已知an是递增的等比数列,求通项公式[五篇范文]

时间:2019-05-13 06:37:29下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《已知an是递增的等比数列,求通项公式》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《已知an是递增的等比数列,求通项公式》。

第一篇:已知an是递增的等比数列,求通项公式

已知an是递增的等比数列,且a3+a4=24.a2×a5=128 求an的通项公式?

方法一解:

a2×a5=(a3/q)(a4*q)=a3*a4=128

a3*a4=24

a3和a4为方程

x^2-24x+128=0两解

(x-16)(x-8)=0

a3=8a4=16

q=16/8=2

a1=a3/q^2=8/4=2

an=2x2的n-1次方=2的n次方

方法二解:

设公比为q, q>1

因为 a5*a2 =(a3*q^2)*(a3/q)= q*a3^2 = 128

所以 q*a3^2=128

因为 a3+a4=24

所以 a3+a3*q=24

所以 a3=24/(1+q)

所以 q*[24/(1+q)]^2=128

2q^2-5q+2=0

(2q-1)(q-2)=0

q=1/2(舍去)或者 q=2

所以 a3=24/(1+q)=8

所以 a1=a3/q^2=2

所以 an=2^n

在三角形ABC中,ABC的对边分别为abc,且asinA+(c-a)sinC=bsinB第一问求角B的值第二问:若向量BA×向量BC=2.b=2 求三角形ABC的面积

解:在任意△ABC中,存在 a/sinA=b/sinB=c/sinC=2R(其中R是外接圆半径)

所以 sinA=a/(2R), sinB=b/(2R), sinC=c/(2R)

由题意,a^2/(2R)+(c-a)c/(2R)=b^2/(2R)

所以 a^2+c^2-ac=b^2

所以 a^2+c^2-b^2=ac

根据余弦公式,cosB=(a^2+c^2-b^2)/(2ac)=ac/(2ac)=1/2

所以 B=60°

因为 向量BA×向量BC=2

所以 ∣BA∣*∣BC∣*cosB=2

所以 ∣BA∣*∣BC∣=4

所以 S△ABC=(1/2)*∣BA∣*∣BC∣*sinB=√3

第二篇:等比数列的通项公式(教案)

等比数列的通项公式(教案)

一、教学目标

1、掌握等比数列的通项公式,并能够用公式解决一些相关问题。

2、掌握由等比数列的通项公式推导出的相关结论。

二、教学重点、难点

各种结论的推导、理解、应用。

三、教学过程

1、导入

复习

等比数列的定义:

an1q nN* an*

通项公式:ana1qn1 nN

用归纳猜测的方法得到,用累积法证明



2、新知探索

例1 在等比数列an中,(1)已知a13,q2,求a6;

(2)已知a320,a6160,求an.,分析(1)根据等比数列的通项公式,得 a6a1q596(2)可以根据等比数列的通项公式列出一个二元一次方程组

2a15a3a1q20n1n

1解得

所以 aaq52n15q2a6a1q160问:上面的第(2)题中,可以不求a1而只需求得q就得到an吗? 分析 在归纳猜测等比数列的通项公式时,有这样一系列式子:

a2a1q,a3a2qa1q2,a4a3qa2q2a1q3,anan1qan2q2an3q3...a2qn2a1qn1

注意观察等式右边各项的下标与q的次方的和,可以发现,an的表达式中,始终满足

*anamqnm

n,mN

结论1

数列an是等比数列,则有anamqnm*

n,mN。

再来看一下例1中(2)的另一种解法:a6a3q3,所以q=2,所以ana1qn152n1习题2.3(1)P492、在等比数列an中,(1)已知a44,a9972,求an;

(2)已知a26,a6分析

(1)可以根据定义和结论1给出两种解法。

3a4a1q4方法一  8a9a1q97232,求an.27方法二 a9a4q5,所以q=3,所以ana4qn443n4。(2)a6a2q4,所以q2 322当q时,ana2qn26()n233

22当q时,ana2qn26()n233例2 在243和3中间插入3个数,使这5个数成等比数列。

分析

设此三个数为a2,a3,a4,公比为q,则由题意得243,a2,a3,a4,3成等比数列;

13243q4,所以得q

31当q时,a281,a327,a493

1当q时,a281,a327,a493故插入的三个数为81,27,9或-81,27,-9.问:观察一下例2中,当q时,这5个数分别为243,-81,27,-9,3,可以发现什么规律?

答:在等比数列中,当公比小于零时,数列中的奇数项同号,偶数项同号。习题2.3(1)P49

6、在等比数列an中,a10,a2a42a3a5a4a625,求a3a5的值。分析

13a3a4得a32a2a4,同理得a52a4a6 a2a3a10a30,a50a3a5022a2a42a3a5a4a6a32a3a5a5(a3a5)225

a3a55例3 已知等比数列an的通项公式为an32n,求首项和公比q.分析 a1326,a23212q2a22 a

1在例3中,等比数列的通项公式为an32n,是一个常数与指数式的乘积,因为数列是特殊的函数,故表示这个数列的各点(n,an)均在函数y32x的图像上。

问:如果一个数列an的通项公式为anaqn,其中a,q都是不为零的常数,那么这个数列一定是等比数列吗?

an1aqn分析

a1aq0,n1q,所以是等比数列。

anaq一般可以看作是等比数列通项公式的变形,ana1qn1a1na

qaqn,其中a1 qq结论2 等比数列an的通项公式均可写成anaqn(a,q为不等于零的常数)的形式。反之成立。

习题2.3(1)P495、在等比数列an中,22(1)a5a1a9是否成立?a5a3a7是否成立? 2(2)anan2an2(n>2)是否成立?

(3)你能得到更一般的结论吗?

2分析

(1)a1a9a1a1q8(a1q4)2a5 2,所以成立。a3a7a1q2a1q6(a1q4)2a52(2)an2an2a1qn3a1qn1(a1qn1)2an,所以成立。

(3)从(1)(2)可以看出,等式两边各项的下表和相等,左边是同一项的平方,如果把左边换成两个不同项的乘积呢?

同时,类比等差数列中的一个结论:在等差数列an中,当m+n=p+q(m,n,p,q都是正整数)时,有amanapaq,可以猜测:在等比数列an中,当m+n=p+q(m,n,p,q都是正整数)时,有amanapaq.12证

amana1qm1a1qna1qmn2,apaqa1qp1a1qq1a12qpq2

所以amanapaq.结论3 在等比数列an中,当m+n=p+q(m,n,p,q都是正整数)时,有amanapaq.习题

在等比数列an中,a1,a99是方程x10x160的两个实根,求a40a60.2分析 可以利用结论3.因为a1,a99是方程x10x160的两个实根,所以可得a1a99=16,所以a40a60=a1a99=16.在结论3中,当m=n或p=q时,可以发现此项总是处于另两项的中间。结论

4若a,G,b成等比数列,则称G为a和b的等比中项,且Gab。习题2.3(1)P49

7、(1)求45和80的等比中项;

(2)已知两个数k+9和6-k的等比中项是2k,求k.分析

(1)设此等比中项是G,则G=4580=3600,所以G=60.(2)(2k)2(k9)(6k),化简,得5k3k540,所以k222218或k3

5四、归纳总结

本节课的主要内容是由等比数列的通项公式引深而得到的几个结论,要求学生能牢记并灵活运用。

五、布置作业

做与本节课内容相关的练习册。

六、教学反思

本节课的内容都是由等比数列的通项公式推导而得到。在上课的时候,我先是把等比数列的通项公式推导一遍,再由相关的例题或习题引出相关的结论,在讲解中引导学生思考,充分发挥学生的主体作用,使学生能够与我产生互动,调节课堂气氛,使学生积极思考。在上课的过程中,有些地方因缺乏经验不能很好地连贯在一起,这在以后的讲课中要注意。

第三篇:高中数学数列求通项公式习题

补课习题

(四)的一个通项公式是(),A、anB、anC、anD、an2.已知等差数列an的通项公式为an32n , 则它的公差为()

A、2B、3C、2D、

33.在等比数列{an}中, a116,a48,则a7()

A、4B、4C、2D、

24.若等比数列an的前项和为Sn,且S1010,S2030,则S30

5.已知数列an通项公式ann210n3,则该数列的最小的一个数是

6.在数列{an}中,a1于.

7.已知{an}是等差数列,其中a131,公差d8。

(1)求数列{an}的通项公式;

(2)数列{an}从哪一项开始小于0?

(3)求数列{an}前n项和的最大值,并求出对应n的值. 11nan且an1,则数列nN的前99项和等2n1anan

8.已知数列an的前项和为Snn23n1,(1)求a1、a2、a3的值;

(2)求通项公式an。

9.等差数列an中,前三项分别为x,2x,5x4,前n项和为Sn,且Sk2550。

(1)、求x和k的值;

(2)、求Tn=1111;S1S2S3Sn

(3)、证明: Tn

1考点:

1.观察法求数列通项公式;2.等差数列通项公式;3.等比公式性质;4.等比公式前n项和公式应用;5.数列与函数结合;6.求通项公式;7.基本的等差数列求通项公式及其应用;8.求通项公式;9.等差数列性质应用及求和与简单的应用

答案:

1.B;2.C;3.A;4.70;5.-22;6.5049.7.(1)an398n(2)n=5(3)sn76、n=4;

8.(1)a1

5、a2

6、a38(2)an5;n1)2n2;n2)

9.(1)由4xx5x4得x2,an2n,.Snn(n1),k(k1)2550得k50

(2).Snn(n1),Sn111 n(n1)nn1

T1111111111n12334n1nnn1n1n1

11且0(3)Tn1n1n1

Tn1

第四篇:求数列的通项公式练习题

求数列的通项公式练习题

一、累加法

例 已知数列{an}满足an1an2n1,,求数列{an}的通项公式。

练习:已知数列{an}满足an1an23n1,a13,求数列{an}的通项公式。

二、累乘法

例 已知数列{an}满足a11,an1

练习:已知数列{an}满足a11,ana12a23a3通项公式。

三、公式法

例已知a11,an1

n1an,求数列{an}的通项公式。n2求{an}的(n1)an1(n2),1sn,求an 3

第五篇:数学分层作业(等比数列通项公式2)

紧扣教材 分层作业夯实基础步步为营

数学分层作业(等比数列通项公式2)

知 识: 等比中项、性质.方 法:明晰特征,掌握方法.(基本训练1—5;知识应用6—7;灵活应用8—9)组别学号 姓名评价

1.写出下面等比数列的第4项与第5项:

(1)5,-15,45,;(2)1.2,2.4,4.8,; 2.(1)a,G,b成等比数列;

(2)等比数列的性质:若m+n=p+k,则有

3.等比数列an中,a32,a864,那么它的公比q

4.三个数成等比数列,它的和为14,它们的积为64,求这三个数.5.已知{an}是等比数列,且an0,a2a42a3a5a4a625, 求a3a5.

6.设{an}是由正数组成的等比数列,且a5a6=81,log3a1+ log3a2+…+ log3a10的值是

7.在等比数列中,an>0,且an2anan1,则该数列的公比q等于.8.已知四个数,前三个数成等比数列,和为19,后三个数成等差数列,和为12,求此四个数.9.(1){an}是等比数列,C是不为0的常数,数列can是等比数列吗?为什么?

(2)已知an,bn是项数相同的等比数列,an是等比数列吗?为什么? bn

下载已知an是递增的等比数列,求通项公式[五篇范文]word格式文档
下载已知an是递增的等比数列,求通项公式[五篇范文].doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    等比数列的概念和通项公式(教学设计)

    《等比数列》(第1课时)教学设计 授课地点:武威八中 授课时间:2015年4月22日 授课人:武威六中杨志隆 一、教学目标 知识与技能 1.理解等比数列的概念; 2.掌握等比数列的通项公式; 3.......

    等比数列前n项和公式教案

    课题: §2.5等比数列的前Ⅱ.讲授新课 n项和 [分析问题]如果把各格所放的麦粒数看成是一个数列,我们可以得到一个等比数列,它的首项是1,公比是2,求第一个格子到第64个格子各格所......

    2.4.1等比数列的概念及通项公式导学案

    白城实验高中 高二数学 必修5编号: 6编制人:张晶审批人: 冯淑君包科领导: 张晶2012年日班级学生姓名评价 数列§2.4.1等比数列的概念及通项公式【学习目标】1. 理解等比数列的概......

    等比数列前n项和公式教学设计(模版)

    等比数列前n项和公式教学设计 1. 复习: 等比数列的定义等比数列的通项公式: 2. 引例: 一个穷人到富人那里去借钱,原以为富人不愿意,哪知富人一口答应了下来,但提出了......

    高中数学求递推数列的通项公式的九种方法(五篇范文)

    求递推数列的通项公式的九种方法利用递推数列求通项公式,在理论上和实践中均有较高的价值.自从二十世纪八十年代以来,这一直是全国高考和高中数学联赛的热点之一.一、作差求和......

    《数列通项公式》教学设计

    《数列通项公式》教学设计 【授课内容】数列通项公式 【授课教师】陈鹏 【授课班级】高三6班 【授课时间】2009年10月20日晚自习【教学目标】 一、知识目标: 1. 解决形如an+......

    《数列通项公式》教学反思

    《数列通项公式》教学反思 数列是高考中必考的内容之一,而研究数列,要通项先行。本节课只是复习归纳了几种常见的求数列通项公式的方法,可以看到,求数列(特别是以递推关系式给出......

    等比数列的前n项和公式的应用5篇范文

    第2课时等比数列前n项和公式的应用 学习目标 1. 掌握等比数列 的 前n项和公式及有关性质,能熟练运用公式解决简单的相关问题。 2. 自助学习,合作探究,掌握等比数列前n项和公式......