等差数列与等比数列中的基本量法检测卷

时间:2019-05-14 18:37:15下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《等差数列与等比数列中的基本量法检测卷》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《等差数列与等比数列中的基本量法检测卷》。

第一篇:等差数列与等比数列中的基本量法检测卷

等差数列与等比数列中的基本量法检测卷

1.等差数列{an}中,a6+a8 =-20, a10 =-30,则a4 =______.2.等差数列{an}中, a1=3,d=-0.5, Sn=7.5,则n=_____.3.等比数列{an}中, a2=-2, a4=-8,则a9 =____.4.等比数列{an}中, a1+a2 =30, a3+a4 =120, a5+a6 =_____.5.等比数列{an}中, a1=1, an=-512,Sn=-341,则公比q=___,项数n=____.6.等比数列{an}中, a3=2S2+1, a4=2S3+1, 则公比q=___.7.已知a5=11,a8=5,求等差数列{an}的通项

8.已知等比数列{an}的公比q=2,前4项和S4=1,前8项和S8=()

A.15B.19C.17D.21

9.已知等比数列{an},比较(a3)2+(a7)2与(a4)2+(a6)2的大小

10.等差数列{an}中,a3=12S12>0 , S13<0求公差d范围

(等差数列前n项和的最值)

1.等差数列{an}中, an=2n-24,此数列前___项和最小.2.等差数列{an}中, an=49-2n,此数列前___项和最大.

第二篇:等差数列与等比数列的性质

第24课 等差数列与等比数列的性质

●考试目标主词填空

1.等差数列的性质.

①等差数列递增的充要条件是其公差大于0,②在有穷等差数列中,与首末两端距离相等的和相等.即a1+an=a2+an-1=a3+an-2=„=ak+an+1-k,③在等差数列{an}中,使am+a0=ap+aq成立的充要条件是是等差数列,⑤若数列{an}与{bn}均为等差数列,且m,k为常数,则{man+kbn}Sn=an2+bn+c能表示等差数列前n项和的充要条件是2.等比数列的性质.①在等比数列{an}中,公比为q,其单调性的考察应视a1及q的取值范围而定.②在有穷的等比数列{an}即:a1an=a2·an-1=a3·an-2=„=ak·an+1-k.

③在等比数列{an}中,使am·a0=ap·ak成立的充要条件是m+n=p+k. ④在等比数列中,每隔相同的项抽出来,依原来的顺序构成一个新数列,则此新数列仍是等比数列.man⑤若数列{an}与{bn}均为等比数列,m是不等于零的常数,则{m·an·bn}与仍为等比数列.bn

●题型示例点津归纳

【例1】证明下列论断:

(1)从等差数列中每隔相同的项抽取一些项依原顺序构成的新数列仍然是等差数列.(2)从等比数列中每隔相同的项抽取一些项依原顺序构成的新数列仍然是等比数列.

【解前点津】等差数列的公差以及等比数列的公比都是已知常数,且每隔k项抽取一个数中的k边应视为已知正整数,按定义证明即可.【规范解答】(1)设{xn}是公差为d的等差数列,抽取的第一个数为xm,隔k项抽取的第二个数为xm+k,再隔k项抽取的第三个数为xm+2k,依次类推,则新数列的第p项(p≥1)必为xm+(p-1)k ·第p+1项为xm+pk.由通项公式:

∵xm+pk-xm+(p-1)k=x1+(m+pk-1)d-[x1+(m+pk-k-1)d]=(k-1)d是一个p无关的常数,故新数列是一个公差为kd的等差数列.(2)设{yn}是一个公比为q的等比数列,抽取的第一个数为ym,隔k项抽取的第二个数为ym+k,再隔k项抽取的第三个数为ym+2k,依次类推,则新数列的第p项(p≥1)必为ym+(p-1)k,第p+1项为ym+pk.由等比数列通项公式: ∵ympk

ym(p1)ky1qmpk1k==q是一个与p无关的常数.mpkk1y1q

故新数列是一个公比为qk的一个等比数列.【解后归纳】证明{xn}是一个等差数列,只须证明xn-xn-1=常数即可,类似地,证明{yn}是一个等比数列,只证明yn=常数即可. yn

1【例2】设x,y,z∈R,3x,4y,5z成等比数列,且

111xz,成等差数列,求的值.xzxyz

【解前点津】依条件列方程组,从方程组中推导

xz

之值. zx

(4y)2(3x)(5z)

2xz

y=【规范解答】由题意得:211代入第一个方程消去y得:

xzyxz

2xz2xz34(xz)26416()=15xz=,故=.xz15zx15xz

【解后归纳】因(xz

)中不含y,故在方程组中,y成为消去的对象.zx

【例3】已知数列{an}满足3an+1+an=4(n≥1),且a1=9,其前n项之和为Sn,求满足不等式|Sn-n-6|<的最小正整数n. 12

5【解前点津】构造“新数列”,求出通项公式,注意到3(an+1-1)=-(an-1).【规范解答】由条件得:3(an+1-1)=-(an-1).视为3xn+1=-xn,∵a1-1=8,故新数列{an-1}是首项为8,公比为-的一个等比数列.故:

31n81

31n-11n-1=6-6×(-1)n,an-1=8(-),即an=1+8(-)Sn-n=

3331

13

11n-1

∴|Sn-n-6|=6×()n <3>250>35n-1>5.3125

∴n>6从而n≥7.故n=7是所求的最小正整数.

【解后归纳】将一个简单的递推公式进行变形,从而转化为一个等差数列,或一个等比数列的模型.这是一种“化归”的数学思想.【例4】设{an}为等差数列,{bn}为等比数列,且b1=a1,b2=a2,b3=a3(a1

n

2+bn)=2+1,试求{an}的首项与公差.【解前点津】设

b2b

=q,则1=2+1.1qb1

【规范解答】设{an}的公差为d,{bn}的公比为q,则由条件知,b2=b1b3(a2)2=(a1)·(a3)

a2

=(1+2)(2+1)

a1

(a1+d)

4=a22,a12a22=a1

·(a1+2d)(a1+d)=|a1(a1+2d)|又b1=(1+q)(22

2+1),故

2a1

42即a1=[a1+(a1+d)2](2+1),解关于a1及d的方程组得:a1=-2,d=22-2.

【解后归纳】将所列方程组转化为关于基本量a1,d的方程,是常规思路.此题是否有另外思路?读者可自己寻找.●对应训练分阶提升

一、基础夯实

1.在等比数列{an}中,a9+a10=a(a≠0),a19+a20=b,则a99+a100等于()

bbb9b10

A.8B.()C.9D.()10

aaaa

2.已知等差数列{an}中,|a3|=|a9|,公差d<0,则使前n项和Sn取得最大值的自然数n是()

A.4和5B.5或6C.6或7D.不存在3.若{an}为一个递减等比数列,公比为q,则该数列的首项a1和公比q一定为()A.q<0,a1≠0B.a1>0,01 C.q>1,a1<0D.00

4.由公差为d的等差数列a1,a2,a3,„,重新组成的数列a1+a4,a2+a5,a3+a6,„是()A.公差为d的等差数列B.公差为2d的等差数列 C.公差为3d的等差数列D.非等差

5.设2a=3,2b=6,2c=12,则a、b、c()A.是等差数列,但不是等比数列B.是等比数列,但不是等差数列 C.既不是等差数列,又不是等比数列D.既是等差数列,又是等比数列

6.若{an}是等比数列,a4a7=-512,a3+a8=124,且公比q为整数,则a10的值是()A.256B.-256C.512D.-51

27.设{an}是由正数组成的等比数列,且a5·a6=81,那么log3a1+log3a2+log3a3+„+log3a10的值是()A.5B.10C.20D.30

8.在3和9之间插入两个正数,使前三个数成等比数列,后三个数成等差数列,则这两个数的和是()A.1

11111B.12C.13D.14 444

49.在等比数列{an}中,已知对任意自然数n,a1+a2+„+an=2n-1,则a1+a2+„+a2n=()A.(2n-1)2B.1n2n1

(2-1)C.4-1D.(4n-1)3

310.上一个n级的台阶,若每次可上一级或两级,设上法的总数为f(n),则下列猜想中正确的是()

A.f(n)=nB.f(n)=f(n-1)+f(n-2)

n(n1,2)

C.f(n)=f(n-1)·f(n-2)D.f(n)=

f(n1)f(n2)(n3)

二、思维激活

11.在等差数列{an}中,若Sm=n,Sn=m(Sn为前n项和)且m≠n,则Sm+n

三、能力提高

12.在等差数列{an}中,a1,a4,a25三个数依次成等比数列,且a1+a4+a25=114,求这三个数.13.已知{an}为等差数列,(公差d≠0),{an}中的部分项组成的数列ak1,ak2,ak13,„,ak,„,n

恰好为等比数列,其中k1=1,k2=5,k3=17,求k1+k2+k3+„+kn.14.设f(x)=a1x+a2x2+„+anxn(n为正偶数),{an}是等差数列,若f(1)=(1)求an;(2)求证:f(1nn(n+1),f(-1)=. 22)<2. 2

15.数列{an}的前n项和Sn=100n-n2(n∈N).(1){an}是什么数列?

(2)设bn=|an|,求数列|bn|的前n项和.第3课等差数列与等比数列的性质习题解答

1.A先求a1与公比q.2.B∵d<0,∴a3>a9,∴a3=-a9.3.B分别考察a1>0与a1<0两种情况.4.B∵(an+an+3)-(an-1+an+2)=(an-an-1)+(an+3-an+2)=d+d=2d.5.A∵62=3×12,∴(2b)2=2a·2c2b=a+c且b2≠ac.6.C∵a4a7=a3a8=-512,a3+a8=124,∴a3,a8是x2-124x-512=0的两根.解之:a3=-4,a8=128或a3=128,a8=-4q=-2或-

但q=-不合题意,∴a10=a8·q2=512.22

7.C其值为log3(a1a2„a10)=log3(a1a10)·(a2a9)„(a5a6)=log3(a5a6)5=5log3(a5·a6)=5log381=20.9

xx23y28.A设这两个正数为x,y,由题意可得:.272yx9y4

9.D∵Sn=2n-1,∴an+1=Sn+1-Sn=2n+1-1-(2n-1)=2n,又a1=S1=21-1=1=21-1,∴an=2n-1.10.D每次可上一级或两级,故需分段考虑.11.Sm+n=-(m+n)运用公式求和.2a4(a13d)2a1(a124d)a1a25

12.设公差d,依题意得:

a1a4a251143a127d114

a438a4a13d23414a138a12

或,或

a38aa24d224498d0d425125

∴这三个数是38,38,38或2,14,98.

13.∵a1,a5,a17成等比数列,∴(a1+4d)2=a1(a1+16d)d=

aa11,an=a1(n+1),a5=a1+4d=3a1,∴q=5

22a1

=3,akn=

k11

a1(kn+1)akn=a1·qn-1=a1×3n-1,∴na1=a1×3n-1,∴kn=2×3n-1-1k1+k2+k3+„22

n-1

2(13n)

+kn=2(1+3+9+„+3)-n= =3n-n-1.(13)n

14.(1)设{an}的公差为d,则f(1)=a1+a2+„+an=d=1,由na1+

1nn

n(n+1),f(-1)=-a1+a2-a3+a4+„-an-1+an=d=,∴222

n(n1)n(n1)

得a1=1,∴an=n. 22

2n

1123111111n(2)f()=+2+3+„+(1-)]f()=+2+3+„+n+n1

22222222222

两式相减:

1

11n

1111n2nnf()=1++2+„+n1-n=-n=2-2n1-2n<2. 2222212

12

15.(1)an=Sn-Sn-1=(100n-n2)-[100(n-1)-(n-1)2]=101-2n(n≥2),∵a1=S1=100×1-12=99=101-2×1,∴数列{an}的通项公式为an=101-2n又∵an+1-an=-2为常数.∴数列{an}是首项为a1=99,公差d=-2的等差数列.(2)令an=101-2n≥0得n≤50(n∈N*),①当1≤n≤50时,an>0,此时bn=|an|=an,所以{bn}的前n项和Sn′=100n-n2且S50′=100×50-502=2500,②当n≥51时,an<0,此时bn=|an|=-an由b51+b52+„+bn=-(a51+a52+„+an)=-(Sn-S50)=S50-Sn得数列{bn}前n项和为Sn′=S50+(S50-Sn)=2S50-Sn=2×2500-(100n-n2)=5000-100n+n2.(nN*,1n50)100nn

由①②得数列{bn}的前n项和为Sn′=.2*

(nN,n51)5000100nn

第三篇:等差数列与等比数列的证明

龙源期刊网 http://.cn

等差数列与等比数列的证明

作者:刘春建

来源:《高考进行时·高三数学》2013年第03期

一、考纲要求

1.理解等差数列的递推关系,并能够根据递推关系证明等差数列。

2.理解等比数列的递推关系,并能够根据递推关系证明等比数列。

3.能够利用等差中项和等比中项证明等差数列和等比数列。

二、难点疑点

1.在证明等差数列和等比数列的过程中,部分学生只是求出了等差数列和等比数列的通项公式,而没有利用递推关系或者等差、等比中项进行证明。

2.在用等比中项证明等比数列的时候,没有交代各项均不为零。

3.要注意整体思想在证明等差数列和等比数列中的灵活运用。

第四篇:第2课时--等差数列与等比数列的基本运算

一.课题:等差数列与等比数列的基本运算

二.教学目标:掌握等差数列和等比数列的定义,通项公式和前n项和的公式,并能利用这些

知识解决有关问题,培养学生的化归能力.

三.教学重点:对等差数列和等比数列的判断,通项公式和前n项和的公式的应用.

四.教学过程:

(一)主要知识:

1.等差数列的概念及其通项公式,等差数列前n项和公式;

2.等比数列的概念及其通项公式,等比数列前n项和公式;

3.等差中项和等比中项的概念.

(二)主要方法:

1.涉及等差(比)数列的基本概念的问题,常用基本量a1,d(q)来处理;

2.使用等比数列前n项和公式时,必须弄清公比q是否可能等于1还是必不等于1,如果不能确定则需要讨论;

3.若奇数个成等差数列且和为定值时,可设中间三项为ad,a,ad;若偶数个成等差数列且和为定值时,可设中间两项为ad,ad,其余各项再根据等差数列的定义进行对称设元.若干个数个成等比数列且积为定值时,设元方法与等差数列类似.

4.在求解数列问题时要注意运用函数思想,方程思想和整体消元思想,设而不求.

(三)例题分析:

例1.(1)设数列{an}是递增等差数列,前三项的和为12,前三项的积为48,则它的首项为 2 .

(2)已知等差数列{an}的公差d0,且a1,a3,a9成等比数列,则a1a3a913. a2a4a1016

例2.有四个数,其中前三个数成等差数列,后三个数成等比数列,且第一个数与第四个数的和是16,第二个数与第三个书的和是12,求这四个数. (ad)

2(ad)16ad解:设这四个数为:ad,a,ad,,则 aa2ad12

a4a9解得:或,所以所求的四个数为:4,4,12,36;或15,9,3,1. d8d62

例3.由正数组成的等比数列{an},若前2n项之和等于它前2n项中的偶数项之和的11倍,第3项与第4项之和为第2项与第4项之积的11倍,求数列{an}的通项公式.

解:当q1时,得2na111na1不成立,∴q1,a1(1q2n)11a1q(1q2n)① 21q∴1q aq2aq311aqaq3② 111

11由①得q,代入②得a110,10

1n2∴an(). 10

说明:用等比数列前n项和公式时,一定要注意讨论公比是否为1.

第三章 数列——第2课时:等差数列、等比数列的基本运算

例4.已知等差数列110,116,122,,(1)在区间[450,600]上,该数列有多少项?并求它们的和;

(2)在区间[450,600]上,该数列有多少项能被5整除?并求它们的和.解:an1106(n1)6n104,(1)由4506n104600,得58n82,又nN, *

1(a58a82)2513100.

2(2)∵an1106(n1),∴要使an能被5整除,只要n1能被5整除,即n15k,∴n5k1,∴585k182,∴12k16,∴在区间[450,600]上该数列中能被5整

5(a61a81)2650. 除的项共有5项即第61,66,71,76,81项,其和S2∴ 该数列在[450,600]上有25项, 其和Sn

五.课后作业:《优化设计》基础过关题

六.教学反思:

1.掌握等差数列和等比数列的通项公式和前n项和的公式并应用解题.

2.善于灵活运用等差中项和等比中项的性质.

3.在求解数列问题时要注意运用函数思想,方程思想和整体消元思想.

第三章 数列——第2课时:等差数列、等比数列的基本运算

第五篇:等差数列与等比数列的证明方法

等差数列与等比数列的证明方法

高考题中,有关证明、判断数列是等差(等比)数列的题型比比皆是,如何处理这些题目呢?

证明或判断等差(等比)数列的方法常有四种:定义法、等差或等比中项法、数学归纳法、反证法。

一、定义法

10.证明数列是等差数列的充要条件的方法:

an1and(常数)an是等差数列

a2n2a2nd(常数)a2n是等差数列

a3n3a3nd(常数)a3n是等差数列

20.证明数列是等差数列的充分条件的方法:

anan1d(n2)an是等差数列

an1ananan1(n2)an是等差数列

30.证明数列是等比数列的充要条件的方法:

an1q(q0且为常数,a10)an为等比数列 an

40.证明数列是等比数列的充要条件的方法:

anq(n>2,q为常数且≠0)an为等比数列 an

1注意事项:用定义法时常采用的两个式子anan1d和an1and有差别,前者必须加上“n≥2”,否则n1时a0无意义,等比中一样有:n≥2时,有(常数0);②nN时,有an1. q(常数0)ananqan1

例1.设数列a1,a2,,an,中的每一项都不为0。

证明:an为等差数列的充分必要条件是:对任何nN,都有

111n。a1a2a2a3anan1a1an1

证明:先证必要性

设{an}为等差数列,公差为d,则

当d=0时,显然命题成立 当d≠0时,∵

1111

 anan1danan1

再证充分性:

1n111

„„„① 

anan1a1an1a1a2a2a3a3a

411n1111

„„„② 

anan1an1an2a1an2a1a2a2a3a3a4

②﹣①得:

1n1n 

an1an2a1an2a1an1

两边

anan1a1得:a1(n1)an1nan2 „„„③

同理:a1nan(n1)an1„„„④ ③—④得:2nan1n(anan2)

即:an2an1an1anan为等差数列

例2.设数列{an}的前n项和为Sn,试证{an}为等差数列的充要条件是

Sn

n(a1an),(nN*)。

2证:)若{an}为等差数列,则

a1ana2an1a3an2……,故

2Sn(a1an)(a2an2).......(ana1)

Sn(a1an)

n

()当n≥2时,由题设,Sn1)(a1an1)n(a1an1

(2,Sn)

n2

所以a(a1a2)(n1)(a1an1)nSnSn1

n22

同理有a1)(a1an1)n(a1ann1

(n2)

从而a(n1)(a1an1)(n1)(a1an1an

2n(aan1)

1n)2

整理得:an+1-an=an-an-1,对任意n≥2成立.从而{an}是等差数列.例3.已知数列an是等比数列(q1),Sn是其前n项的和,Sk,S2kSk,S3kS2k,„,仍成等比数列。

证明一:

(1)当q=1时,结论显然成立;(2)当q≠1时,Sa11qk1q2ka11q3kk

1q,S2k

a11q,S3k

1q

Sq2ka11qka1qk1qk2kSk

a111q

1q

1q 3kSa11q11q2ka1q2k1qk3kS2k

1q

a1q

1q

2kk2

S2

1q21qSa11qka1q2k1qka22k1q12kSk

a(1q)2

k(S3kS2k)1q1q

qk

(1q)2

∴S2

2kSk

=Sk(S3kS2k)

∴Sk,S2kSk,S3kS2k成等比数列.则

证明二:S2k-Sk=(a1a2a3a2k)-(a1a2a3ak)=ak1ak2ak3a2k=qk(a1a2a3ak)=qkSk0 同理,S3k-S2k=a2k1a2k2a2k3a3k= q2kSk0 ∴Sk,S2kSk,S3kS2k成等比数列。

二、中项法

(1).(充要条件)

若2an1anan2an是等差数列

(注:三个数a,b,c为等差数列的充要条件是:2bac)(充分条件)2an

an1an1(n2){an}是等差数列,(2).(充要条件)

若 anan2an12(an0){an}是等比数列(充分条件)

2anan1an1(n≥1)

{an}是等比数列,注:

b(ac0)是a、b、c等比数列的充分不必要条件

b是a、b、c等比数列的必要不充分条件

.b(ac0)是a、b、c等比数列的充要条件.任意两数a、c不一定有等比中项,除非有ac>0,则等比中项一定有两个.三、通项公式与前n项和法

1.通项公式法

(1).若数列通项an能表示成ananb(a,b为常数)的形式,则数列an是等差数列。(充要条件)

(2).若通项an能表示成ancqn(c,q均为不为0的常数,nN)的形式,则数列an是等比数列.(充要条件)

2.前n项和法

(1).若数列an的前n项和Sn能表示成Snan2bn(a,b为常数)的形式,则数列an是等差数列;(充要条件)

(2).若Sn能表示成SnAqnA(A,q均为不等于0的常数且q≠1)的形式,则数列an是公比不为1的等比数列.(充要条件)

四、归纳—猜想---数学归纳证明法

先根据递推关系求出前几项,观察数据特点,猜想、归纳出通项公式,再用数学归纳法给出证明。

这种方法关键在于猜想要正确,用数学归纳法证明的步骤要熟练,从“nk时命题成立”到“nk1时命题成立”要会过渡.

五、反证法

解决数学问题的思维过程,一般总是从正面入手,即从已知条件出发,经过一系列的推理和运算,最后得到所要求的结论,但有时会遇到从正面不易入手的情况,这时可从反面去考虑.

六、等差数列与等比数列的一些常规结论

若数列{an}是公比为q的等比数列,则

(1)数列{an}{an}(为不等于零的常数)仍是公比为q的等比数列;(2)若{bn}是公比为q的等比数列,则数列{anbn}是公比为qq的等比数列;(3)数列

11

是公比为的等比数列;

qan

(4){an}是公比为q的等比数列;

(5)在数列{an}中,每隔k(kN)项取出一项,按原来顺序排列,所得新数列仍

为等比数列且公比为qk1;

(6)若m,n,p(m,n,pN)成等差数列时,am,an,ap成等比数列;(7)Sn,S2nSn,S3nS2n均不为零时,则Sn,S2nSn,S3nS2n成等比数列;(8)若{logban}是一个等差数列,则正项数列{an}是一个等比数列.

若数列{an}是公差为d等差数列,则

(1){kanb}成等差数列,公差为kd(其中k0,k,b是实常数);(2){S(n1)kSkn},(kN,k为常数),仍成等差数列,其公差为k2d;(3)若{an}{,bn}都是等差数列,公差分别为d1,d2,则{anbn}是等差数列,公差为d1d2;

(4)当数列{an}是各项均为正数的等比数列时,数列{lgan}是公差为lgq的等差数列;

(5)m,n,p(m,n,pN)成等差数列时,am,an,ap成等差数列.

下载等差数列与等比数列中的基本量法检测卷word格式文档
下载等差数列与等比数列中的基本量法检测卷.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐