第一篇:数学证明教案
数学证明
授课人:时丽丽授课时间:2014-03-14 教学目标:
1.知识与技能:
(1)体会数学证明的特点,了解数学证明的思想方法;
(2)熟悉三段论证明命题的推理形式。
2.过程与方法:
通过对三段论证明方法的学习,感受演绎推理的形式,明确推理的依据。
3.情感态度价值观:
通过对数学证明的学习,体会三段论推理的作用。通过感受演绎推理证明在数学及日常生活中的作用,养成言之有理、证据有论的习惯。
教学重点:正确理解三段论推理的形式和各部分的含义,能用演绎推理进行一些简单的推理。
教学难点:对常见数学证明书写中的三段论给予严格、正确的解读。教学过程:
一、复习:
1.练习:
①对于任意正整数n,猜想(2n-1)与(n+1)2的大小关系?
②在平面内,若ac,bc,则a//b.类比到空间,你会得到什么结论?(结论:在空间中,若ac,bc,则a//b;或在空间中,若,,则//.2.讨论:以上推理属于什么推理,结论正确吗?
合情推理的结论不一定正确,有待进一步证明,有什么能使结论正确的推理形式呢?
二.导入:
① 所有的金属都能够导电,铜是金属,所以;
② 太阳系的大行星都以椭圆形轨道绕太阳运行,冥王星是太阳系的大行星,因此;
③ 奇数都不能被2整除,2007是奇数,所以.(填空→讨论:上述例子的推理形式与我们学过的合情推理一样吗?→课题:演绎推理)
三.新课:
1.概念:
从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理。
要点:由一般到特殊的推理。
2.讨论:演绎推理与合情推理有什么区别?
合情推理归纳推理:由特殊到一般;演绎推理:由一般到特殊.类比推理:由特殊到特殊
4.“三段论”是演绎推理的一般模式:
第一段:大前提——已知的一般原理;
第二段:小前提——所研究的特殊情况;
第三段:结论——根据一般原理,对特殊情况做出的判断.5.演绎推理的结论一定正确
演绎推理是一个必然性的推理,因而只要大前提、小前提及推理形式正确,那么结论一定是正确的,它是完全可靠的推理。
四.例题:
例1:证明函数f(x)x22x在,1上是增函数.板演:证明方法(定义法、导数法)→ 指出:大前题、小前题、结论.例2:在锐角三角形ABC中,ADBC,BEAC,D,E是垂足.求证:AB的中点M到D,E的距离相等.分析:证明思路→板演:证明过程→ 指出:大前题、小前题、结论.例3:因为指数函数yax是增函数,y()x是指数函数,则结论是什么?(结论→指出:大前提、小前提 → 讨论:结论是否正确,为什么?)
讨论:演绎推理怎样才结论正确?(只要前提和推理形式正确,结论必定正确)
五.课堂练习: 用三段论证明函数在(-∞,+∞)上是增函数.12
六.作业布置:导学案
第二篇:数学归纳法证明不等式教案
§2.3用数学归纳法证明不等式
学习目标:1.理解数学归纳法的定义、数学归纳法证明基本步骤;
2.重、难点:应用数学归纳法证明不等式.一、知识情景:
1.关于正整数n的命题(相当于多米诺骨牌),我们可以采用下面方法来证明其正确性:
10.验证n取第一个值时命题成立(即n=n时命题成立)(归纳奠基);
20.假设当n=k时命题成立,证明当n=k+1时命题也成立(归纳递推).30.由10、20知,对于一切n≥n的自然数n命题都成立!(结论)
要诀: 递推基础不可少,归纳假设要用到,结论写明莫忘掉.二、数学归纳法的应用:
例1.用数学归纳法证明不等式sinn≤nsin.(nN)
证明:(1)当 n=1时,上式左边=│Sinθ│=右边,不等式成立。
(2)假设当n=k(k≥1)时命题成立,即有│Sin kθ│≤k│Sinθ│
当n=k+1时,│Sin(k+1)θ│=│Sin kθCosθ+Cos kθSin θ│
≤│Sin kθCosθ│+│Cos kθSin θ│
=│Sin kθ││Cosθ│+│Cos kθ││Sin θ│
≤│Sin kθ│+│Sin θ│≤k│Sinθ│+│Sin θ│=(k+1)│Sinθ│
所以当n=k+1时,不等式也成立。
由(1)(2)可知,不等式对一切正整数n均成立。
例2. 证明贝努力(Bernoulli)不等式:
已知xR,且x> 1,且x0,nN*,n≥2.求证:(1+x)n>1+nx.证明:(1)当n=2时,由x≠0得(1+x)2=1+2x+x2>1+2x,不等式成立。
(2)假设n=k(k≥2)时,不等式成立,即有(1+x)k>1+kx
当n=k+1时,(1+x)k+1=(1+x)(1+x)k>(1+x)(1+kx)=1+x+kx+ kx2>1+x+kx=1+(k+1)x 所以当n=k+1时,不等式成立
由(1)(2)可知,贝努力不等式成立。
例3 证明: 如果n(n为正整数)个正数a1,a2,,an的乘积a1a2an1,那么它们的和a1a2an≥n.三、当堂检测
1、(1)不等式2nn4对哪些正整数n成立?证明你的结论。
1(2)求满足不等式(1)nn的正整数n的范围。n
n2*22n(nN).
2、用数学归纳法证明
证明:(1)当n=1时,221,不等式成立; 当n=2时,222,不等式成立;当n=3时,223,不等式成立.
*nk(k3,kN)时不等式成立,即 2k2k2.(2)假设当
k1k222则当nk1时,222(22)22k2(k1)k2k3,1222
322kk3∵,∴2k3(k3)(k1)0,(*)
k1222k1222(k1)k2k3(k1)22(k1)从而,∴. 即当nk1时,不等式
也成立. 由(1),(2)可知,22n对一切nN都成立.
四、课堂小结
1.用数学归纳法证明,要完成两个步骤,这两个步骤是缺一不可的.但从证题的难易来分析,证明第二步是难点和关键,要充分利用归纳假设,做好命题从n=k到n=k+1的转化,这个转化要求在变化过程中结构不变.
2.用数学归纳法证明不等式是较困难的课题,除运用证明不等式的几种基本方法外,经常使用的方法就是放缩法,针对目标,合理放缩,从而达到目标.
n2*
第三篇:用数学归纳法证明不等式教案
用数学归纳法证明不等式·教案
教学目标
1.牢固掌握数学归纳法的证明步骤,熟练表达数学归纳法证明的过程. 2.通过事例,学生掌握运用数学归纳法证明不等式的思想方法.
3.培养学生的逻辑思维能力,运算能力,和分析问题、解决问题的能力. 教学重点与难点
重点:巩固对数学归纳法意义和有效性的理解,并能正确表达解题过程,以及掌握利用数学归纳法证明不等式的基本思路.
难点:应用数学归纳法证明的不同方法的选择及解题技巧. 教学过程设计
(一)复习回顾
师:上次课我们已经学习了数学归纳法以及运用数学归纳法解题的步骤,请同学们联想“多米诺骨牌”游戏,说出数学归纳法的步骤?
生:数学归纳法是用于证明某些与自然数有关的命题的一种方法.设要证命题为P(n).(1)证明当n取第一个值n0时,结论正确,即验证P(n0)正确;(2)假设n=k(k∈N且k≥n0)时结论正确,证明当n=k+1时,结论也正确,即由P(k)正确推出P(k+1)正确,根据(1),(2),就可以判定命题P(n)对于从n0开始的所有自然数n都正确.
师:演示小黑板或运用投影仪讲评作业.
(讲评作业的目的是从错误中进一步强调恰当地运用归纳假设是数学归纳法的关键)
作业中用数学归纳法证明: 2+4+6+8+„+2n=n(n+1). 如采用下面的证法,对吗?
证明:(1)当n=1时,左=2,右=2,则等式成立.(2)假设n=k时(k∈N,k≥1),等式成立,即 2+4+6+„+2k=k(k+1). 当n=k+1时,2+4+6+„+2k+(k+1)
所以n=k+1时,等式也成立.
根据(1)(2)可知,对于任意自然数n,原等式都能成立. 生甲:证明过程正确.
生乙:证明方法不是数学归纳法,因为第二步证明时,没有应用归纳假设. 师:从形式上看此种证明方法是数学归纳法,但实质在要证明n=k+1正确时,未用到归纳假设,直接采用等差数列求和公式,违背了数学归纳法的本质特点递推性,所以不能称之为数学归纳法.因此告诫我们在运用数学归纳法证明时,不能机械套用两个步骤,在证明n=k+1命题成立时,一定要利用归纳假设.(课堂上讲评作业,指出学生作业中不妥之处,有利于巩固旧知识,为新知识的学习扫清障碍,使学生引以为戒,所谓温故而知新)
(二)讲授新课
师:在明确数学归纳法本质的基础上,我们来共同研究它在不等式证明中的应用.
(板书)例1已知x>-1,且x≠0,n∈N,n≥2.求证:(1+x)n>1+nx. 师:首先验证n=2时的情况.
(板书)证:(1)当n=2时,左边=(1+x)2=1+2x+x2,右边=1+2x,因x2>0,则原不等式成立.
(在这里,一定要强调之所以左边>右边,关键在于x2>0是由已知条件x≠0获得,为下面证明做铺垫)
(2)假设n=k时(k≥2),不等式成立,即(1+x)k>1+kx. 师:现在要证的目标是(1+x)k+1>1+(k+1)x,请同学考虑. 生:因为应用数学归纳法,在证明n=k+1命题成立时,一定要运用归纳假设,所以当n=k+1时.应构造出归纳假设适应的条件.所以有:(1+x)k+1=(1+x)k
k(1+x),因为x>-1(已知),所以1+x>0于是(1+x)(1+x)>(1+kx)(1+x).
师:现将命题转化成如何证明不等式(1+kx)(1+x)≥1+(k+1)x. 显然,上式中“=”不成立.
故只需证:(1+kx)(1+x)>1+(k+1)x. 提问:证明不等式的基本方法有哪些?
生甲:证明不等式的基本方法有比较法、综合法、分析法.
(提问的目的是使学生明确在第二步证明中,合理运用归纳假设的同时,其本质是不等式证明,因此证明不等式的所有方法、技巧手段都适用)
生乙:证明不等式(1+kx)(1+x)>1+(k+1)x,可采用作差比较法.(1+kx)(1+x)-[1+(k+1)x] =1+x+kx+kx2-1-kx-x =kx2>0(因x≠0,则x2>0). 所以,(1+kx)(1+x)>1+(k+1)x. 生丙:也可采用综合法的放缩技巧.
(1+kx)(1+x)=1+kx+x+lx2=1+(k+1)x+kx2.
因为kx2>0,所以1+(k+1)x+kx2>1+(k+1)x,即(1+kx)(1+x)>1+(1+k)x成立.
生丁:„„
(学生可能还有其他多种证明方法,这样培养了学生思维品质的广阔性,教师应及时引导总结)
师:这些方法,哪种更简便,更适合数学归纳法的书写格式?学生丙用放缩技巧证明显然更简便,利于书写.
(板书)将例1的格式完整规范. 当n=k+1时,因为x>-1,所以1+x>0,于是
左边=(1+x)k+1=(1+x)k(1+x)>(1+x)(1+lx)=1+(k+1)x+kx2; 右边=1+(k+1)x.
因为kx2>0,所以左边>右边,即(1+x)k+1>1+(k+1)x.这就是说,原不等式当n=k+1时也成立.
根据(1)和(2),原不等式对任何不小于2的自然数n都成立.(通过例1的讲解,明确在第二步证明过程中,虽然可以采取证明不等式的有关方法,但为了书写更流畅,逻辑更严谨,通常经归纳假设后,要进行合理放缩,以达到转化的目的)
师:下面再举例子,来说明合理放缩的重要性.(板书)例2证明:2n+2>n2,n∈N+.
师:(1)当 n=1时,左边=21+2=4;右边=1,左边>右边.所以原不等式成立.
(2)假设n=k时(k≥1且k∈N)时,不等式成立,即2k+2>k2. 现在,请同学们考虑n=k+1时,如何论证2k+1+2>(k+1)2成立. 生:利用归纳假设2k+1+2=2.2k+2=2(2k+2)-2>2·k2-2.
师:将不等式2k2-2>(k+1)2,右边展开后得:k2+2k+1,由于转化目的十分明确,所以只需将不等式的左边向k2+2k+1方向进行转化,即:2k2-2=k2+2k+1+k2-2k-3.
由此不难看出,只需证明k2-2k-3≥0,不等式2k2-2>k2+2k+1即成立. 生:因为k2-2k-3=(k-3)(k+1),而k∈N,故k+1>0,但k-3≥0成立的条件是k≥3,所以当k∈N时,k-3≥0未必成立.
师:不成立的条件是什么?
生:当k=1,2时,不等式k-3≥0不成立.
师:由于使不等式不成立的k值是有限的,只需利用归纳法,将其逐一验证原命题成立,因此在证明第一步中,应补充验证n=2时原命题成立,那么,n=3时是否也需要论证? 生:n=3需要验证,这是因为数学归纳法中的第一步验证是第二步归纳假设的基础,而第二步中对于k是大于或等于3才成立,故在验证时,应验证n=3时,命题成立.
师:(补充板书)
当n=2时,左=22+2=6,右=22=4,所以左>右; 当n=3时,左=23+2=10,右=32=9,所以左>右. 因此当n=1,2,3时,不等式成立.(以下请学生板书)
(2)假设当n=k(k≥3且k∈N)时,不等式成立.即2k+2>k2.因为2k+1+2=2·2k+2=2(2k+2)-2>2k2-2 =k2+2k+1+k2-2k-3 =(k2+2k+1)+(k+1)(k-3)(因k≥3,则k-3≥0,k+1>0)≥k2+2k+1=(k+1)2.
所以2k+1+2>(k+1)2.故当n=k+1时,原不等式也成立. 根据(1)和(2),原不等式对于任何n∈N都成立.
师:通过例2可知,在证明n=k+1时命题成立过程中,针对目标k2+2k+1,采用缩小的手段,但是由于k的取值范围(k≥1)太大,不便于缩小,因此,用增加奠基步骤(把验证n=1.扩大到验证n=1,2,3)的方法,使假设中k的取值范围适当缩小到k≥3,促使放缩成功,达到目标.
(板书)例3求证:当n≥2时,(由学生自行完成第一步的验证;第二步中的假设,教师应重点讲解n=k到n=k+1命题的转化过程)
师:当n=k+1时,不等式的左边表达式是怎样的? 生:当n=k+1时,k项,应是第2k项,数列各项分母是连续的自然数,最后一项是以3k
在3k后面还有3k+1、3k+2.最后才为3k+3即3(k+1),所以正确
(在这里,学生极易出现错误,错误的思维定势认为从n=k到n=k+1时,只增加一项,求和式中最后一项即为第几项的通项,教师在这里要着重分析,化解难点.)
运算,应针对问题的特点,巧妙合理地利用“放缩技巧”,使问题获得简捷的证明:
(板书略)
师:设S(n)表示原式左边,f(n)表示原式右边,则由上面的证法可知,从n=k到n=k+1命题的转化途径是:
要注意:这里 S′(k)不一定是一项,应根据题目情况确定.
(三)课堂小结
1.用数学归纳法证明,要完成两个步骤,这两个步骤是缺一不可的.但从证题的难易来分析,证明第二步是难点和关键,要充分利用归纳假设,做好命题从n=k到n=k+1的转化,这个转化要求在变化过程中结构不变.
2.用数学归纳法证明不等式是较困难的课题,除运用证明不等式的几种基本方法外,经常使用的方法就是放缩法,针对目标,合理放缩,从而达到目标.
3.数学归纳法也不是万能的,也有不能解决的问题.
错误解法:
(2)假设n=k时,不等式成立,即
当n=k+1时,则n=k+1时,不等式也成立.
根据(1)(2),原不等式对n∈N+都成立.
(四)课后作业
1.课本P121:5,P122:6. 2.证明不等式:
(提示:
(1)当n=1时,不等式成立.(2)假设n=k时,不等式成立,即
那么,这就是说,n=k+1时,不等式也成立. 根据(1)(2)可知不等式对n∈N+都成立.)3.对于任意大于1的自然数n,求证:
(提示:
(2)假设n=k时,不等式成立,即
这就是说,n=k+1时,原不等式成立.
根据(1),(2)可知,对任意大于1的自然数n,原不等式都成立.)
用数学归纳法证明①式:(1)当n=3时,①式成立.
(2)假设 n=k(k≥3,k∈N)时,①式成立,即2k>2k+1.那么2k+1=2k·2>2(2k+1)
=2(k+1)+1+(2k-1)
>2(k+1)+1(因k≥3,则2k-1≥5>0). 这就是说,当n=k+1时,①式也成立.
根据(1)(2)可知,对一切n∈N,n≥3①式都成立,即f
课堂教学设计说明
1.数归法是以皮亚诺的归纳公理作为依据,把归纳法与演绎法结合起来的一种完全归纳法.数学归纳法证明中的两个步骤体现了递推思想.在教学中应使学生明确这两个步骤的关系:第一步是递推的基础;第二步是递推的依据,缺一不可,否则就会导致错误.为了取得良好的教学效果,不妨利用“多米诺骨牌”游戏来加深这两步骤之间的关系的理解,在演示时,应分三种情况:(1)推倒第一张,接着依次倒下直至最后一张;(2)推倒第一张,中途某处停止,最后一张不倒;(3)第一张不倒,后面不管能否推倒,都不会全部倒下.通过具体生动的模型,帮助学生理解数学归纳法的实质.
2.用数学归纳法证明不等式,宜先比较n=k与n=k+1这两个不等式间的差异,以决定n=k时不等式做何种变形,一般地只能变出n=k+1等式的一边,然后再利用比较、分析、综合、放缩及不等式的传递性来完成由n=k成立推出n=k+1不等式成立的证明. 3.要注意:在证明的第二步中,必须利用“n=k时命题成立”这一归纳假设,并且由f(k)到 f(k+1),并不总是仅增加一项,如例2,4.要教会学生思维,离开研究解答问题的思维过程几乎是不可能的,因此在日常教学中,尤其是解题教学中,必须把教学集中在问题解答者解答问题的整个过程上,培养学生构作问题解答过程的框图,因为用文字、符号或图表简明地表达解答过程或结果的能力,叙述表达自己解题思路的能力,这也是问题解答所必需的.
第四篇:用数学归纳法证明不等式教案
用数学归纳法证明不等式
在明确数学归纳法本质的基础上,我们来共同研究它在不等式证明中的应用.
例1 已知x>-1,且x≠0,n∈N,n≥2.求证:(1+x)n>1+nx.
证:(1)当n=2时,左边=(1+x)2=1+2x+x2,右边=1+2x,因x2>0,则原不等式成立.
(在这里,一定要强调之所以左边>右边,关键在于x2>0是由已知条件x≠0获得,为下面证明做铺垫)
(2)假设n=k时(k≥2),不等式成立,即(1+x)k>1+kx.
师:现在要证的目标是(1+x)k1>1+(k+1)x,请同学考虑.
+
师:现将命题转化成如何证明不等式
(1+kx)(1+x)≥1+(k+1)x.显然,上式中“=”不成立.故只需证:(1+kx)(1+x)>1+(k+1)x.
提问:证明不等式的基本方法有哪些?
(学生可能还有其他多种证明方法,这样培养了学生思维品质的广阔性,教师应及时引导总结)
师:这些方法,哪种更简便,更适合数学归纳法的书写格式?学生丙用放缩技巧证明显然更简便,利于书写.
当n=k+1时,因为x>-1,所以1+x>0,于是
左边=(1+x)k1=(1+x)k(1+x)>(1+x)(1+kx)=1+(k+1)x+kx2; 右边=1+(k+1)x. +
因为kx2>0,所以左边>右边,即(1+x)k1>1+(k+1)x.这就是说,原不等式当n=k
++1时也成立.
根据(1)和(2),原不等式对任何不小于2的自然数n都成立.
(通过例1的讲解,明确在第二步证明过程中,虽然可以采取证明不等式的有关方法,但为了书写更流畅,逻辑更严谨,通常经归纳假设后,要进行合理放缩,以达到转化的目的)
例2 证明:2n+2>n2,n∈N+.
证:(1)当n=1时,左边=21+2=4;右边=1,左边>右边.所以原不等式成立.
(2)假设n=k时(k≥1且k∈N)时,不等式成立,即2k+2>k2.
现在,请同学们考虑n=k+1时,如何论证2k1+2>(k+1)2成立.
+
师:将不等式2k2-2>(k+1)2,右边展开后得:k2+2k+1,由于转化目的十分明确,所以只需将不等式的左边向k2+2k+1方向进行转化,即:2k2-2=k2+2k+1+k2-2k-3.
由此不难看出,只需证明k2-2k-3≥0,不等式2k2-2>k2+2k+1即成立.
师:由于使不等式不成立的k值是有限的,只需利用归纳法,将其逐一验证原命题成立,因此在证明第一步中,应补充验证n=2时原命题成立,那么,n=3时是否也需要论证?
师:(补充板书)当n=2时,左=22+2=6,右=22=4,所以左>右;当n=3时,左=23+2=10,右=32=9,所以左>右.因此当n=1,2,3时,不等式成立.(以下请学生板书)
(2)假设当n=k(k≥3且k∈N)时,不等式成立.即2k+2>k2.因为2k1+2=2·2k+2=2(2k
++2)-2>2k2-2=k2+2k+1+k2-2k-3=(k2+2k+1)+(k+1)(k-3)(因k≥3,则k-3≥0,k+1>0)
≥k2+2k+1=(k+1)2. 所以2k1+2>(k+1)2.故当n=k+1时,原不等式也成立.根
+据(1)和(2),原不等式对于任何n∈N都成立.
师:通过例2可知,在证明n=k+1时命题成立过程中,针对目标k2+2k+1,采用缩小的手段,但是由于k的取值范围(k≥1)太大,不便于缩小,因此,用增加奠基步骤(把验证
n=1.扩大到验证n=1,2,3)的方法,使假设中k的取值范围适当缩小到k≥3,促使放缩成功,达到目标.
例3 求证:当n≥2时,(在这里,学生极易出现错误,错误的思维定势认为从n=k到n=k+1时,只增加一项,求和式中最后一项即为第几项的通项,教师在这里要着重分析,化解难点.)
问题的特点,巧妙合理地利用“放缩技巧”,使问题获得简捷的证明:
题的转化途径是:
师:设S(n)表示原式左边,f(n)表示原式右边,则由上面的证法可知,从n=k到n=k+1命
要注意:这里S'(k)不一定是一项,应根据题目情况确定.
第五篇:数学:1.3证明
证明练习
【知识盘点】
1.要判定一个命题是真命题,往往需要从命题的条件出发,根据已知的定义、公理、定理
一步一步推得结论成立.这样的推理过程叫做_______.
2.证明几何命题时,表述要按照一定的格式,一般为:(1)按题意________;(2)分清
命题的________,结合图形,在“已知”中写出______,在“求证”中写出______;(3)在“证明”中写出______.
3.命题“两边上的高相等的三角形是等腰三角形”的条件是________,结论是________.
4.已知∠A=(x-20)°,∠B=(80-3x)°,若∠A、∠B的两边分别平行且方向相同,则
x=________.
5.在△ABC中,∠A+∠B=110°,∠C=2∠A,则∠A=______,∠B=_______.
6.如图1所示,直线a,b被直线c所截,a∥b,∠1=110°,∠2=________.
(1)(2)(3)
7.如图2所示,AB∥CD,CE平分∠ACD并交AB于E,∠A=118°,则∠AEC=_______.
8.如图3所示,AB∥CD,那么∠1+∠2+∠3+∠4=_______.
【基础过关】
9.如图4所示,a∥b,∠1为()
A.90°B.80°C.70°D.60°
(4)(5)(6)
10.已知△ABC的三个内角度数比为2:3:4,则这个三角形是()
A.锐角三角形B.直角三角形
C.钝角三角形D.等腰三角形
11.如图5,AB∥CD,AC⊥BC,图中与∠CAB互余的角有()
A.1个B.2个C.3个D.0个
12.如图6,△DAC和△EBC均是等边三角形,AE,BD分别与CD,CE交于点M,N,•有如下结论:①△ACE≌△DCB;②CM=CN;③AC=DN.其中正确结论的个数是()
A.3个B.2个C.1个D.0个
【应用拓展】
13.如图所示,已知AC∥DE,∠1=∠2.求证:AB∥CD.
14.如图所示,CD⊥AB,垂足为D,点F是BC上任意一点,FE⊥AB,垂足为E,且∠
CDG=∠BFE,∠AGD=80°,求∠BCA的度数.
15.如图,已知:△ABC中,BD、CE分别是 △ABC的两条角平分线,相交于点O。
(1)当∠ABC=60O,∠ACB=80O时,求∠BOC的度数
(2)当∠A=40O时,求∠BOC的度数
(3)当∠A=100O,120O时,求∠BOC的度数
(4)当∠A= X时,求∠BOC的度数(用含X代数式表示)
【综合提高】
16.如图所示,AB∥DE.
(1)猜测∠A,∠ACD,∠D有什么关系,并证明你的结论.
(2)若点C向右移动到线段AD的右侧,此时∠A,∠ACD,∠D•之间的关系仍然满
足(1)中的结论吗?若仍满足,请证明;若不满足,请你写出正确的结论并证明(要求:
•画出相应的图形).