第一篇:2014考前冲刺数学第一部分专题四 推理证明的解题技巧
专题四推理证明的解题技巧
本节主要考查的识点有:归纳推理、类比推理两种合情推理和演绎推理;直接证明与间接证明;算法的含义、几种基本的算法语句、程序框图.推理渗透在每个高考试题中,证明是推理的一种形式,有的问题需要很强的推理论证能力和技巧.推理问题常常以探索性命题的方式出现在高考题中;(3)常见的论证方法有:综合法、分析法及反证法等.
(1)归纳猜想是一种重要的思维方法,是对有限的资料进行观察、分析、归纳、整理,然后提出带有规律性的结论,是由部分到整理,由个别到一般的推理;结果的正确性还需进一步论证,一般地,考查的个体越多,归纳出的结论可靠性越大.
(2)类比的关健是能把两个系统之间的某些一致性确切地表述出来,也就是要把相关对象在某些方面一致性的含糊认识说清楚,在学习中要注意通过类比去发现探索新问题.
(3)综合法的特点是:以“已知”看“可知”,逐步推向“未知”,实际上是寻找使问题成立的必要条件,是一个由因导果的过程;分析法的特点是:从“未知”看“需知”逐步靠拢“已知”,即寻找使问题成立的充分条件,是一个执果索因的过程.
(4)一般来说:分析法有两种证明途径:①由命题结论出发,寻找结论成立的充分条件,逐步推导下去;②由命题结论出发,寻找结论成立的充要条件,逐步推导下去.
(5)反证法在高考中的要求不高,但这种“正难则反”的思维方式值得重视,解决问题时要注意从多方面考虑,提高解决问题的灵活性.
【高考要求】(1)合情推理与演绎推理① 了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用;② 了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理;③ 了解合情推理和演绎推理之间的联系和差异;(2)直接证明与间接证明① 了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点;② 了解间接证明的一种基本方法──反证法;了解反证法的思考过程、特点;(3)了解算法的含义;理解程序框图的三种基本结构:顺序、选择、循环;理解几种基本算法语句.题型一:合情推理
1例1(1)若∆ABC内切圆半径为r,三边长为a、b、c,则∆ABC的面积S=2 r(a+b+c)类
比到空间,若四面体内切球半径为R,四个面的面积为S1、S2、S3、S4,则四面体的体积
=.
(2)在古腊毕达哥拉斯学派把1,3,6,10,15,21,28,…这些数叫做三角形数,因为这些数对应的点可以排成一个正三角形,则第n个三角形数为().n(n1)212
C.n1D.n
(n1)
A.nB.【特别提醒】(1)类比推理是指两类对象具有一些类似特征,由其中一类的某些已知特征推出另一类对象的某些特征;(2)这是一种归纳推理方法,要善于发现其中的数字间的特征才能找到规律,得到一般形式.题型二:演绎推理
例2.如图,在直三棱柱ABC
D在A1BC11中,E,F分别是A1B,AC1的中点,点
B1C1上,A1DBC1.求证:(1)EF∥平面ABC;
(2)平面AFD平面
BBC111C.题型三:直接证明
例3 已知a0,b0,求证:
a
ba
ab.a证法1:(综合法)a0,b0,2a,当且仅当ab时等号成立,
ba
a2b
ab
ba
当且仅当ab时等号成立,a2a2b, 即
a
ba
.ab
ba
证法2:(分析法)要证证
ab.,只要证aabbabba,即
a(a)b(b)0,即证
(a)(ab)0,即
(a)2(ab)0
由a0,b0,(ab)20,所以原不等式成立
a0,得(ab)2(a)0,【特别提醒】综合法着力分析已知和求证之间的差异和联系,并合理运用已知条件进行有效的变换是证明的关键,综合法可以使证明过程表述简洁,但必须首先考虑从哪开始,这一点比较困难,分析法就可以帮助我们克服这一点,运用分析法比较容易探求解题的途径,但过程不及综合法简单,所以应把它们结合起来.(1)用综合法证明时难找到突破口,解题受阻;(2)分析法是寻找使不等式成立的充分条件,最后要充分说明推出的结论为什么成立.题型四:间接证明 例4:已知函数y=ax+
x2
(a>1).x1
(1)证明:函数f(x)在(-1,+∞)上为增函数;(2)用反证法证明方程f(x)=0没有负数根
.(2)方法一假设存在x0<0(x0≠-1)满足f(x0)=0,则ax0=-<1,∴0<-x021
<1,得<x0<2,与假设x0<0相矛盾,故方程f(x)=0没有负数根.2x01
x02
<-2,ax0<1, x01
x02
.∵a>1,∴0<ax0
x01
方法二假设存在x0<0(x0≠-1)满足f(x0)=0,①若-1<x0<0,则∴f(x0)<-1,与f(x0)=0矛盾.②若x0<-1,则负数根.x02
>0,ax0>0,∴f(x0)>0,与f(x0)=0矛盾,故方程f(x)=0没有x01
【特别提醒】用反证法证明把握三点(1)必须先否定结论,即肯定结论的反面;(2)必须从否定结论进行推理,即把结论的反面作为条件,且必须依据这一条件进行推证,(3)导致的矛盾可能多种多样,但推导出的矛盾必须是明显的.【专题训练】
1.为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成1,2)传输信息.设定原信息为a0a1a2,传输信息为h0a0a1a2h1,其中1}(i0,ai{0,h0a0a1,h1h0a2,运算规则为:000,011,101,110,例如原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列三个接收信息:(1)11010(2)01100(3)10111,一定有误的是(填序号).
2.已知函数f(x)
lnx
x.x
(1)求函数f(x)的单调区间;(2)试证明:对任意nN,不等式ln
1n1n
2恒成立. nn
3.如图所示,点P为斜三棱柱ABC-A1B1C1的侧棱BB1上一点,PM⊥BB1交AA1于点M,PN⊥BB1交CC1于点N.(1)求证:CC1⊥MN;
(2)在任意△DEF中有余弦定理:DE2=DF2+EF2-2DF·EF·cos∠DFE.拓展到空间,类比三角形的余弦定理,写出斜三棱柱的三个侧面面积与其中两个图 335
侧面所成的二面角之间的关系式,并予以证明.答案及其解析
令f'(x)0得x1lnx
显然x1是上方程的解
令g(x)x2lnx1,x(0,),则g'(x)2x∴函数g(x)在(0,)上单调递增
0 x
∴x1是方程f'(x)0的唯一解 ∵当0x1时f'(x)
1lnx
10,当x1时f'(x)
0 x2
1n1n1n1n1n
1∴ln(1)2 nnnnn
1n1n
2恒成立. 即对nN,不等式lnnn
∵
3.【解析】(1)∵PM⊥BB1,PN⊥BB1,∴BB1⊥平面PMN.∴BB1⊥MN.又CC1∥BB1,∴CC1⊥MN.(2)在斜三棱柱ABC-A1B1C1中,有S2=S2+S2-2SBCCBSACCAcos.其BCCBACCAABBA
222
∴PM2·CC1=PN2·CC1+MN2·CC1-2(PN·CC1)·(MN·CC1)cos∠MNP,由于SBCC1B1=PN·CC1,SACC1A1=MN·CC1,SABB1A1=PM·BB1=PM·CC1,∴S2=S2+S2-2SBCCB·SACCA·cos.BCCBACCAABBA
第二篇:2014高考数学考前20天冲刺 推理与证明
2014高考数学考前20天冲刺
推理与证明
1.古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,n(n+1)113,6,10,…,第n个三角形数为+n.记第n个k边形数为N(n,k)(k≥3),222
以下列出了部分k边形数中第n个数的表达式:
11三角形数 N(n,3)=n2,22
正方形数 N(n,4)=n2,31五边形数 N(n,5)=n2,22
六边形数 N(n,6)=2n2-n,……
可以推测N(n,k)的表达式,由此计算N(10,24)=________.
解析:先根据给出的几个结论,推测出当k为偶数时,N(n,k)的表达式,然后再将n=10,k=24代入,计算N(10,24)的值.
k由N(n,4)=n2,N(n,6)=2n2-n,…,可以推测:当k为偶数时,N(n,k)=-1n2-2
k2n,于是N(n,24)=11n2-10n,故N(10,24)=11×102-10×10=1 000.2
答案:1 000
2.定义映射f:A→B,其中A={(m,n)|m,n∈R},B=R,已知对所有的有序正整数对(m,n)满足下述条件:
①f(m,1)=1,②若n>m,f(m,n)=0;③f(m+1,n)=n[f(m,n)+f(m,n-1)],则f(2,2)=________,f(n,2)=________.
解析:在f(m+1,n)=n[f(m,n)+f(m,n-1)]中,令m=1,n=2,得f(2,2)=2[f(1,2)+f(1,1)]=2(0+1)=2.令m=n-1,n=2,得f(n,2)=2[f(n-1,2)+f(n-1,1)].若n=1,则f(n,2)=0;若n=2,则f(n,2)=2;若n>2,则f(n,2)=2[f(n-1,2)+f(n-1,1)]=2[f(n-1,2)+1],即f(n,2)+2=2[f(n-1,2)+2],故得f(n,2)+2=2·2n-1,故f(n,2)=2n-2,此式对n=1,2也成立.
答案:2 2n-2
3.在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4.类似地,在空间中,若两个正四面体的棱长的比为1∶2,则它们的体积比为________.
1V13S1h1111解析:=·.V21S2h2428S2h23答案:1∶8
第三篇:初中数学考前解题技巧总结
初中数学考前解题技巧总结
考试前,尤其是面临重要考试时,老师都会谆谆告诫莘莘学子们一条非常重要的答题方法--------会答的先答,不会答的后答。事实证明,这个方法是使考试获得成功、出奇制胜的法宝。但到了今天,这件法宝在许多同学身上不灵了,考试居然达不到平时写作业的水平,让同学们确实倍感困扰。三轮解题法就是解决怎样在考试时发挥出自己最佳水平的一种方法。它的理念是以我为主,以发挥出考试最佳状态为本,按照分轮次解题的要求,构建自信、有序。可控的机制平台,拓展自我进步、成功的轻松空间,实现应试能力的跨越。三轮解题法要通过以下七点实现:
1.对考试成功的标志要有明确的认识
初中生身经无数次的考试,有成功也有失败,有考顺之时,也有别扭之日。那么什么是考试成功的标志呢?有人说是分数,有人说是名次,还有人讲只有超过某人才算……其实分数也有绝对值和相对值,绝对值是拿你自己的分数与及格线、满分线等比较的结果。相对值是将你自己的分数放在个人、班级、年级、全市等参照系中衡量其相对位置的结果。正是由于选择的参照系不同,有的同学越比信心越足,越比干劲越大,越比越乐观;而有的同学则越比越没信心,越比对自己越怀疑,越比热情越低。我的观点是,考试成功的标志有两条:一是,只要将自己的水平正常发挥出来了,就是一次成功的考试。二是,不要横向与其他同学比,要纵向自己与自己比。按着前述《良性循环学习法》中提到的,只要将第一类问题消灭到既定目标,就是一次成功的考试。
2.确定考试目标
有资料显示,每年中考考砸的考生约占25%。因此考试前确定目标时,虽然你心中有了上述两条考试成功的标志,但是对于第一条,你千万不要以为我可以100%的将自己的水平发挥出来,这才叫正常发挥,更不要幻想超常发挥。而应该按三层递进模式实施你的目标。三层递进模式就是:第一要保证不考砸。第二要正常发挥。正常发挥就是将自己的水平发挥出80%,发挥出80%已经很不简单了,发挥出80%无疑是没考砸。第三要向更高标准迈进,就是在保证已发挥出80%以后,再向发挥100%努力,再向超常发挥进发。虽然看似简单的三层,但我提出的是:不砸→80%→100%→超常。你若考试一上来,就想100%发挥,超常发挥,就可能出现全盘皆输的惨局。那么保证实施三层递进模式的一种最佳方法就是——三轮解题法。
3.第一轮答题要敢于放弃三轮解题法的第一轮是,当你从前往后答题时,一看这题会,就答。一看这题不会,就不答。一看这题会,答的中间被困住卡壳了,就放。这是非常关键的一点。为什么。“会答的先答,不会答的后答’到了考场就做不到呢?要害在会与不会之间,难在会与不会的判定上。你想,会的题这很清楚。不会的题也很明了。但恰恰有些题是你乍一看会,一做起(此_资_料_转_贴_于_学_习_网]hTtP://www.xiexiebang.com来就卡壳,或者我不能立即得出结论,我需要看一看,思考思考、演算演算、琢磨琢磨……真是欲行不能,欲罢不忍。每每都是在这不知不觉中丧失了宝贵的时间,每次考试都觉得时间不够用,稀里糊涂地败下阵来。“会答的先答,不会答的后答”作为一条原则是颠扑不破的真理。但若同时将它当作考试方法,因为它仅是定性地指出了方向,定量分析不清楚,缺乏可操作性,所以出现有人用它灵,有人用它不灵;有时灵,有时就不灵的现象。尤其是重要的考试,每题必争,每分必夺,哪道题都不想轻易放弃,哪一问都想攻下来,哪一分都不想丢的时候,就往往失灵。而“三轮解题法’是一种定量的方法,量化清楚,可操作性强。当第一轮做完,有一个重要的环节——
4.敢于休息30秒
当按着会做的则解,不会做的则放,卡壳的也放的方法,从前做到最后一道题之后,要敢于休息30秒。而且这个休息一定是老老实实地休息。比如,可以看看窗外的自然景观,树在摇曳,鸟在飞翔等。也可以想想自己喜欢的流行歌曲、电视剧等,当然不能想得太远,如果你想出十集去,考试早结束了。还可以采取一些深呼吸放松法、自我深度松驰法、积极的自我暗示法等。当然也可以什么都不想,就是闭目养神。在休息过程中要注意一点,采用什么休息方法悉听尊便,但千万不要想自己没做上来的某道题。
为什么要用敢于休息30秒的“敢于”两字呢?是因为绝大多数同学每每都觉得时间不够,哪还敢挤出时间休息呀!其实恰恰相反,因为考试是高度的耗氧活动,对脑力、体力消耗很大,经过一段时间便会出现疲劳的现象,此时若*意志力来坚持,效率自然不高。经过休息就会使脑力得到恢复,使体力得到补充,经休息后再投入到解题过程中会高效发挥,所以敢于休息的同学反而时间就够了,这就是辩证法。这也正是俗话所说“磨刀不误砍柴工”的道理。敢于休息30秒也是心理状态提升的体现。考试时有的同学一听到其他同学快速翻页的声响就着急,眼睛的余光一看别的同学答得较快就发慌……现在我能做到不为所动,不被所引,我还敢于主动休息。急答出现差错,稳答一次成功,孰优孰劣是不言自明的道理。心理状态的提升需要一个磨炼过程。敢于休息30秒,就是心理状态走向成熟的开始,因此一定要敢于休息。休息后进人第二轮。
5.第二轮查缺补漏
第一轮将会做的题都做了,休息后还有没有会做的题了呢?回答是肯定的。依据有两条:一条是实践的依据;一条是理论的依据。
任何一名考生几乎都曾有过这样的考试经历,在考试过程中某道题不会,不得不放弃了,但当答到后边某处时,忽悠一下想起前边那道题该怎么做了。或者是答到后边某道题,或者看见一道题的某句话、某个符号等,立刻唤醒了记忆,产生了顿悟,激发了灵感等,前边那道题就做出来了。这就是实践的依据。
考试时,从答题开始到达到考试最佳思维状态即图中①点处需要一个上升过程,但是达到最佳思维状态后,有些人还能下来,如碰到一道4分左右的小题,自以为能做出来,但抠了半天就是做不出来,心情一团糟,这时绝不是最佳状态了,这时思维状态就下降了。有人一落千丈,如图中①点至②点沿虚线至④点处所示。也有人下降后还能升上去,再度达到最佳思维状态,如图中②点至③点处。而我们希望的理想状态是,角大点,尽快达到最佳思维状态,当达到最佳思维状态后,一直持续到考试结束。由于第一轮将会做的题做了,这时你的思维状态在0~①点之间,而决不会是①~②~④点之间。因此,经休息后仍旧有会做的题。
实践和理论都证实,做过第一轮后仍旧会有能解出来的题。那么这时如第一轮所述,一看这题会,就答。一看这题不会,就不答。一看这题会,答的中间卡壳了,就放。这样从前做到最后一道题,接下来要再次敢于休息30秒。怎样休息前文已有详述不再赘述。
6.第三轮换思路解题
休息以后,要从前到后检查一遍自己做过的题。检查通过后,从理论上讲,你已经将自己的水平100%的发挥出来了,但实际上是80%。因为你检查虽然通过了,可还存在你没检查出来或检查错了的可能性,所以说是80%。虽然是80%,但已经很不简单了。在一次考试中,能将自己的水平发挥出80%就是一次成功的考试。你看体育竞赛,你观奥运会,有多少运动员,有多少运动队积多年训练之精华,蓄埋藏4年之心愿,只为了场上一搏。这一搏往往是发挥出平时训练水平的80%就可以取得胜利,就可以拿牌。对发挥出80%,你一定认识到,我的水平已经发挥出来了,我就是这个水平。我对得起自己,对得起父母,对得起……但如果这时考试还没结束,还有时间,也没有必要检查第二遍,这时决不能满足80%,要向100%进发,向超常发挥努力,做那些没做上来的题。但是做是做不出来了,已经做过两轮都没做出来,说明是难点,是“硬骨头”。对于难点和“硬骨头”采用常规做法已经不行了。这时要攻,要向难点和“硬骨头”发起总攻。那么如何攻呢?可用换思路解题法来攻。
换思路解题法是基于这样的思考,当你解题时,仅仅将题做对是远远不够的,只有知道此题有几种解法,哪种是优化的解法才算优秀。许多人都曾有过这样的经历,解题时想起了这题出自哪章哪节,老师讲这点时是如何强调的,此题是考哪个或哪几个知识点,老师出这题想考什么……此时答这题感觉非常有把握,解题非常顺。这就是灵感。其实灵感也没有什么神秘,谁都曾经在考试过程中迸发过灵感的火花。当然如果你甚至能看透某题的陷阱和迷惑在哪里,你就是顶尖高手了。总之,此时已是不攻白不攻,不得白不得,攻一步进一寸,得1分是1分的时候了。但要换思路,看看哪题能攻下来攻哪题,哪点能拿下来拿哪点。想想它是出自哪章哪节?老师想考哪个知识点?各点之间是什么关系……这时要放飞你的记忆能力、领悟能力、多向联想能力、逆向思维能力、发散思维能力、创新能力等,多方位、多角度、多层次地思考。这时新的思路就有可能被打开,兴奋点就可能被激活,灵感的火花就可能如年三
十的礼花一样在空中绽放。同学们,大胆尝试吧!你曾经有过的灵感定会一次次再现。
7.变三轮解题法为自定理
三轮解题法是一种全新的考试答题方法,是经过实践验证的科学、合理、有效的考试答题方法。认识掌握并运用了三轮解题法的同学都取得了不同程度的进步。但应用三轮解题法却要因人”而异,因科而异。若想灵活运用三轮解题法,第一要认识它的科学性、合理性、有效性;第二要实践,没有多次的实践是不能掌握这样一种全新的方法的;第三要总结,看看自己究竟是三轮好,还是二轮妙,或是四轮高。中间的两次休息,多长时间为宜。总之,绝不是一轮到底,不管会不会的题都要跟它拼上三、五回合的从小学沿用至今的考试答题方法了。这是一种全新的分轮次解题方法。对不同的科目,应用三轮解题法也应有所差异。比如数、理、化等是这样的三轮。而语文则应该是阅读题之前是一轮,做完就要检查结束。然后阅读题是一轮,最后一轮全身心地写作文。理想状态是作文写完,剩余时间少于5分钟。如果剩多了,说明你前边的时间分配不合理,要改进。英语、历史。政治、地理等的三轮也要因科而异。
这样,经过实践一总结一再实践一再总结循环往复,什么时候形成一套你自己得心应手运用自如的分轮次解题法,什么时候你用自己的名字将其命名为某某定理,这时你才是真正掌握了三轮解题法。此时你的精力主要用于过程的完善,过程的完成,忽略结果,你就能取得胜利。这时你才会感到考试是无憾的、考试是轻松的、考试是愉快的、考试是幸福的。考试会使你信心越来越强,考试会使你思维越来越活跃、考试会使你的精神面貌焕然一新、考试会使你的应试能力实现跨越。
第四篇:英语四级考前冲刺:选词填空3步解题技巧
英语四级考前冲刺:选词填空3步解题技巧
一、筛选单词
通过多年的教学我们发现,抛开文章本身不论,选词填空的15个备选单词往往就是给大家造成的第一个障碍。实际上最行之有效的办法就是从中挑选出大家最熟悉的若干单词进行选择,而将陌生词汇排除在考虑范围之外。事实上,15的话,真的可以成为答案只有10,和10,多数属于基本词汇范畴。所以与其冥思苦想执着于若干难词、长词,还不如把注意力集中到自己熟悉的简单词上来,重点突破,效率更高。
二、词性分类
挑选出熟悉单词之后我们不妨根据词性将这些单词分门别类,便于待会逐一对应。多年以来的四级选词填空只曾涉及过四类词:动词、名词、形容词和副词。尤其是形容词和副词,即使我们不熟悉,一般也可以通过终止对判断。
三、对号入座
与大家所想象的不一样的是,判断选词填空的答案除了要考虑前后文以外还必须照顾到词性。有时候词性的判断可能比单纯考虑上下文速度更快。譬如以下考题:
…and it would be __47__ wasteful to tear them all down and __48__ them with greener versions。
47空放在了形容词wasteful之前,当然,只可以修改。在15种词汇仅仅是难以置信的,只有一个副词,选择它是。观察48空的特点,不难发现,出现在和之前它显示特殊的作用。作为连接的并行结构和语法功能,之前和之后的部分必须是相同的。由于之前,部分是不定式的拆除和部分之后,还必须与动词的回声。在发现动词这个缺口,选词范围已大大降低了制备。所以在剩下的两个原型动词保护和替代仅能满足环境要求更换。当然也起到保护。文章的最后一句:And efficiency upgrades(升级)can save more than just the earth;they can help __56__ property owners from rising power costs….其中56空放在动词help之后,空白之后的部分又是一个完整的宾语和宾语补足语,所以此处只能再挑选一个动词。受到help的影响,56空中的动词也只能是原形——protect。
最后要给大家补充一点。填空本身难度不低,一般考生在这一部分中只要他们可以在5到6的问题。所以在他们熟悉的文字选择范围的平均分数不高,但至少可以达到国家的候选人。
第五篇:数学《推理与证明(文科)
!
文科数学《推理与证明》练习题
2013-5-10
1.归纳推理和类比推理的相似之处为()
A、都是从一般到一般B、都是从一般到特殊C、都是从特殊到特殊D、都不一定正确
2.命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是使用了()
A.归纳推理B.类比推理C. “三段论”,但大前提错误D.“三段论”,但小前提错误
3.三角形的面积为S1abcr,a,b,c为三角形的边长,r为三角形内切圆的半径,利用类比推理,2可得出四面体的体积为()
111abcB、VShC、VS1S2S3S4r(S1,S2,S3,S4分别为四面体的四33
31个面的面积,r为四面体内切球的半径)D、V(abbcac)h,(h为四面体的高)3A、V
4.当n1,2,3,4,5,6时,比较2和n的大小并猜想()
n2n2n2n2A.n1时,2nB.n3时,2nC.n4时,2nD.n5时,2n n
25.已知数列an的前n项和为Sn,且a11,Snn2an nN,试归纳猜想出Sn的表达式为()*
A、2n2n12n12nB、C、D、n1n1n1n
26.为确保信息安全,信息需加密传输,发送方由明文密文(加密),接受方由密文明文(解密),已知加密规则为:明文a,b,c,d对应密文a2b,2bc,2c3d,4d,例如,明文1,2,3,4对应密文5,7,18,16.当接受方收到密文14,9,23,28时,则解密得到的明文为().
A. 4,6,1,7B. 7,6,1,4C. 6,4,1,7D. 1,6,4,7
7.有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线b平面,直线a平面,直线b∥平面,则直线b∥直线a”的结论显然是错误的,这是因为
()
A.大前提错误B.小前提错误C.推理形式错误D.非以上错误
8.下面使用类比推理恰当的是.①“若a·3=b·3,则a=b”类推出“若a·0=b·0,则a=b”
②“(a+b)c=ac+bc”类推出“abab=+” ccc
abab=+(c≠0)” ccc
nnn③“(a+b)c=ac+bc”类推出“nnn④“(ab)=ab”类推出“(a+b)=a+b”
9.“AC,BD是菱形ABCD的对角线,AC,BD互相垂直且平分。”补充以上推理的大前提是。
10.由①正方形的对角线相等;②平行四边形的对角线相等;③正方形是平行四边形,根据 “三段论”推理出一个结论,则这个结论是。
11.补充下列推理的三段论:
(1)因为互为相反数的两个数的和为0,又因为a与b互为相反数且所以b=8.(2)因为又因为e2.71828是无限不循环小数,所以e是无理数.
12.在平面直角坐标系中,直线一般方程为AxByC0,圆心在(x0,y0)的圆的一般方程为(xx0)2(yy0)2r2;则类似的,在空间直角坐标系中,平面的一般方程为________________,球心在(x0,y0,z0)的球的一般方程为_______________________.13.在平面几何里,有勾股定理:“设ABC的两边AB、AC互相垂直,则ABACBC。”拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面积与底面积间的关系,可以得妯的正确结论是:“设三棱锥A-BCD的三个侧面ABC、ACD、ADB两两互相垂直,则”.14.从1=1,14(12),149123,14916(1234)„,概括出第n个式子为.
15.对函数f(n),nN*,若满足f(n)222n100n3,试由f104,f103和ffn5n100
f99,f98,f97和f96的值,猜测f2f3116.若函数f(n)k,其中nN,k是3.1415926535......的小数点后第n位数字,例
如f(2)4,则f{f.....f[f(7)]}(共2007个f)17.设平面内有n条直线(n3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f(n)表示这n条直线交点的个数,则f(4)=;当n>4时,f(n)=(用n表示).18.蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边
形,如图为一组蜂巢的截面图.其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以f(n)表示第n幅图的蜂巢总数.则
f(4)=_____;f(n)=_____________.
19.在等差数列an中,若a100,则有等式a1a2ana1a2a19n(n19,nN)成立,类比上述性质,相应地:在等比数列bn中,若b91,则有等式.:
20.某同学在电脑上打下了一串黑白圆,如图所示,○○○●●○○○●●○○○„,按这种规律往下排,那么第36个圆的颜色应是.21.求垂直于直线2x6y10并且与曲线yx3x5相切的直线方程
32322.已知函数f(x)ax3(a2)x26x3 2
(1)当a2时,求函数f(x)极小值;
(2)试讨论曲线yf(x)与x轴公共点的个数。
《2.1合情推理与演绎推理》知识要点梳理
知识点一:推理的概念根据一个或几个已知事实(或假设)得出一个判断,这种思维方式叫做推理.从结构上说,推理一般由两部分组成,一部分是已知的事实(或假设)叫做前提,一部分是由已知推出的判断,叫做结论.
知识点二:合情推理根据已有的事实和正确的结论(包括定义、公理、定理等)、实验和实践的结果、个人的经验和直觉等,经过观察、分析、比较、联想、归纳、类比等推测出某些结果的推理过程。其中归纳推理和类比推理是最常见的合情推理。
1.归纳推理
(1)定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳)。
(2)一般模式:部分整体,个体一般
(3)一般步骤:
①通过观察个别情况发现某些相同性质;
②从已知的相同的性质中猜想出一个明确表述的一般性命题;
③检验猜想.(4)归纳推理的结论可真可假
2.类比推理
(1)定义:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).(2)一般模式:特殊特殊
(3)类比的原则:可以从不同的角度选择类比对象,但类比的原则是根据当前问题的需要,选择恰当的类比对象.(4)一般步骤:
①找出两类对象之间的相似性或一致性;
②用一类对象的已知特征去推测另一类对象的特征,得出一个明确的命题(猜想);
③检验猜想.(5)类比推理的结论可真可假
知识点三:演绎推理
(1)定义:从一般性的原理出发,按照严格的逻辑法则,推出某个特殊情况下的结论的推理,叫做演绎推理.简言之,演绎推理是由一般到特殊的推理.
(2)一般模式:“三段论”是演绎推理的一般模式,常用的一种格式
① 大前提——已知的一般原理;
② 小前提——所研究的特殊情况;
③ 结论——根据一般原理,对特殊情况作出的结论.(3)用集合的观点理解“三段论”若集合的所有元素都具有性质,是的子集,那么中所有元素都具有性质
(4)演绎推理的结论一定正确
演绎推理是一个必然性的推理,因而只要大前提、小前提及推理形式正确,那么结论一定是正确的,它是完全可靠的推理。
合情推理与演绎推理(文科)答案
1——7.D C C D A C A8.③
9.菱形对角线互相垂直且平分。10.②③①。11.(1)a=-8;(2)无限不循环小数都是无理数
12.AxByCzD0;(xx0)2(yy0)2(zz0)2r2;
13.SBCDSABCSACDSABD;
14.122222223242(1)n1n2(123n);
18.【解题思路】找出f(n)f(n1)的关系式 15.97,98;16.1;17.5; n+1)(n-2);
[解析]f(1)1,f(2)16,f(3)1612,f(4)16121837
f(n)1612186(n1)3n23n1
【名师指引】处理“递推型”问题的方法之一是寻找相邻两组数据的关系.19.【解析】:在等差数列an中,由a100,得a1a19a2a18ana20n
an1a19n2a100
所以a1a2ana190即a1a2ana19a18an1
又a1a19,a2a18,a19nan1
a1a2ana19a18an1a1a2a19n
若a90,同理可得a1a2ana1a2a17n
相应地等比数列bn中,则可得:b1b2bnb1b2b17nn17,nN*
【点评】已知性质成立的理由是应用了“等距和”性质,故类比等比数列中,相应的“等距积”性质,即可求解。
20.白色
21.解:设切点为P(a,b),函数yx33x25的导数为y'3x26x
切线的斜率ky'|xa3a26a3,得a1,代入到yx3x5
得b3,即P(1,3),y33(x1),3xy6032
22.解:(1)a2f'(x)3ax23(a2)x63a(x)(x1),f(x)极小值为f(1) 2a
2(2)①若a0,则f(x)3(x1),f(x)的图像与x轴只有一个交点;
②若a0,f(x)极大值为f(1)a20,f(x)的极小值为f()0,2a
f(x)的图像与x轴有三个交点;
③若0a2,f(x)的图像与x轴只有一个交点;
'2④若a2,则f(x)6(x1)0,f(x)的图像与x轴只有一个交点;
⑤若a2,由(1)知f(x)的极大值为f()4(点; 2a1323)0,f(x)的图像与x轴只有一个交a44
综上知,若a0,f(x)的图像与x轴只有一个交点;若a0,f(x)的图像与x轴有三个交点。