第一篇:三角函数与数列
陕西省高考数学解答题分类汇编(三角函数)
·b,其中向量a(m,cos2x),b(1sin2x,2007.设函数f(x)a1),xR,且yf(x)的图象经过点
π2.(Ⅰ)求实数m的值; ,4
(Ⅱ)求函数f(x)的最小值及此时x值的集合.
2008.已知函数f(x)2sinxxxcos2. 444
(Ⅰ)求函数f(x)的最小正周期及最值;(Ⅱ)令g(x)fx
π,判断函数g(x)的奇偶性,并说明理由. 3
2009.已知函数f(x)Asin(x),xR(其中A0,0,0
2)的图象与x轴的交点中,相2,2).,且图象上一个最低点为M(23
(Ⅰ)求f(x)的解析式;(Ⅱ)当x[,],求f(x)的值域.122邻两个交点之间的距离为
2010.A,B
是海面上位于东西方向相距53海里的两个观测点,现位于A点北偏东45°,B点北偏西60°的D点有一艘轮船发出求救信号,位于B点南偏西60°且
与B
点相距C点的救援船立即即前往营救,其航行速度30海里/小时,该救援船到达D点需要多长时间?
2011.叙述并证明余弦定理。f(x)Asin(x)162012.函数(A0,0)的最大值为3,其图像相邻两条对称轴之间的距离
(0,)f()22,则2为2,(1)求函数f(x)的解析式;(2)设,求的值。
2013.已知向量a=cosx,,b=
x,cos 2x),x∈R,设函数f(x)=a·b.
12
(1)求f(x)的最小正周期;
π(2)求f(x)在0,上的最大值和最小值. 2
陕西省高考数学解答题分类汇编(数列)
2007.已知各项全不为零的数列{an}的前k项和为Sk,且Sk1akak1(kN*),其中a11. 2
(I)求数列{an}的通项公式;(II)对任意给定的正整数n(n≥2),数列{bn}满足bk1knbkak1,2,n1)(k1,b11,求b1b22008.已知数列{an}的首项a1bn. 33an,2,.,an1,n152an1
(Ⅰ)求{an}的通项公式;(Ⅱ)证明:对任意的x0,an≥1122,; x,n1,1x(1x)23n(Ⅲ)证明:a1a2n2
an. n1
2009.已知数列xn}满足,x1=11xn+1=,nN*.2’1xn
12猜想数列{xn}的单调性,并证明你的结论;(Ⅱ)证明:|xn1-xn|≤6(5)n1。
2010.已知an是公差不为零的等差数列,a11且a1,a3,a9成等比数列
(1)求数列an的通项公式(Ⅱ)求数列的前n项和Sn
2011.如图,从点P1(0,0)作x轴的垂线交于曲线y=ex于点Q1(0,1),曲线在Q1点处的切线与x轴交与点
P2。再从P2作x轴的垂线交曲线于点Q2,依次重复上述过程得到一系列点:P1,QI;P2,Q2…Pn,Qn,记P(k=1,2,…,n)。k点的坐标为(xk,0)
(Ⅰ)试求xk与xk1的关系(2≤k≤n);
(Ⅱ)求PQ11PQ22PQ33...PQnn
2012.设an的公比不为1的等比数列,其前n项和为Sn,且a5,a3,a4成等差数列。
an的公比;
kN,Sk2,Sk,Sk1成等差数列。(1)求数列(2)证明:对任意
2013.设{an}是公比为q的等比数列.
(1)推导{an}的前n项和公式;
(2)设q≠1,证明数列{an+1}不是等比数列.
第二篇:高中数学三角函数及数列练习题
一、选择题(每题5分,共35分)1.若sin θcos θ>0,则θ在().
A.第一、二象限
C.第一、四象限
B.第一、三象限 D.第二、四象限
2、已知函数f(x)(1cos2x)sin2x,xR,则f(x)是()A、奇函数 B、非奇非偶函数 C、偶函数 D、不能确定
3.设Sn是等差数列an的前n项和,已知a23,a611,则S7等于()A.13
B.35
C.49
D. 63
4.函数f(x)(13tanx)cosx的最小正周期为()A.2 B.
3 C. D. 225.已知an为等差数列,且a7-2a4=-1, a3=0,则公差d=()A.-2 B.-C.D.2 226.函数f(x)cos2x2sinx的最小值和最大值分别为()A.-3,1
B.-2,2
C.-3,32 D.-2,7.把函数y=sin x(x∈R)的图象上所有点向左平行移动象上所有点的横坐标缩短到原来的 A.y=sin2x - ,x∈R
C.y=sin2x + ,x∈R π3π3π个单位,再把所得图332
1倍(纵坐标不变),得到函数图象是(). 2
262πD.y=sin2x + ,x∈R
3xπB.y=sin + ,x∈R
二、填空题(每题5分,共10分)
8.在等差数列{an}中,a37,a5a26,则a6____________ 9.已知函数f(x)sin(x)(0)的图象如图所示, 则 =
三、计算题(共55分)10.求函数f(x)=lgsin x+
11.已知函数f(x)sinxsin(x),xR.(10分)
2(5分)2cosx1的定义域.(I)求f(x)的最小正周期;(II)求f(x)的的最大值和最小值;
12.求函数y=sin2x - 的图象的对称中心和对称轴方程.(5分)
13.已知等差数列{an}中,a2=8,前10项和S10=185.,求通项;(10分)
14.在等差数列{an}中,a1=-60,a17=-12.(10分)
(1)求通项an;(2)求此数列前30项的绝对值的和.15.设数列an满足a12,an1an322n1(15分)
(1)求数列an的通项公式;(2)令bnnan,求数列的前n项和Sn
π6
第三篇:第二单元 数列、三角函数、平面向量教学设计2
沧源民族中学高三年级数学复习教学设计第六周2011年3月19日星期六
第二单元数列、三角函数、平面向量
第一讲三角函数(6课时)
主备教师肖平聪
一、教学内容及其解析
1、三角函数式的化简与求值:两角和的正弦、余弦、正切;二倍角的正弦、余弦、正切;诱导公式的运用。
2、三角函数的图象与性质:正弦函数、余弦函数、正切函数图象及其性质。
3、三角形中的三角函数问题:正弦定理、余弦定理以及三角形面积公式的运用。
二、目标及其解析
1、能灵活运用三角函数的有关公式,对三角函数进行变形与化简。
2、理解和掌握三角函数的图像及性质。
3、能用正弦定理、余弦定理解三角形问题。
三、问题诊断分析:
高考中,三角函数主要考查学生的运算能力、灵活运用能力,在客观题中,突出考察基本公式所涉及的运算、三角函数的图像基本性质,尤其是对角的范围及角之间的特殊联系较为注重。解答题中以中等难度题为主,涉及解三角形、向量及简单运算。三角函数部分,公式较多,易混淆,在运用过程中,要观察三角函数中函数名称的差异、角的差异、关系式的差异,确定三角函数变形化简方向。
四 教学过程设计
1、三角函数式的化简与求值
问题1两角和的正弦、余弦、正切的公式?
问题2二倍角的正弦、余弦、正切的公式呢?
问题3三角函数的诱导公式呢?
例题(见高考调研二轮重点讲练p30)
变式训练(见高考调研二轮重点讲练p30)
2、三角函数的图象与性质
问题1三角函数的正弦函数、余弦函数、正切函数图象怎么画?
问题2三角函数的正弦函数、余弦函数、正切函数的性质有哪些?
例题(见高考调研二轮重点讲练p31-33)
变式训练(见高考调研二轮重点讲练p31-33)
3、三角形中的三角函数问题
问题1正弦定理、余弦定理是什么?
问题2三角形面积公式怎么用?
例题(见高考调研二轮重点讲练p33)
变式训练(见高考调研二轮重点讲练p33)
五、目标检测:(见二轮复习用书p34)
六、配餐作业:(见二轮复习用书p34-36)热点集训作业和2011届先知专题卷专题.
第四篇:高考二轮复习数学考点突破之数列+三角函数与平面向量
高考二轮复习数学考点突破之数列+三角函数与平面向量
高考二轮数学复习:三角函数与平面向量
1.三角函数作为一种重要的基本初等函数,是中学数学的重要内容,也是高考命题的热点之一.近几年对三角函数的要求基本未作调整,主要考查三角函数的定义、图象与性质以及同角三角函数的基本关系式、诱导公式、和角与倍角公式等.高考对三角函数与三角恒等变换内容的考查,一是设置一道或两道客观题,考查三角函数求值、三角函数图象与性质或三角恒等变换等内容;二是设置一道解答题,考查三角函数的性质、三角函数的恒等变换或三角函数的实际应用,一般出现在前两个解答题的位置.无论是客观题还是解答题,从难度来说均属于中低档题目,所占分值在20分左右,约占总分值的13.3%.2.平面向量是连接代数与几何的桥梁,是高考的重要内容之一.高考常设置1个客观题或1个解答题,对平面向量知识进行全面的考查,其分值约为10分,约占总分的7%.近年高考中平面向量与解三角形的试题是难易适中的基础题或中档题,一是直接考查向量的概念、性质及其几何意义;二是考查向量、正弦定理与余弦定理在代数、三角函数、几何等问题中的应用.1.2011年高考试题预测
(1)分析近几年高考对三角函数与三角恒等变换部分的命题特点及发展趋势,以下仍是今后高考的主要内容:
①三角函数的图象与性质是高考考查的中心内容,通过图象求解析式、通过解析式研究函数性质是常见题型.②解三角函数题目的过程一般是通过三角恒等变换化简三角函数式,再研究其图象与性质,所以熟练掌握三角恒等变换的方法和技巧尤为重要,比如升幂(降幂)公式、asin
x+bcos
x的常考内容.③通过实际背景考查同学们的数学建模能力和数学应用意识.高考二轮复习数学考点突破之数列
1.本专题是高中数学的重要内容之一,在高考试题中一般有2~3个题
(1~2个选择、填空题,1个解答题),共计20分左右,约占总分的13%.选择题、填空题的难度一般是中等,解答题时常会出现与函数、三角、不等式等知识交汇的问题,故多为中等偏上乃至较难的问题.2.数列是高中数学的重要内容,又是学习高等数学的基础.高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏,有关数列的试题一般是综合题,经常把数列与不等式的知识综合起来考查,也常把数列与数学归纳法综合在一起考查.探索性问题是高考的热点,常有数列解答题中出现.3.近两年来,高考关于数列方面的命题主要有以下三个方面:(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式.(2)数列与其他知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合.(3)数列的应用问题,其中主要是以增长率问题为主.试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,有一些地方用数列与几何的综合,或与函数、不等式的综合作为最后一题,难度较大.热点,常有数列解答题中出现.
第五篇:数列、推理与证明
龙源期刊网 http://.cn
数列、推理与证明
作者:汤小梅
来源:《数学金刊·高考版》2014年第03期
为了让您理清数列、推理与证明的复习要点,理顺数列中的一对姐妹花(等差数列与等比数列),成功穿越数列的应用,理透推理与证明的横向联系和纵向延伸,整合知识,提炼破解技巧,现走进经典例题,通过跟踪练习,让您复习数列、推理与证明so easy,轻松突破数列、推理与证明的思维瓶颈.