用逐渐凸显出来。
1.有利于帮助学生加深理解
数学教学的主要目的是要让学生理解掌握教学中所要求的数学概念,数学思想和数学方法。由于数学抽象的特点,其概念、方法和思想大都以抽象的形式出现,如何帮助学生理解接受并能掌握乃至应用这些数学概念、方法和思想,始终是数学教学中需要关注和值得探讨的问题。有多种途径可以帮助学生理解并掌握抽象的数学概念、方法和思想,这方面有很大的探索空间,而数学史在此可以发挥非常有效的作用。
2.有利于培养学生的创造性思维能力 .
数学论文和专著一般都是经过“包装“的,是按逻辑顺序,从定理出发组织内容,精心撰写的。那些数学真理,数学定理又是怎样被发现的?往往则很少涉及,而对于学习、研究和应用数学的人来说,这一点恰恰至关重要。我们知道笛卡儿有两本很重要的书《方法论》和《指导思维的法则》,他在书中就抱怨古希腊人只告诉你事情是什么,怎么证明,却没有告诉你事情是怎样发现的。于是笛卡儿企图找到一种发现真理的般法,让普通人也发现真理。笛卡儿把他的方法叫“普遍数学”,解析几何正是他将这种“普遍数学"实施于几何学时创造出来的工具。笛卡儿在批判古代希腊演绎思维模式的过程中,强调了数学真理的发现,致力于寻找发现数学真理的思维法则。这种怀疑传统与权威歹大胆思索创新的精神,正是我们要认真学习的。
3.有利于帮助学生增强自我探索精神
数学是人类文明的重要组成部分,是人类智慧的结晶,数学的历史像一条大河几乎贯穿了人类的整个文明史,数学今天的繁荣昌盛是千百年来无数先驱前赴后继、辛勤耕耘的结果。数学先驱们的严谨态度值得我们学习,他们的献身精神值得我们景仰,他们的经验教训值得我们借鉴,他们孜孜不倦、锲而不舍地追求真理的精神值得我们感动。
4.有利于激发学生学习数学的兴趣
数学是公认难学难教的科目,之所以这样,很重要的原因是我们的教学不能引起学生的兴趣。数学给学生的印象是枯燥乏味,抽象难懂。其实,数学本身是多姿多彩的。历史上数学与天文学、力学同根连枝,还与音乐、哲学等交织共生,现代学术界还常常争论数学是艺术还是科学?激发学生探索数学美妙的欲望。
数学史在数学教学中的作用远不止这些。数学史和数学教学息息相关,通过在数学教学中渗透数学史知识,可以帮助学生在学习、研究、应用数学的过程中逐步体会数学的文化价值,把学生对数学的“怕”转化成“爱”,从而全面提高数学乃至其他课程的教学质量。
参考文献
[1]刘洁民.数学史与数学教育[M].北京:北京师范大学出版社,2003. [2]萧树铁.数学实验[M].第4版.北京:高教出版社,2006.5. [3]汪晓勤.你需要数学史吗[M].数学教学,2002.4。[4]梁宗巨.世界数学通史[M].辽宁教育出版社,200 1.4。[5]邓明立.数学通报[N]2002.12
数学史在中学数学教学中的运用和
姓名:韩学号:班级:数学作用
龙
07070301205
07-1班
第四篇:浅谈数学史在中学数学教育中的作用(本站推荐)
浅谈数学史在中学数学教育中的作用
【摘要】数学史在中学数学教学中十分重要,数学史的研究不仅可以提高教师的素质,它对数学教学也有很大的帮助,它可以激发学生对学习数学的兴趣,加深学生对数学知识的理解,有助于学生掌握数学思维方法,培养学生不畏艰险勇往直前的探索精神。此外,教师可以通过巧妙利用数学史名题教学、利用数学史进行新课引入、利用数学史设置课堂结束环节、利用数学史讲授知识系列、利用数学史开展探究式学习。【关键词】数学史 中学数学教学 作用 渗透 1引言
数学,是最能体现人类智慧的一门学科,也是人类文明赖以生存的学科,作为人类思维的表达形式,它反映了人民积极进取的意志、缜密周详的逻辑推理以及对完美境界的追求。中学数学是素质教育的重要组成部分,对培养学生分析解题能力、逻辑推理能力、空间想象能力等都非常重要。而数学史教育对中学数学教育的巨大影响力在近年来愈加为人所获知,越来越多的国家开始重视数学史的教学,我国也不例外,数学史教学已成为数学教学中不可或缺的一部分了,由中华人民共和国教育部门定制的《普通高中数学课程标准》于2003年正式出版,该条例明确地提出学生要“感受在人类历史文明进程中数学的力量,体会数学家们在探究新知的过程中严谨的科学态度和大无畏的探索精神,激发学生对学习数学的兴趣,提高学生对数学的理解感悟能力。”
中学数学老师所要必备的教学素质有很多,其中教师对数学史的扎实掌握是非常重要的一项。教师只有掌握一定的数学史知识,才能改进自身的教学不足,提高自身的数学素养,才能真正的把握到数学发展的脉络,向学生传授真正完整的知识。
2、数学史的内涵
要全面的了解一样事物,我们就要了解清楚事情的来龙去脉,要学会数学,我们就要追问数学的发展历程。“研究这门学科的历史与现状我是们预测数学未来的适当途径。”引用法国著名数学家亨利·庞加莱的原话,也就是说如果我们只是一味的强调知识的掌握却不去了解清楚这些知识的发展历史,那么对这些学生来说,他们所学到的只是些数学的片段知识,并不能真正地认清数学这一学科,而数学史却可以给我们展示知识的总体面貌,让我们更好地地认清数学的过去、现在与未来。
作为一门研究该学科的产生发展及其规律的科学,数学史不仅仅是史料知识这么简单,它还可以追溯到数学的内涵、思维逻辑方式的衍化、发展历程,此外,它还研究数学发展对人类五千多年的文明所带来的影响以及其在人类历史上举足轻重的地位。有人单纯地认为数学史研究就是仅仅为了弄清楚有哪些知识在哪一年由哪个数学家提出的,人类目前为止知道了哪些知识、不知道那些知识,毋容置疑,这是数学史要研究的工作之一,也是最为基础的工作。但是,学习数学史更重要的目的是为了在教学工作中,让师生站在现代数学的成果上,从源头处清理该学科的发展方向和发展规律、并认清它的逻辑思维方式,从本质上更好地理解数学,学会数学。
3、数学史在中学数学教学中的作用
在新课标下改革的大潮下,中学数学课本相应地也增加了不少数学史方面的知识。那么,数学史在中学数学教学中究竟起着怎样的作用呢?作为一个即将踏出学校从事数学教学事业的准老师,我觉得具体有以下几点作用: 3.1数学史能激发学生对学习数学的兴趣
新课标强调教师在教学过程中不仅要重视过程与方法,还要重视学生的情感与态度,只有这样,学生才会对学习产生浓厚的兴趣。在很多学生看来,数学是一门枯燥无味的学科,它既不像语文那样语言优美,又不像英语那样在生活中实用性强,让很多人提不起兴趣来学习。但数学在人类文明上又是不可或缺的,它是一门逻辑性、抽象性很强的学科,如果纯粹的去讲数学知识不去重视培养数学兴趣,那么学生就只是被动的学习,学习主动性就会受到抑制,而数学史在激发学生 学习数学的兴趣就有很大的帮助了,把数学史渗透到数学课堂教学中来能让数学教学活跃起来,不仅有利于学习效果的深化,还可以激发和提高学生数学学习的兴趣。在课堂一开始,根据教学内容讲叙相应数学家的故事,这样可以引起学生浓厚的兴趣,把心思从课间活动中转移到数学教学当中,这是创造最佳课堂情境,为课堂教学作铺垫的一种好的方法,不仅如此,在教师讲述数学典故的时候,学生的视野还得以开阔,这让他们知道原来这些看似乏味的知识背后却有一个如此一番故事,那么他们对所学的知识提起兴趣了。如在讲数列的前n项和时,在课堂开始开始的时候给学生讲高斯小学被罚算前一百位正整数和的故事,这样学生的心思很快就吸引到课堂来了。除此以外,教师在课堂中引入历史名题也起到引起学生兴趣的作用,许多历史名题的提出都与数学家的有关,学生在思考问题的时候就会不经意的想到这个问题许多大数学家思考过,就会感到一种挑战,自己现在思考的题目许多伟大的数学家也思考过,不知他们所遇到的困惑是否跟我的一样呢,即使想不出来学生也会对题目产生深厚的兴趣。
3.2数学史能加深学生对数学知识的理解
中学生的数学教材由于受一定的局限因素的限制,传授的知识虽然有一定的系统性,但学生对知识的来龙去脉还是不能有个清晰细致的理解,我们就可以利用数学史上人类认知的过程规律,对知识主干进行垂直梳理,使学生头脑中的知识脉络更加清晰,有利于学生对知识的深刻理解和记忆。数学史可以让学生更容易去接受新学的知识,在学生第一次接触代数,第一次面对用字母代替具体的数、时,他们常常会感到迷惑,不知为何要如此,这时教师若想改变这种状况,就可以在课堂上向学生讲述相关数学史料,帮助学生梳理、理解所学的的数学知识。数学的发展历史很长,而现今学生学习到的数学知识是间接学习所得,以前数学家所经历的困难正是学生现在经历的障碍,正因为这些知识产生的过程与学生间接学习的过程十分相似,数学史的讲授就可以帮助学生更好的理解数学知识。总的来说,数学知识是一环紧扣一环的,通过数学史对头脑中所学习的知识的梳理,学生可以更好地在脑海中建立各知识点间、各学科间以及学习与生活间的联系,为更为深刻地理解数学做好铺垫。
在数学历史上无理数的出现曾引发了第一次数学危机,在很长一段时间内人们在心理上都不愿意接受这一事实,学生在学习这个曾经引起动荡的无理数时并不容易,山西某中学曾做过调查,对于无理数相关知识,70%学生只是会做题目,对无理数的概念并没有深刻的理解,这势必对后面的学习造成一定的影响。查阅相关数学史料,我们就发现:在数学史上人们对无理数的发现和理解的过程是想到漫长的,在这个过程当中也犯了不少错误,这样我们就很好的了解学生在学习这一概念时遇到困难是不出奇的,这只是历史的“再现”。所以,在课堂上教师可对学生多讲一些无理数的发展史,这有利于帮助学生理解并接受这一知识。
3.3数学史有助于学生掌握数学思维方法 数学是一门特别的学科,它的特别在于数学有极其严密的思维逻辑形式。我们之所以要学习数学,就是希望通过在数学学习的过程中去锻炼我们的大脑,让我们形成精确缜密的逻辑思维方式和锻炼提高我们的创造能力。实施证明,数学史为这一教育目的的实现起到了不可磨灭的作用。现在中学数学教 材向学生呈现的更多的是系统性的、“天衣无缝”的知识,语言十分的简练,基本都是按定义、定理、证明、推理、例题练习等固定形式去编排,学生在学习过程中跟多的是单纯的去接受这些知识,而缺乏一种真正的数学思维过程,由于学生认知水平的局限,这样他们很容易产生不正确的观点想法,虽然能简速便捷地接受到大批的知识,却让学生轻易认为数学知识学习的过程就固定的是“定义——得出性质定理——做题”,事实是系统化了,却无法让学生清楚了解到知识是经过发现问题、提出假设、论证假设、得出结论并完善,逐步的、经过漫长过程成熟起来的,这不利于学生正确数学思维方法的形成。但是,数学史却可以做到这一点。数学史向学生呈现的不仅仅是明确的数学知识,而更多的是传授相应知识的创造过程,这就让学生对数学知识的产生有一个较为清晰的认识了。通过数学史我们可以认识到数学的本原与特质,从这一个层面上看,在数学史的引领之下,师生间可以创造出一种双向的、探索与研究的课堂气氛。
这样的例子有很多,例如,我们可以再讲数形结合思想时,可以先向学生说在几何学中有很多长期不能解决的问题,例如立方倍级、三等分任意角、化圆为方等问题,直到十七世纪后半叶,法国数学家笛卡儿以坐标为桥梁、在点与数之间、曲线与方程之间建立起对应的关系,用代数方法研究几何问题,从而创立了解释几何学,至今也得到广泛的应用。又如,牛顿和莱布尼兹在在古代数学家研究积分学的思想成果上,为解决许多科学的问题创办了微积分学。
3.4数学史有能培养学生不畏艰险勇往直前的探索精神
一般来说,学生学习的数学课本呈现给学生的都是系统的、现成的知识,并未能体现到数学家们前赴后继、劈荆斩刺地获得数学知识的艰辛,数学家所经历的艰辛而漫长的道路对学生来说似乎只是种形式。但数学这一学科之所以有今天的繁荣昌盛,全赖一代又一代的数学家不畏艰险勇往直前的去摸索、去奋战。通过学习数学史,学生可以明白到这一个道理,知道这些数学家是经过怎样的艰辛奋斗、怎样的排除万难、去把知识一点一滴的积累下来给后来者一个更完善的知识环境,他们就会发现目前学习数学所经历的困难是微不足道的,这样也就不会被学习过程中所遇到的挫折所打倒。此外,通过数学史学生也会发现从古到今不少著名数学家也犯过如今看来非常可笑的错误,数学家跟他们一样也会犯错,那么他们就能正确看待在学习数学过程中所犯过的错误,从而树立起学习数学的自信心。
以计算圆周率∏为例子,古今中外,许多的人都致力于∏的研究与计算。为了计算出圆周率的越来越好的近似值,无数的数学家为这个神秘的数贡献了一生的时间与心血。十九世纪前,圆周率的计算进展相当缓慢,十九世纪后,计算∏的世界记录频频创新。德国的Ludolph Van Ceulen,他几乎耗尽了一生的时间,用古典的方法计算到圆的内接正262边形,在1609年得到了∏的35位精度值,以至于∏在德国被称为Ludolph数;英国的威廉·山克斯,他耗费了15年的光阴,在1874年算出了圆周率的小数点后707位,并将其刻在了墓碑上作为一生的荣誉。可惜,后人发现,他从第528位开始就算错了。虽然后来又有了计算机,但人们对圆周率还是兴趣盎然,因为数学家们认为对∏的研究可以说明人类的认识是无穷无尽的。在教学圆周率的时候,向学生讲述适当的史料知识,这对培养学生不畏艰险勇往直前的探索精神是有积极意义的。历代数学家在困难面前劈荆斩刺、为数学的通天塔添砖加瓦,他们崇高的理想、坚定的信念、顽强的斗志、勇往直前的探索精神是教育学生最好的模范。4如何在中学数学教学中渗透数学史
乔治.屈维廉说过:“历史并没有真正的科学价值,它的真正目的乃是教育别人。”作为一个准数学老师,我们不只是应该是去学会数学史,更应该是学会运用数学史。教师如果在数学课堂中,结合所教授的内容,有目的、有计划地融入数学史,不仅可以教学内容更加的丰富饱满,还可以对学生起到潜移默化的作用,使学生医生受益。那如何在中学数学教学中渗透数学史呢,下面给大家介绍几种常见的方法: 4.1巧妙利用数学史名题教学
数学史发展的历史长河中,数学历史名题对数学知识的补充、发展都起过重大的作用,如《孙子算经》里面的“鸡兔同笼”问题、古希腊的三大几何难题、哥德巴赫猜想等等,这些历史名题的提出一般都具有一定的现实背景并对实质性的数学方法有所揭示,这对学生理解数学内容和思想方法有极其巨大的帮助。
通过教师对具有开放性的历史名题的展示,一方面可以让学生理解到,数学这个领域是运动着的、是活跃的、未完成的,它不是一个静止的、封闭的系统。另一方面,学生还能够认识到数学正是在猜想、错误、中发展进行的,数学进步是对传统观念的革新,从而激发学生的思维,使他们感受到,抓住适当的、有价值的数学问题将是多么激动人心的事情。
例如,初等几何著名定理勾股定理的证明,这个定理以它的简洁性和应用的广泛性,吸引了很多人。由于年代久远,已经很难知道谁是第一个证明勾股定理的人了,但它的证明方法各式各样,高达三百多种,其中有赵爽证明法、美国总统加菲尔证明法、欧几里得证明方法、利用相似三角形证明方法等等。向学生讲述勾股地理证明的历史,可以使单调无趣的证明过程变得趣味盎然而又富有人性化,跟重要的是让学生觉得他们是在自己探索知识,从而让学生更加积极地参与其中,历史上这么多名人去证明勾股地理,现在自己也跟那些名人一样在研究同样的问题,这个问题就变得不一样了。即使历史上已有人用同样的方法做出过证明,但当学生独自去解决掉勾股定理的证明时,他心里面所产生的成就感和自豪感是其他成功的获得所不能比拟的,而这种成就感也会使学生从此对数学产生浓厚的兴趣。4.2利用数学史进行新课引入
俗话说:“千里之行,始于足下”。好的开始是成功的一半,教师可以运用数学史来进行新课的导入,引发学生的注意力,把学生的思路从上一节课的知识中引导这一节课中,达到上课的最佳心理状态,从而提高学习的效率。在数学课堂的开端教师向学生适当地讲授一些数学知识产生的故事、传说不仅可以引起学生对知识点的直接兴趣,还可以让学生见识到知识的产生发展过程。当然,要做到这一点老师就要经过精心的设计,力求做到引人入胜,统摄全局,引起共鸣。
举个例子,在讲等比数列时,教师可以先向学生讲述古印度国王国王用麦子奖赏智者的故事:传说古代印度有个国王非常喜欢国际象棋,一天,一个智者与国王下棋并赢了国王,国王说可以满足他的一个要求,智者提出的要求就是要国王在棋盘的第1个格子里放上1颗麦粒,第2个格子放上2颗麦粒,第三个格子放4粒麦粒,如此类推,后一个格子里放的麦粒数都是前一个格子里放的麦粒的2倍(国际象棋棋盘有64个格子),希望国王把这些麦子赏赐给他.国王想这还不容易,就欣然同意了他的要求。经过计算,发明者要求的麦粒总数就是2的64次方减1,这个数字非常大。用这个故事引入等比数列新课,相信学生的注意力都会被吸引过来,而且还能培养学生学习数学的兴趣,机器学生对新知识的探究欲望,让学生情绪高涨,从而产生良好的课堂气氛。
4.3利用数学史设置课堂结束环节
一节课上得好不好,课堂的结束环节很重要。课堂结束这一环节主要是实现本节课的教学升华,辅助学生对知识点进行归纳整理、挖掘提炼,让他们理清教学过程的整体思路脉络,掌握知识的深处内涵。除此以外好的课堂结束环节还可以起到承上启下的作用,让学生对下节课的内容产生兴趣,为下一节课的顺利进行做铺垫。如果这个时候教师能好好利用数学史知识来结束本节课的内容,这样就不仅可以吸引学生的兴趣,还可以启发学生的想象力,探究数学知识的奥秘。不仅如此,由于每个学生学习的水平和需要都不尽相同,用数学史来作为课堂的结束环节,可以让不同基础的学生得到不同程度的发展,使扎实掌握好基础的学生继续深入探究,也给相对落后的学生启发。
譬如这样,陈景润的老师在“整数的性质”这堂课结束的时候跟学生说:“在自然科学当中数学处于皇后的地位,皇后头上的皇冠就是数论。而哥德巴赫猜想,则是这顶皇冠上最璀璨夺目的明珠,为了这了明珠许多数学家倾尽了毕生心血,不知将来在座各位谁能把这颗明珠摘下来呢?”就是这位老师在课堂结束的时候用了数学史的知识做结束环节,记起来学生的探究的种子,后来就有了这个世界上攻克“哥德巴赫猜想”的第一个人。4.4利用数学史讲授知识系列
每一系列的数学知识都是经过漫长的历史演变逐渐发展形成的,其中每个环节的知识的获得都是以一代代人无数的精力和挫折为代价的,数学教学应做到历史与逻辑的统一,寻找恰当的时机让学生像当年的数学家一样经历和体验数学创造的必要性和创造的基本方法。在数学教学过程中,教师可以把学生学习过的知识当成一个环节,各个环节用历史发生的时间和事件串连成一个知识体系,向学生系统地论述各环节知识产生的过程和发展,在教学进度的允许下,教师可以开展适当的专题性学习,适当向学生介绍一些数学史知识,如知识的背景、知识的影响力和现实生活中的实际应用等等,把学生头脑中的数学知识进行梳理,让这些知识形成一个相对清晰完整的系统,这样会起到1+1﹥2的效果了。
以数的发展历史为例子,在生产活动中,人们为了计量物品的个数,产生出自然数这一概念,在对物品的分割中产生了分数,为了表示有相反意义的量时引入了正负数,在对连续的量进行度量时,又引入了无理数,从负数不能开方出发引入了虚数,并把实数扩展到复数。于是就形成了数的理论发展概况:自然数——整数——有理数——无理数——实数——复数,让学生一目了然,对培养学生知识是变化发展的观点十分有利。4.5利用数学史开展探究式学习数学知识的活动都是经过观察、实验、交流、分析、综合、推理、总结得出来的,但我们的教科书上鲜少反映这一漫长而复杂的过程,教师可以以数学史为载体,对某一概念形成的几个关键特征进行分析,在学习该概念时,思考学习者可能会感到一定的困难,他们只理解到概念的表面意思,对概念的深层意思却并不理解,但如果配合学生认知规律去给学生讲解数学概念的发展历程,并对这一数学概念进行拆开理解,再进行知识的序列化重构,然后在这样的基础上实施教学,让学习者在教师的引领作用下,重现数学家们在概念形成所经历的几个关键的探究活动过程,同时教师进行适当指导,让学生经历思维的原过程,不仅能丰富学生学习内容还能增加学生对数学史的兴趣,在探索交流的氛围中获得知识,通过喜欢数学史进而喜欢数学。
在探究性学习中,数学史还有一个非常普遍的作用,就是创建探究性学习的情景,而创设的请进要考虑到各方面的因素,创设的情景要有吸引性、真实性、切合学生的生活实际,又要考虑到知识产生发展的规律性和顺序性。那么运用数学史来进行探究性活动情景的创设就再适合不过了,这样既有利于探究性学习的开展又起到对学生的文化熏陶作用。例如,教师在教授“等可能性事件”知识的时候,可以向学生讲述当年今日在数学界所发生的事情,这一系列的数学事件都发生在这一天,这仅仅是一种巧合还是一种正常现象呢? 5小结 综上所述,数学史不仅是在学生对学习数学兴趣的激发,数学知识的理解和数学思维方法的掌握有所帮助以外,它对培养学生不畏艰险勇往直前的探索精神的过程中所起的作用不应忽视,在数学教学中利用数学史资源促进教育教学更是有必要的,如果运用的好,它可以使数学课更加的生动而富有感染力。理论应该是为实践而服务的,我们可以通过各种方法去渗透数学史,其中包括:巧妙利用数学史名题教学、利用数学史进行新课引入、利用数学史设置课堂结束环节、利用数学史讲授知识系列、利用数学史开展探究式学习,以上是我个人心得体会,由于水平有限,如有不足之处,请多多包涵。
第五篇:几何画板在中学数学教学中的应用及其作用
《几何画板》在高中数学教学中的应用举例
湖南省益阳市南县一中陈敬波
近年来,如何利用多媒体技术开发课件辅助课堂教学已成为热门话题,数学作为一门独立的自然科学,有它自身的特点、体系和规律。本文结合作者的实践经验,就如何在高中数学教学中应用《几何画板》及其在教学活动中的重要作用举例说明。
1.绘制精确的几何图形
在高中数学教学中,常利用列表、描点、连线的方式
研究新函数的图象,教师总是说,随着列表精细,描点多,会作出毕真的函数图象,然而总是一个遗悍,但几何画板的运用,完善了作图的不足。规范准确的几何图形往往能
给人以美的享受。作为一名数学教育工作者,我们应该充
分认识这一点,并要善于运用这个特点来辅助我们的教
学。《几何画板》这个软件则正好给我们提供了这样的一
个平台,它不仅可以准确地绘制出任意的几何图形,而且
还可以在运动的过程中动态地保持元素之间的几何关系。
例如在学习指数函数时,我们可以作出指数函数的大致图
形。可发借用几何画板作出精准的指数函数的图象,于是
还可以改变底数,可以迅速其他底数的指数函数的图象,既可节约时间,也可把不同底数的指数函数放在一起进行研究,探讨出图象性质,于是学习知识变成轻松愉快的事儿。
2.研究函数的图像及性质
函数的图像和性质在中学数学里既是重点又是难点。如果在教学中能充分地利用《几何画板》来将抽象的内容具体化、形象化,那么对于学生的学习无疑是很有帮助的。图1,是用几何画板制作的课件,由图象很容易得出指数函数的性质,并且很容易掌握知识。为了更好地研究函
数y=Asin(x+)的图像和性质,理解
A、和的物理意义,可以借助《几何
画板》来做演示(如图2),我们可以
动态地调整A的大小,使学生能很容
易地观察出它只影响曲线的振幅,而对
曲线的周期和初相都没有影响,类似地我们再调整 和的大小,以了解它们的作用。这样,就会使整个内容变得非常形象直观,易于接受,比过去直接用理论来说明或简单地在黑板上画几个草图来讲解的效果要好得多。在学习其他的函数图像和性质时也可以采取类似的方法,从而会使数学的课堂也变得丰富多彩起来。
3.探寻点的轨迹
点的轨迹的问题,一直以来都是学生们比较
难以理解和掌握的问题,大多数学生只能在头脑中简单地想象或手工地画出其草图,而
这样又不能保证所画图像的精确性,尤其是
对初学者来说,更难以形成自己的知识,达
到熟练应用的程度。如果应用《几何画板》,就可以动态地描绘出轨迹的形成过程,使学生能够更容易地抓住其本质进行学习。例如,在学习椭圆这一部分内容时,可以利用《几何画板》来演示椭圆的形成过程(如图3)。在教学过程中,我们不妨在课堂上一步一步地直接给出该课件的制作过程。通过对这个过程的了解,学生可以非常容易地知道点M就是到定点F1、F2等于定长的点。当点P在圆上不停地运动的时候,点C的轨迹则正好就是椭圆。于是椭圆的形成过程就完全地展现在学生的面前,这对于他们的形象记忆是很有好处的。当然,为了更好地说明问题,我们还可以测算出F1M、F2M以及二者的长度之和,这样可以使学生非常方便地观察出动点M在运动过程中其他的量与量之间的关系,从而对椭圆的形成过程有进一步的认识。
4.讨论方程或不等式的解(集)
“方程”、“函数”和“不等式”之间存在着一定的相互依存关系。在学习的过程中,我们往往要利用这种关系,将某些方程或不等式的问题转化为函数的问题,并最终图像化。通过函数图像中存在的交点及交点的变化情况,揭示问题的内在本质和参数的几何意义,从而使问题简化。《几何画板》在这方面也给我们提供了一个很好的平台,可以很方便地从图形的变化中,让学生进行感知,去寻求对策,进而运用合理的数学运算、推理等方法使问题得到彻底解决。
例1.若直线y
xb与曲线y3有公共点,求b的取值范围。曲线方程可化简为(x2)2(y3)24(1y3),即表示圆心
为(2,3)半径为2的半圆,依据数形结合,当直线yxb
与此半圆相切时须满足圆心(2,3)到直线yxb距离等于
2,解得b1b1
因为是下半圆故可得b1(舍),当直线过(0,3)时,解得b=3,故1b3,制作一个几何画板的课件,以b为参数,移动直线与曲线相交,学生很容易得出答案,当然要学生学会使用数形结合的思想方
法。这样在这个演示实验的帮助下,使学生能获得更加深刻的认识。
通过上面几个实例解答,阐述了几何画板在高中数学教学的充分应用,提高了数学教学效益。“现代技术的使用将会深刻地影响数学教学内容、方法和目标的改变。”在中学数学教学中应用《几何画板》的作用主要体现在以下几个方面:
1.有利于设置良好的教学情境.借助于《几何画板》,我们不但可以把很多数学概念的形成过程充分地“暴露”出来,随时看到各种情形下的数量关系的变化,而且还可以把“形”和“数”的潜在关系及其变化动态的显现在屏幕上,甚至可以根据需要对这个过程进行控制,学生也通过观察的过程、制作的过程、比较的过程,产生他的经验体系,形成他的认知结构,从而更好地完成整个认知过程。
2.有利于体现数形结合的思想.利用图形的运动和显示出来的数据,则能充分有效地把图形与数值结合起来,体现了《几何画板》在数形结合上的优势,这是以往其它任何教学方式所无法达到的境地。
3.有利于培养学生的创新意识.几何画板》给学生提供了一个动态研究问题的工具,使他们有了创新的机会。
4.有利于发展学生的思维能力.思维能力是能力结构的核心。利用《几何画板》的动态图形功能,可以即刻改变问题的条件,观察结论所发生的变化,从而启发学生思维,培养思维能力。
总之,《几何画板》在数学课堂教学中的广泛应用和推广,不仅带来了教学内容、教学方法、教学模式的深刻变革,而且使学生接受知识的被动地位得以改变,真正实现课堂教学中学生的主体地位和教师的主导地位,对提高学生数学素质和教师的教学能力有着重要作用,同时也对我国的素质教育起着重要的推进作用,为国家建设培养大量高素质的综合型人才。