第一篇:七年级数学下册第一章整式的乘除计算题训练
第一章整式的乘除计算题训练
1.计算
(1)()2()2(2)0()3(2)15am1xn2y4(3amxn1y)
(3)(6x2n1yn4x2ny2n8xny2n1)2xyn(4)a(a2)2
(5)(3x2y3)2(2x3y2)3(2x5y5)2(6)2 344353133x(xy)12(yx)
(7)4(xy)29(xy)2(8)4x3 ÷(-2x)2-(2x2-x)÷(1x)2
(9)[(x-y)2-(x + y)2]÷(-4xy)(10)(a+3)2-2(a +3)(a-3)+(a-3)2
2.先化简,再求值:2(x4)2(x5)2(x3)(x3),其中x=-2;
23.解方程:。(x3)(x2)(x1)1
3224.已知mm10,求m2m2005的值;
5.化简求值:(2a +b)-(a+1-b)(a+1 + b)+a1,其中a =221,b =-2。2
第二篇:新北师大版七年级数学下册《整式的乘除》测试卷
《整式的乘除》测试卷
一、选择题:
1、下列运算正确的()
A、a4
a5
a9
B、a3
a3
a3
3a3
C、2a4
3a5
6a9
C、a3
a7
5
1997
19972、
313
25
()
A、1B、1C、0D、1997
3、设ab2
ab2
A,则A=()
A、2abB、4abC、abD、-4ab
4、用科学记数方法表示0.0000907,得()
A、9.07104B、9.07105
C、90.7106
D、90.71075、已知xy5,xy3,则x2y2
()
A、25B、25C、19D、19
6、已知xa
3,xb
5,则xab
()
A、593
B、10C、3
5D、157、下列各式中,能用平方差公式计算的是()
A、(ab)(ab)B、(ab)(ab)C、(abc)(abc)D、(ab)(ab)
8、计算(-a)3·(a2)3·(-a)2的结果正确的是()A、a11B、a11C、-a10D、a139、若(x+m)(x-8)中不含x的一次项,则m的值为()A、8B、-8C、0D、8或-8
10、下列计算正确的是().A、a3+a2=a5B、a3·a2=a6C、(a3)2=a6
D、2a3·3a2=6a6
二、填空题:(每小题3分,共30分)
11、a
54
a2
3_______。
12、计算:2ab213、
an
2=_______。
14、设4x2
mx121是一个完全平方式,则m=_______。
15、已知x1x5,那么x2
1x2=_______。
16、计算0.252007
42008_______。
17、已知(3x-2)0
有意义,则x应满足的条件是______.18、若x+y=8,xy=4,则x2+y2
=_________. 19、48×52=。
20、(7x2y3z+8x3y2)÷4x2y2
=______。
三、计算:
21、(a+b+c)(a+b-c); 222、12006
12
3.14023、1232
122124(运用乘法公式简便计算)
24、6m2n6m2n23m23m2
25、先化简,再求值:2(x+1)(x-1)-x(2x-1),其中x =-
226.已知5a=5,5b=5-1,试求27a÷33b值
27、利用我们学过的知识,可以导出下面这个形式优美的等式:
a2b2c2abbcac
ab2bc2ca2,该等式从左到右的变形,不仅保持了结构的对称性,•还体现了数学的和谐、简洁美.
(1)请你展开右边检验这个等式的正确性.
(2)若a=2005,b =2006,c=2007,你能很快求出
a2b2c2
abbcac的值吗?
28、观察下列算式,你发现了什么规律?
12=
12326;12+22=356;12+22+32 =347
; 12+22 +32 + 42 =459
;…
1)你能用一个算式表示这个规律吗?
2)根据你发现的规律,计算下面算式的值; 12+22 +32 + … +82
第三篇:《整式乘除100题》
整式乘除计算 100 题 使用说明:本专题的制作目的是提高学生在整式乘除这一部分的计算能力。
大致分了三个模块:①单项式与单项式(34
题);②单项式与多项式(33
题);③多项式与多项式(33
题); 共
题。
建议先仔细研究方法总结、易错总结和例题解析,再进行巩固练习。
模块一
单项式与单项式
方法总结:
单项式乘单项式:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式中含有的字
母,则连同它的指数作为积的一个因式.单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连
同它的指数一起作为商的一个因式.
易错总结:
相同字母相乘,注意是字母不变,指数相加;
注意单项式相乘,他们的系数也是分别相乘,不是相加; 系数里的负号要注意不要忘掉
单独出现的字母最后要作为积的一个因式,不要遗漏
例题解析:
— ꅘ y 2 · 2ꅘ2 y 2 . 解:
— ꅘ y 2 · 2ꅘ2 y 2 =
— ꅘ y 2
· 4ꅘ4 y 2
=— 4ꅘ5 y 4 . ……【系数、相同字母分别相乘】
巩固练习:
1.计算:
— 8a⺁
·
a 2 ⺁ . 4
22ꅘ 3 · — 져ꅘ y 3 . 4.计算:a 4 ·
— a 3÷ — a 2. 5.计算:— — ꅘ2 3 · — ꅘ 2 2 — ꅘ · — ꅘ 3 3 . 6.计算:
— ꅘ6
— — 3ꅘ 3 2 — [ — 2ꅘ 2 ] 3 . 7.计算:
— a 2 ·
— a 3
·
— a
+
— a 2—
— a 3. 8.计算:a —2 ⺁ 2 · a 2 ⺁ —2 —3 . 9.计算:
— 2ꅘ 2 ·(ꅘ2)3 · — ꅘ 2 . 10.计算:— 21ꅘ2 y 4 ÷ — 3ꅘ 2 y 3 . 11.计算:
2a 3 ⺁ 3
— 8a⺁ 2
÷ — 4a 4 ⺁ 3
. 12— a 2 · a 4 ÷ a 3 . 13.计算:12a⺁ 2
a⺁c 4 ÷ — 3a 2 ⺁ 3 c ÷ 2 a⺁c 3 . 17— a 3·
— a 2
18.计算:(2a)3 — a · a 2 + 3a 6 ÷ a 3 . 19.(a 5)2
·(a 2)2
—(a 2)4
·(a 3)2 . 20.ꅘ + 2ꅘ + 3ꅘ + ꅘ · ꅘ2 · ꅘ 3 + ꅘ 3 2 . 21.计算:ꅘm · ꅘ n 3 ÷ ꅘ m—1 · 2ꅘ n—1 . 22.计算:
— 2ꅘ2 y · 5ꅘ y 3 ·
— 3
ꅘ 3 y 2
. 5
23.ꅘ5 · ꅘ 져 + ꅘ 6 ·(— ꅘ 3)2 + 2(ꅘ 3)4 . 24.计算:
— 1
a⺁ 2
·
— 2a 3 ⺁c . 4
25.计算:— 2ꅘ — 3ꅘ2 y 2 3 · 1
y 2 + t ꅘ 져 y 8 . 32 3 4 14.计算:a 3 · a 5 · a 2 +
a 5
—
a 2· a 2 . 15.化简:(4ꅘ2 y)2 ÷ 8y 2 . / 服务内核部-初数教研
10.计算:6ꅘ y ·
ꅘ y — 1
y
+ 3ꅘ y2 . 2
11.计算:
8a 2 ⺁ — 4a⺁ 2
÷ — 1
a⺁ 2
服务内核部-初数教研
/ 28.— 2ꅘ2 y 2 3 · 3ꅘ y 4 . 29.计算:— 1
a 3 · — 6a⺁ 2 . 3
30.计算:2ꅘ3 y — 2ꅘ y + — 2ꅘ 2 y 2 . 312a 2 ⺁ ·
— 3⺁ 2 c ÷ 4a⺁ 3
. 32.计算:
— 3ꅘ2 y 3
·
— 2 ꅘ y 2
33.计算:
— 3a 2·a 2 ÷ — 1 a 2
2. 3 2 34.计算:(— 2ꅘm y n)2 ·(— ꅘ 2 y n)3 ·(— 3ꅘ y 2). 模块二
单项式与多项式
方法总结:
单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加.
多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.
易错总结:
巩固练习:
1.化简:
— 져ꅘ2 y 2ꅘ 2 y — 3ꅘ y 3 + ꅘ y . 22ꅘ y 5ꅘ y 2 + 3ꅘ y — 1 . 3.计算:
— a 2 ⺁c + 2a⺁ 2 — 3 ac
·
— 2 ac 2 . 5 3 4.计算:— 2
ꅘ2 y — 3
ꅘ y + 3ꅘ 2 y 3 — 6ꅘ 3 . 3 2 5.计算:ꅘn+1 · ꅘ 2n — ꅘ n+1 + ꅘ 2 . 6.计算:2 2 3a 2 2— 1 . 7.计算:a⺁ 2 · 2a 2 ⺁ — 3a⺁ 2 . 2
82a 2
3a⺁ 2 — 5a⺁ 3
. 9.计算:
— 4 a⺁ 2 ·
— t
a 2 ⺁ — 12a⺁ + 3
⺁ 2
. 3 2 4 12.化简3a 5 ⺁ 3 — a 4 ⺁ 2
÷ — a 2 ⺁ 2
13.计算:
2져ꅘ3 — 18ꅘ 2 + 3ꅘ ÷ — 3ꅘ . 14.计算:
45a 3 — 1
a 2 ⺁ + 3a
÷ — 1
a . 6 3 15.计算:
6m 2 n — 6m 2 n 2 — 3m 2
÷ — 3m 2
. 16.计算:
— ꅘ2 3 — 3ꅘ 2 ꅘ 4 + 2ꅘ — 2 . 17.计算:
— 1
ꅘ y 2 3 — 2ꅘ y ꅘ y — ꅘ2 y 5 . 3
18.计算:a⺁ 2 — 2a⺁ + 4
⺁
· 1
a⺁ —
a⺁ 2 . 3 3 2 2 19.计算:
— 2
a ⺁(6a ⺁
— 3
a + 3 ⺁).2 20.计算:2a a — 2a 3
—
— 3a 2. 21.化简 1
单项式乘多项式中的每一项时,注意不要漏掉前面的符号
注意多项式中的每一项都要和单项式相乘,不要漏项
例题解析:
计算:
— 2ꅘ y 2 2 ·
y 2 — 1
ꅘ2 — 3
ꅘ y . 4 2 2 解:原式= 4ꅘ2 y 4 · 1
y 2 — 1
ꅘ 2 — 3
ꅘ y 4 2 2 = ꅘ2 y 6 — 2 ꅘ 4 y 4 — 6 ꅘ 3 y 5 .
……【用单项式去乘多项式的每一项】
/ 服务内核部-初数教研
3ꅘ2 — y — 2
2ꅘ2 + y . 24.计算:(— 2ꅘ y 2)2 · 1
y 2 — 1
ꅘ2 — 3
ꅘ y . 4 2 2 25.计算:(3ꅘ y)2(ꅘ2 — y 2)—(4ꅘ 2 y 2)2 ÷ 8y 2 + t ꅘ 2 y 4 . 26.计算:
4a ⺁(2a 2 ⺁ 2 — a ⺁
+ 3)
27.计算:2ꅘ — ꅘ2 + 3ꅘ — 4 — 3ꅘ 2ꅘ + 1 . 2
28.计算:ꅘ ꅘ2 — ꅘ — 1 + 3 ꅘ 2 + ꅘ — 1
ꅘ 3ꅘ 2 + 6ꅘ . 3
29.化简:ꅘ 1
ꅘ + 1
— 3ꅘ 3
ꅘ — 2 . 2 2 30.求值:ꅘ2 3ꅘ — 5 — 3ꅘ ꅘ 2 + ꅘ — 3,其中 ꅘ = 1 . 2
31.先化简,再求值:
ꅘ
ꅘ2 — ꅘ — 1
+ 2 ꅘ2 + 2 — 1
ꅘ 3ꅘ 2 + 6ꅘ — 1,其中 ꅘ =— 3. 3
33.先化简,再求值:ꅘ — 2 1 — 3
ꅘ — 2
ꅘ 2 — ꅘ
,其中 ꅘ = 4. 2 3 2 模块三
多项式乘多项式
方法总结:
多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.
易错总结:
在不引起歧义的情况下,单项式和其它单项式或多项式作运算时本身可以不加括号;
计算时注意符号变化,不要丢掉单独的字母或数字;
多项式与多项式相乘后如果出现同类项必须合并.
合并同类项时,可以在同类项下边标上相同的符号,避免引起错误.例题解析:
计算:
ꅘ — a
ꅘ2 + aꅘ + a 2
解:
ꅘ — a
ꅘ2 + aꅘ + a 2
= ꅘ3 + aꅘ 2 + a 2 ꅘ — aꅘ 2 — a 2 ꅘ — a 3 ……【用一个多项式的每一项乘另一个多项式的每一项】
= ꅘ3 — a 3 . 巩固练习:
12ꅘ + 5y
3ꅘ — 2y . 2a — 2⺁(a + ⺁). 33
2ꅘ — 1 . 6ꅘ + y
ꅘ — 2y . 72ꅘ + 3y
3ꅘ — 2y . 8— 1
ꅘ + — 3ꅘ ꅘ + 3 . 9.计算:
ꅘ 1
ꅘ — 2 . 10a + 3
2a + 5
. 11m + 2
2m — 3 . 12ꅘ — 3
2ꅘ + 5 . 13.计算:
4ꅘ2 y — 5ꅘ y 2
· 져ꅘ 2 y — 4ꅘ y 2 . 14.计算:
ꅘm — 2y n
3ꅘ m + y n
. 15.计算:
ꅘ — 1
ꅘ2 + ꅘ + 1 . 18.计算:
ꅘ — a
ꅘ2 + aꅘ + a 2
.19.计算:
ꅘ + y
ꅘ2 — ꅘ y + y 2
. 203
ꅘ + 1
ꅘ — 3 . 21ꅘ + y — 2
ꅘ — y . 22.计算:
2a — ⺁ + c
2a — ⺁ — c . 23.— ꅘ3 + 2ꅘ 2 — 5
2ꅘ 2 — 3ꅘ + 1 . 24.计算:
ꅘ + 5
2ꅘ — 3 — 2ꅘ ꅘ2 — 2ꅘ + 3 . 25.计算:
ꅘ2 — 2ꅘ + 3
ꅘ — 1
ꅘ + 1 . 26ꅘ 4ꅘ — 3 — 2 ꅘ — 3
ꅘ + 1 . 272ꅘ — 3
ꅘ + 4
—
ꅘ — 1
ꅘ + 1 . 30— 1
ꅘ + 2
ꅘ ꅘ + 3 . 31ꅘ + 3
ꅘ — 5
— 3 ꅘ — 1
ꅘ + 6 . 325ꅘ + 3y
3y — 5ꅘ
—
4ꅘ — y
4y + ꅘ . 33.计算:a⺁ a + ⺁
—
a — ⺁
a 2 + ⺁ 2
. 4.计算:
2ꅘ + 3y
ꅘ — 2y . 5.计算:(ꅘ2 y 3 — ꅘ 3 y 2)·(ꅘ 2 — y 2). / 服务内核部-初数教研2 3 4 16.计算:(2m + n 2)(4m 2 — 2mn 2 + n 4). 17.化简:
3ꅘ2 + 2ꅘ + 1
3ꅘ — 1 . 服务内核部-初数教研
/ 服务内核部-初数教研
/
第四篇:初中数学复习整式的乘除
专题01
整式的乘除
阅读与思考
指数运算律是整式乘除的基础,有以下5个公式:,,,.
学习指数运算律应注意:
1.运算律成立的条件;
2.运算律中字母的意义:既可以表示一个数,也可以表示一个单项式或者多项式;
3.运算律的正向运用、逆向运用、综合运用.
多项式除以多项式是整式除法的延拓与发展,方法与多位数除以多位数的演算方法相似,基本步骤是:
1.将被除式和除式按照某字母的降幂排列,如有缺项,要留空位;
2.确定商式,竖式演算式,同类项上下对齐;
3.演算到余式为零或余式的次数小于除式的次数为止.
例题与求解
【例1】(1)若为不等式的解,则的最小正整数的值为
.
(“华罗庚杯”香港中学竞赛试题)
(2)已知,那么
.
(“华杯赛”试题)
(3)把展开后得,则
.
(“祖冲之杯”邀请赛试题)
(4)若则
.
(创新杯训练试题)
解题思路:对于(1),从幂的乘方逆用入手;对于(2),目前无法求值,可考虑高次多项式用低次多项式表示;对于(3),它是一个恒等式,即在允许取值范围内取任何一个值代入计算,故可考虑赋值法;对于(4),可考虑比较系数法.
【例2】已知,则等于()
A.2
B.1
C.
D.
(“希望杯”邀请赛试题)
解题思路:为指数,我们无法求出的值,而,所以只需求出的值或它们的关系,于是自然想到指数运算律.
【例3】设都是正整数,并且,求的值.(江苏省竞赛试题)
解题思路:设,这样可用的式子表示,可用的式子表示,通过减少字母个数降低问题的难度.
【例4】已知多项式,求的值.
解题思路:等号左右两边的式子是恒等的,它们的对应系数对应相等,从而可考虑用比较系数法.
【例5】是否存在常数使得能被整除?如果存在,求出的值,否则请说明理由.
解题思路:由条件可推知商式是一个二次三项式(含待定系数),根据“被除式=除式×商式”,运用待定系数法求出的值,所谓是否存在,其实就是关于待定系数的方程组是否有解.
【例6】已知多项式能被整除,求的值.
(北京市竞赛试题)
解题思路:本题主要考查了待定系数法在因式分解中的应用.本题关键是能够通过分析得出当和时,原多项式的值均为0,从而求出的值.当然本题也有其他解法.
能力训练
A级
1.(1)
.
(福州市中考试题)
(2)若,则
.
(广东省竞赛试题)
2.若,则
.
3.满足的的最小正整数为
.
(武汉市选拔赛试题)
4.都是正数,且,则中,最大的一个是
.
(“英才杯”竞赛试题)
5.探索规律:,个位数是3;,个位数是9;,个位数是7;,个位数是1;,个位数是3;,个位数是9;…那么的个位数字是,的个位数字是
.
(长沙市中考试题)
6.已知,则的大小关系是()
A.
B.
C.
D.
7.已知,那么从小到大的顺序是()
A.
B.
C.
D.
(北京市“迎春杯”竞赛试题)
8.若,其中为整数,则与的数量关系为()
A.
B.
C.
D.
(江苏省竞赛试题)
9.已知则的关系是()
A.
B.
C.
D.
(河北省竞赛试题)
10.化简得()
A.
B.
C.
D.
11.已知,试求的值.
12.已知.试确定的值.
13.已知除以,其余数较被除所得的余数少2,求的值.
(香港中学竞赛试题)
B级
1.已知则=
.
2.(1)计算:=
.
(第16届“希望杯”邀请竞赛试题)
(2)如果,那么
.
(青少年数学周“宗沪杯”竞赛试题)
3.(1)与的大小关系是
(填“>”“<”“=”).
(2)与的大小关系是:
(填“>”“<”“=”).
4.如果则=
.
(“希望杯”邀请赛试题)
5.已知,则
.
(“五羊杯”竞赛试题)
6.已知均为不等于1的正数,且则的值为()
A.3
B.2
C.1
D.
(“CASIO杯”武汉市竞赛试题)
7.若,则的值是()
A.1
B.0
C.—1
D.2
8.如果有两个因式和,则()
A.7
B.8
C.15
D.21
(奥赛培训试题)
9.已知均为正数,又,则与的大小关系是()
A.
B.
C.
D.关系不确定
10.满足的整数有()个
A.1
B.2
C.3
D.4
11.设满足求的值.
12.若为整数,且,求的值.
(美国犹他州竞赛试题)
13.已知为有理数,且多项式能够被整除.
(1)求的值;
(2)求的值;
(3)若为整数,且.试比较的大小.
(四川省竞赛试题)
第五篇:2017浙教版初中数学七年级下册全册教案-第五章整式的乘除.doc(范文)
第五章 整式的乘除复习
教学内容
复习整式乘除的基本运算规律和法则、方法。通过练习,熟悉常规题型的运算,并能灵活运用。
教学目标
通过知识的梳理和题型训练,提高学生观察、分析、推导能力,培养学生运用数学知识解决问题的意识。
教学分析
重点 根据新课标要求,整式的乘除运算法则与方法是本课重点。难点
整式的除法是本课难点。
教学方法与手段 采用多媒体课件,由于本课内容较多,故设计了大量的练习,使学生理解各种类型的运算方法。本课教学以练习为主。
教学过程
一.回顾知识点
(一)整式的乘法
1、同底数的幂相乘
2、幂的乘方
3、积的乘方
4、同底数的幂相除
5、单项式乘以单项式
6、单项式乘以多项式
7、多项式乘以多项式
8、平方差公式
9、完全平方公式
(二)整式的除法
1、单项式除以单项式
2、多项式除以单项式
二.练习巩固
(一)单项式乘单项式
[(1)(5x)(2xy),(2)(3ab)(4b)m232n(3)(a)b(ab),2233512(4)(abc)(c)(abc)3433223
(二)单项式与多项式的乘法
(1)(2a)(x2y3c),(2)(x2)(y3)(x1)(y2)(3)(xy)(2x
(三)乘法公式应用
(四)整式的除法
(1)(1a6b4c)((2a3c)1y)241(2)6(ab)5[(ab)2]3
(3)(5x2y34x3y26x)(6x)
13m2n32m132m122m12(4)xyxyxy)(0.5xy)34
小结:本课复习的主要运算类型。布置作业
设计意图:根据内容特点,运算规律与方法是学生应掌握的重点,所以本课复习以练习为主,通过大量题型训练,使学生理解掌握各类运算技巧,并力求熟练。