八年级奥林匹克竞赛讲义 第01讲:如何做几何证明题(合集5篇)

时间:2019-05-14 20:31:42下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《八年级奥林匹克竞赛讲义 第01讲:如何做几何证明题》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《八年级奥林匹克竞赛讲义 第01讲:如何做几何证明题》。

第一篇:八年级奥林匹克竞赛讲义 第01讲:如何做几何证明题

.cn

目录

本内容适合八年级学生竞赛拔高使用。注重中考与竞赛的有机结合,重点落实在中考中难以上题、奥赛方面的基础知识和基本技能培训和提高。本内容难度适中,讲练结合,由浅入深,讲解与练习同步,重在提高学生的数学分析能力与解题能力。另外在本次培训中,内容的编排大多大于120分钟的容量,因此在实际教学过程中可以根据学生的具体状况和层次,由任课教师适当的调整顺序和选择内容(如专题复习可以提前上)。

注:有(*)标注的为选做内容。

本次培训具体计划如下,以供参考:

第一讲

第二讲

第三讲

第四讲

第五讲

第六讲

第七讲如何做几何证明题平行四边形

(一)平行四边形

(二)梯形 中位线及其应用 一元二次方程的解法 一元二次方程的判别式

一元二次方程的根与系数的关系

一元二次方程的应用

专题复习一:因式分解、二次根式、分式

专题复习二:代数式的恒等变形

专题复习三:相似三角形

-第八讲第九讲第十讲第十一讲 第十二讲

第一讲:如何做几何证明题

【知识梳理】

1、几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。

2、掌握分析、证明几何问题的常用方法:

(1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决;

(2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止;

(3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。

3、掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。【例题精讲】

【专题一】证明线段相等或角相等

两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。很多其它问题最后都可化归为此类问题来证。证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。

ABC【例1】已知:如图所示,中,C90,ACBC,ADDB,AECF。

求证:DE=DF

E

CFB

【巩固】如图所示,已知为等边三角形,延长BC到D,延长BA到E,并且使AE=ABCBD,连结CE、DE。求证:EC=ED

【例2】已知:如图所示,AB=CD,AD=BC,AE=CF。求证:∠E=∠F

【专题二】证明直线平行或垂直

在两条直线的位置关系中,平行与垂直是两种特殊的位置。证两直线平行,可用同位角、内错角或同旁内角的关系来证,也可通过边对应成比例、三角形中位线定理证明。证两条直线垂直,可转化为证一个角等于90°,或利用两个锐角互余,或等腰三角形“三线合一”来证。

F

B

D

B

C

D

ABC【例3】如图所示,设BP、CQ是的内角平分线,AH、AK分别为A到BP、CQ的垂

线。求证:KH∥BC

AK

B

PH

C

【例4】已知:如图所示,AB=AC,∠。A90,AEBF,BDDC求证:FD⊥ED

【专题三】证明线段和的问题

(一)在较长线段上截取一线段等一较短线段,证明其余部分等于另一较短线段。(截长法)【例5】如图,四边形ABCD中,AD∥BC,点E是AB上一个动点,若∠B=60°,AB=BC,且∠DEC=60°; 求证:BC=AD+AE

B

D

E

A

B

C

ABCB60【巩固】已知:如图,在中,,∠BAC、∠BCA的角平分线AD、CE相交

于O。

求证:AC=AE+CD

A

D

C

(二)延长一较短线段,使延长部分等于另一较短线段,则两较短线段成为一条线段,证明该线段等于较长线段。(补短法)

【例6】 已知:如图7所示,正方形ABCD中,F在DC上,E在BC上,。EAF45求证:EF=BE+DF

【专题四】证明几何不等式:

【例7】已知:如图所示,在中,AD平分∠BAC,ABAC。ABC 求证:B DDC

B

D

CA

DF

B

E

C

BAC90,ADBCDABACBCABC【拓展】中,于D,求证:A 

B

D

C

第二篇:全国初中数学竞赛辅导(八年级)教学案全集第23讲 几何不等式

全国初中数学竞赛辅导(八年级)教学案全集

第二十三讲 几何不等式

平面图形中所含的线段长度、角的大小及图形的面积在许多情形下会呈现不等的关系.由于这些不等关系出现在几何问题中,故称之为几何不等式.

在解决这类问题时,我们经常要用到一些教科书中已学过的基本定理,本讲的主要目的是希望大家正确运用这些基本定理,通过几何、三角、代数等解题方法去解决几何不等式问题.这些问题难度较大,在解题中除了运用不等式的性质和已经证明过的不等式外,还需考虑几何图形的特点和性质.

几何不等式就其形式来说不外乎分为线段不等式、角不等式以及面积不等式三类,在解题中不仅要用到一些有关的几何不等式的基本定理,还需用到一些图形的面积公式.下面先给出几个基本定理.

定理1 在三角形中,任两边之和大于第三边,任两边之差小于第三边.

定理2 同一个三角形中,大边对大角,小边对小角,反之亦然.

定理3 在两边对应相等的两个三角形中,第三边大的,所对的角也大,反之亦然.

定理4 三角形内任一点到两顶点距离之和,小于另一顶点到这两顶点距离之和.

定理5 自直线l外一点P引直线l的斜线,射影较长的斜线也较长,反之,斜线长的射影也较长.

说明 如图2-135所示.PA,PB是斜线,HA和HB分别是PA和PB在l上的射影,若HA>HB,则PA>PB;若PA>PB,则HA>HB.事实上,由勾股定理知

PA2-HA2=PH2=PB2-HB2,所以

PA2-PB2=HA2-HB2.

从而定理容易得证.

定理6 在△ABC中,点P是边BC上任意一点,则有

PA≤max{AB,AC},当点P为A或B时等号成立.

说明 max{AB,AC}表示AB,AC中的较大者,如图2-136所示,若P在线段BH上,则由于PH≤BH,由上面的定理5知PA≤BA,从而

PA≤max{AB,AC}.

同理,若P在线段HC上,同样有PA≤max{AB,AC}.

例1 在锐角三角形ABC中,AB>AC,AM为中线,P为△AMC内一点,证明:PB>PC(图2-137).

证 在△AMB与△AMC中,AM是公共边,BM=MC,且AB>AC,由定理3知,∠AMB>∠AMC,所以∠AMC<90°.

过点P作PH⊥BC,垂足为H,则H必定在线段BM的延长线上.如果H在线段MC内部,则

BH>BM=MC>HC.

如果H在线段MC的延长线上,显然BH>HC,所以PB>PC.

例2 已知P是△ABC内任意一点(图2-138).

(1)求证:

<a+b+c;

(2)若△ABC为正三角形,且边长为1,求证:

PA+PB+PC<2.

证(1)由三角形两边之和大于第三边得

PA+PB>c,PB+PC>a,PC+PA>b.把这三个不等式相加,再两边除以2,便得

又由定理4可知

PA+PB<a+b,PB+PC<b+c,PC+PA<c+a.

把它们相加,再除以2,便得

PA+PB+PC<a+b+c.

所以

(2)过P作DE∥BC交正三角形ABC的边AB,AC于D,E,如图2-138所示.于是

PA<max{AD,AE}=AD,PB<BD+DP,PC<PE+EC,所以

PA+PB+PC<AD+BD+DP+PE+EC

=AB+AE+EC=2.

例3 如图2-139.在线段BC同侧作两个三角形ABC和DBC,使得AB=AC,DB>DC,且AB+AC=DB+DC.若AC与BD相交于E,求证:AE>DE.

证 在DB上取点F,使DF=AC,并连接AF和AD.由已知2DB>DB+DC

=AB+AC=2AC,所以 DB>AC.

由于DB+DC=AB+AC=2AC,所以

DC+BF=AC=AB.

在△ABF中,AF>AB-BF=DC.

在△ADC和△ADF中,AD=AD,AC=DF,AF>CD.

由定理3,∠1>∠2,所以

AE>DE.

例4 设G是正方形ABCD的边DC上一点,连结AG并延长交BC延长线于K,求证:

分析 在不等式两边的线段数不同的情况下,一般是设法构造其所

为边的三角形.

证 如图2-140,在GK上取一点M,使GM=MK,则

在Rt△GCK中,CM是GK边上的中线,所以

∠GCM=∠MGC.

而∠ACG=45°,∠MGC>∠ACG,于是

∠MGC>45°,所以

∠ACM=∠ACG+∠GCM>90°.

由于在△ACM中∠ACM>∠AMC,所以AM>AC.故

例5 如图2-141.设BC是△ABC的最长边,在此三角形内部任选一点O,AO,BO,CO分别交对边于A′,B′,C′.证明:

(1)OA′+OB′+OC′<BC;

(2)OA′+OB′+OC′≤max{AA′,BB′,CC′}.

证(1)过点O作OX,OY分别平行于边AB,AC,交边BC于X,Y点,再过X,Y分别作XS,YT平行于CC′和BB′交AB,AC于S,T.由于△OXY∽△ABC,所以XY是△OXY的最大边,所以

OA′<max{OX,OY}≤XY.

又△BXS∽△BCC′,而BC是△BCC′中的最大边,从而BX也是△BXS中的最大边,而且SXOC′是平行四边形,所以

BX>XS=OC′.

同理

CY>OB′.

所以

OA′+OB′+OC′<XY+BX+CY=BC.

所以

OA′+OB′+OC′=x·AA′+y·BB′+z·CC′

≤(x+y+z)max{AA′,BB′,CC′}

=max{AA′,BB′,CC′}

下面我们举几个与角有关的不等式问题.

例6 在△ABC中,D是中线AM上一点,若∠DCB>∠DBC,求证:∠ACB>∠ABC(图2-142).

证 在△BCD中,因为∠DCB>∠DBC,所以BD>CD.

在△DMB与△DMC中,DM为公共边,BM=MC,并且BD>CD,由定理3知,∠DMB>∠DMC.在△AMB与△AMC中,AM是公共边,BM=MC,且∠AMB>∠AMC,由定理3知,AB>AC,所以

∠ACB>∠ABC.

说明 在证明角的不等式时,常常把角的不等式转换成边的不等式.

证 由于AC>AB,所以∠B>∠C.作∠ABD=∠C,如图2

即证BD∠CD.因为△BAD∽△CAB,即 BC>2BD.

又 CD>BC-BD,所以

BC+CD>2BD+BC-BD,所以 CD>BD.

从而命题得证.

例8 在锐角△ABC中,最大的高线AH等于中线BM,求证:∠B<60°(图2-144).

证 作MH1⊥BC于H1,由于M是中点,所以

于是在Rt△MH1B中,∠MBH1=30°.

延长BM至N,使得MN=BM,则ABCN为平行四边形.因为AH为最ABC中的最短边,所以

AN=BC<AB,从而

∠ABN<∠ANB=∠MBC=30°,∠B=∠ABM+∠MBC<60°.

下面是一个非常著名的问题——费马点问题.

例9 如图2-145.设O为△ABC内一点,且

∠AOB=∠BOC=∠COA=120°,P为任意一点(不是O).求证:

PA+PB+PC>OA+OB+OC.

证 过△ABC的顶点A,B,C分别引OA,OB,OC的垂线,设这三条垂线的交点为A1,B1,C1(如图2-145),考虑四边形AOBC1.因为

∠OAC1=∠OBC1=90°,∠AOB=120°,所以∠C1=60°.同理,∠A1=∠B1=60°.所以△A1B1C1为正三角形.

设P到△A1B1C1三边B1C1,C1A1,A1B1的距离分别为ha,hb,hc,且△A1B1C1的边长为a,高为h.由等式

S△A1B1C1=S△PB1C1+S△PC1A1+S△PA1B1

所以 h=ha+hb+hc.

这说明正△A1B1C1内任一点P到三边的距离和等于△A1B1C1的高h,这是一个定值,所以

OA+OB+OC=h=定值.

显然,PA+PB+PC>P到△A1B1C1三边距离和,所以

PA+PB+PC>h=OA+OB+OC.

这就是我们所要证的结论.

由这个结论可知O点具有如下性质:它到三角形三个顶点的距离和小于其他点到三角形顶点的距离和,这个点叫费马点.

练习二十三

1.设D是△ABC中边BC上一点,求证:AD不大于△ABC中的最大边.

2.AM是△ABC的中线,求证:

3.已知△ABC的边BC上有两点D,E,且BD=CE,求证:AB+AC>AD+AE.

4.设△ABC中,∠C>∠B,BD,CE分别为∠B与∠C的平分线,求证:BD>CE.

5.在△ABC中,BE和CF是高,AB>AC,求证:

AB+CF≥AC+BE.

6.在△ABC中,AB>AC,AD为高,P为AD上的任意一点,求证:

PB-PC>AB-AC.

7.在等腰△ABC中,AB=AC.

(1)若M是BC的中点,过M任作一直线交AB,AC(或其延长线)于D,E,求证:2AB<AD+AE.

(2)若P是△ABC内一点,且PB<PC,求证:∠APB>∠APC.

第三篇:全国初中数学竞赛辅导(八年级)教学案全集第01讲因式分解(一)

全国初中数学竞赛辅导(八年级)教学案全集

第一讲 因式分解(一)

多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.

1.运用公式法

在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:

(1)a2-b2=(a+b)(a-b);

(2)a2±2ab+b2=(a±b)2;

(3)a3+b3=(a+b)(a2-ab+b2);

(4)a3-b3=(a-b)(a2+ab+b2).

下面再补充几个常用的公式:

(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;

(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);

(7)an-bn=(a-b)(an-1+an-2b+an-3b2+…+abn-2+bn-1)其中n为正整数;

(8)an-bn=(a+b)(an-1-an-2b+an-3b2-…+abn-2-bn-1),其中n为偶数;

(9)an+bn=(a+b)(an-1-an-2b+an-3b2-…-abn-2+bn-1),其中n为奇数.

运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.

例1 分解因式:

(1)-2x5n-1yn+4x3n-1yn+2-2xn-1yn+4;

(2)x3-8y3-z3-6xyz;

(3)a2+b2+c2-2bc+2ca-2ab;

(4)a7-a5b2+a2b5-b7.

解(1)原式=-2xn-1yn(x4n-2x2ny2+y4)

=-2xn-1yn[(x2n)2-2x2ny2+(y2)2]

=-2xn-1yn(x2n-y2)

2=-2xn-1yn(xn-y)2(xn+y)2.

(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)

=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).

(3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2

=(a-b)2+2c(a-b)+c2

=(a-b+c)2.

本小题可以稍加变形,直接使用公式(5),解法如下:

原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b)

=(a-b+c)2

(4)原式=(a7-a5b2)+(a2b5-b7)

=a5(a2-b2)+b5(a2-b2)

=(a2-b2)(a5+b5)

=(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4)

=(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4)

例2 分解因式:a3+b3+c3-3abc.

本题实际上就是用因式分解的方法证明前面给出的公式(6).

分析 我们已经知道公式

(a+b)3=a3+3a2b+3ab2+b3 的正确性,现将此公式变形为

a3+b3=(a+b)3-3ab(a+b).

这个式也是一个常用的公式,本题就借助于它来推导.

解 原式=(a+b)3-3ab(a+b)+c3-3abc

=[(a+b)3+c3]-3ab(a+b+c)

=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)

=(a+b+c)(a2+b2+c2-ab-bc-ca).

说明 公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为

a3+b3+c3-3abc

显然,当a+b+c=0时,则a3+b3+c3=3abc;当a+b+c>0时,则a3+b3+c3-3abc≥0,即a3+b3+c3≥3abc,而且,当且仅当a=b=c时,等号成立.

如果令x=a3≥0,y=b3≥0,z=c3≥0,则有

等号成立的充要条件是x=y=z.这也是一个常用的结论.

例3 分解因式:x15+x14+x13+…+x2+x+1.

分析 这个多项式的特点是:有16项,从最高次项x15开始,x的次数顺次递减至0,由此想到应用公式an-bn来分解.

解 因为

x16-1=(x-1)(x15+x14+x13+…x2+x+1),所以

说明 在本题的分解过程中,用到先乘以(x-1),再除以(x-1)的技巧,这一技巧在等式变形中很常用.

2.拆项、添项法

因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.

例4 分解因式:x3-9x+8.

分析 本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧.

解法1 将常数项8拆成-1+9.

原式=x3-9x-1+9

=(x3-1)-9x+9

=(x-1)(x2+x+1)-9(x-1)

=(x-1)(x2+x-8).

解法2 将一次项-9x拆成-x-8x.

原式=x3-x-8x+8

=(x3-x)+(-8x+8)

=x(x+1)(x-1)-8(x-1)

=(x-1)(x2+x-8).

解法3 将三次项x3拆成9x3-8x3.

原式=9x3-8x3-9x+8

=(9x3-9x)+(-8x3+8)

=9x(x+1)(x-1)-8(x-1)(x2+x+1)

=(x-1)(x2+x-8).

解法4 添加两项-x2+x2.

原式=x3-9x+8

=x3-x2+x2-9x+8

=x2(x-1)+(x-8)(x-1)

=(x-1)(x2+x-8).

说明 由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.

例5 分解因式:

(1)x9+x6+x3-3;

(2)(m2-1)(n2-1)+4mn;

(3)(x+1)4+(x2-1)2+(x-1)4;

(4)a3b-ab3+a2+b2+1.

解(1)将-3拆成-1-1-1.

原式=x9+x6+x3-1-1-1

=(x9-1)+(x6-1)+(x3-1)

=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)

=(x3-1)(x6+2x3+3)

=(x-1)(x2+x+1)(x6+2x3+3).

(2)将4mn拆成2mn+2mn.

原式=(m2-1)(n2-1)+2mn+2mn

=m2n2-m2-n2+1+2mn+2mn

=(m2n2+2mn+1)-(m2-2mn+n2)

=(mn+1)2-(m-n)2

=(mn+m-n+1)(mn-m+n+1).

(3)将(x2-1)2拆成2(x2-1)2-(x2-1)2.

原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4

=[(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)=[(x+1)2+(x-1)2]2-(x2-1)2

=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).

(4)添加两项+ab-ab.

原式=a3b-ab3+a2+b2+1+ab-ab

=(a3b-ab3)+(a2-ab)+(ab+b2+1)

=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)

=a(a-b)[b(a+b)+1]+(ab+b2+1)

=[a(a-b)+1](ab+b2+1)

=(a2-ab+1)(b2+ab+1).

说明(4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验.

3.换元法

换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.

例6 分解因式:(x2+x+1)(x2+x+2)-12.

分析 将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y的二次三项式的因式分解问题了.

解 设x2+x=y,则

原式=(y+1)(y+2)-12=y2+3y-10

=(y-2)(y+5)=(x2+x-2)(x2+x+5)

=(x-1)(x+2)(x2+x+5).

说明 本题也可将x2+x+1看作一个整体,比如今x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.

例7 分解因式:

(x2+3x+2)(4x2+8x+3)-90.

分析 先将两个括号内的多项式分解因式,然后再重新组合.

解 原式=(x+1)(x+2)(2x+1)(2x+3)-90

=[(x+1)(2x+3)][(x+2)(2x+1)]-90

=(2x2+5x+3)(2x2+5x+2)-90.

令y=2x2+5x+2,则

原式=y(y+1)-90=y2+y-90

=(y+10)(y-9)

=(2x2+5x+12)(2x2+5x-7)

=(2x2+5x+12)(2x+7)(x-1).

说明 对多项式适当的恒等变形是我们找到新元(y)的基础.

例8 分解因式:

(x2+4x+8)2+3x(x2+4x+8)+2x2.

解 设x2+4x+8=y,则

原式=y2+3xy+2x2=(y+2x)(y+x)

=(x2+6x+8)(x2+5x+8)

=(x+2)(x+4)(x2+5x+8).

说明 由本题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式.

例9 分解因式:6x4+7x3-36x2-7x+6.

解法1 原式=6(x4+1)+7x(x2-1)-36x2

=6[(x4-2x2+1)+2x2]+7x(x2-1)-36x

2=6[(x2-1)2+2x2]+7x(x2-1)-36x2

=6(x2-1)2+7x(x2-1)-24x2

=[2(x2-1)-3x][3(x2-1)+8x]

=(2x2-3x-2)(3x2+8x-3)

=(2x+1)(x-2)(3x-1)(x+3).

说明 本解法实际上是将x2-1看作一个整体,但并没有设立新元来代替它,即熟练使用换元法后,并非每题都要设置新元来代替整体.

解法2

原式=x2[6(t2+2)+7t-36]

=x2(6t2+7t-24)=x2(2t-3)(3t+8)

=x2[2(x-1/x)-3][3(x-1/x)+8]

=(2x2-3x-2)(3x2+8x-3)

=(2x+1)(x-2)(3x-1)(x+3).

例10 分解因式:(x2+xy+y2)-4xy(x2+y2).

分析 本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式.

解 原式=[(x+y)2-xy]2-4xy[(x+y)2-2xy].令x+y=u,xy=v,则

原式=(u2-v)2-4v(u2-2v)

=u4-6u2v+9v2

=(u2-3v)2

=(x2+2xy+y2-3xy)2

=(x2-xy+y2)2.

练习一

1.分解因式:

(2)x10+x5-2;

(4)(x5+x4+x3+x2+x+1)2-x5.

2.分解因式:

(1)x3+3x2-4;

(2)x4-11x2y2+y2;

(3)x3+9x2+26x+24;

(4)x4-12x+323.

3.分解因式:

(1)(2x2-3x+1)2-22x2+33x-1;

(2)x4+7x3+14x2+7x+1;

(3)(x+y)3+2xy(1-x-y)-1;

(4)(x+3)(x2-1)(x+5)-20.

第一讲 因式分解(一)

多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.

1.运用公式法

在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:

(1)a2-b2=(a+b)(a-b);

(2)a2±2ab+b2=(a±b)2;

(3)a3+b3=(a+b)(a2-ab+b2);

(4)a3-b3=(a-b)(a2+ab+b2).

下面再补充几个常用的公式:

(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;

(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);

(7)an-bn=(a-b)(an-1+an-2b+an-3b2+…+abn-2+bn-1)其中n为正整数;

(8)an-bn=(a+b)(an-1-an-2b+an-3b2-…+abn-2-bn-1),其中n为偶数;

(9)an+bn=(a+b)(an-1-an-2b+an-3b2-…-abn-2+bn-1),其中n为奇数.

运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.

例1 分解因式:

(1)-2x5n-1yn+4x3n-1yn+2-2xn-1yn+4;

(2)x3-8y3-z3-6xyz;

(3)a2+b2+c2-2bc+2ca-2ab;

(4)a7-a5b2+a2b5-b7.

解(1)原式=-2xn-1yn(x4n-2x2ny2+y4)

=-2xn-1yn[(x2n)2-2x2ny2+(y2)2]

=-2xn-1yn(x2n-y2)

2=-2xn-1yn(xn-y)2(xn+y)2.

(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)

=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).

(3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2

=(a-b)2+2c(a-b)+c2

=(a-b+c)2.

本小题可以稍加变形,直接使用公式(5),解法如下:

原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b)

=(a-b+c)2

(4)原式=(a7-a5b2)+(a2b5-b7)

=a5(a2-b2)+b5(a2-b2)

=(a2-b2)(a5+b5)

=(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4)

=(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4)

例2 分解因式:a3+b3+c3-3abc.

本题实际上就是用因式分解的方法证明前面给出的公式(6).

分析 我们已经知道公式

(a+b)3=a3+3a2b+3ab2+b3 的正确性,现将此公式变形为

a3+b3=(a+b)3-3ab(a+b).

这个式也是一个常用的公式,本题就借助于它来推导.

解 原式=(a+b)3-3ab(a+b)+c3-3abc

=[(a+b)3+c3]-3ab(a+b+c)

=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)

=(a+b+c)(a2+b2+c2-ab-bc-ca).

说明 公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为

a3+b3+c3-3abc

显然,当a+b+c=0时,则a3+b3+c3=3abc;当a+b+c>0时,则a3+b3+c3-3abc≥0,即a3+b3+c3≥3abc,而且,当且仅当a=b=c时,等号成立.

如果令x=a3≥0,y=b3≥0,z=c3≥0,则有

等号成立的充要条件是x=y=z.这也是一个常用的结论.

例3 分解因式:x15+x14+x13+…+x2+x+1.

分析 这个多项式的特点是:有16项,从最高次项x15开始,x的次数顺次递减至0,由此想到应用公式an-bn来分解.

解 因为

x16-1=(x-1)(x15+x14+x13+…x2+x+1),所以

说明 在本题的分解过程中,用到先乘以(x-1),再除以(x-1)的技巧,这一技巧在等式变形中很常用.

2.拆项、添项法

因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.

例4 分解因式:x3-9x+8.

分析 本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧.

解法1 将常数项8拆成-1+9.

原式=x3-9x-1+9

=(x3-1)-9x+9

=(x-1)(x2+x+1)-9(x-1)

=(x-1)(x2+x-8).

解法2 将一次项-9x拆成-x-8x.

原式=x3-x-8x+8

=(x3-x)+(-8x+8)

=x(x+1)(x-1)-8(x-1)

=(x-1)(x2+x-8).

解法3 将三次项x3拆成9x3-8x3.

原式=9x3-8x3-9x+8

=(9x3-9x)+(-8x3+8)

=9x(x+1)(x-1)-8(x-1)(x2+x+1)

=(x-1)(x2+x-8).

解法4 添加两项-x2+x2.

原式=x3-9x+8

=x3-x2+x2-9x+8

=x2(x-1)+(x-8)(x-1)

=(x-1)(x2+x-8).

说明 由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.

例5 分解因式:

(1)x9+x6+x3-3;

(2)(m2-1)(n2-1)+4mn;

(3)(x+1)4+(x2-1)2+(x-1)4;

(4)a3b-ab3+a2+b2+1.

解(1)将-3拆成-1-1-1.

原式=x9+x6+x3-1-1-1

=(x9-1)+(x6-1)+(x3-1)

=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)

=(x3-1)(x6+2x3+3)

=(x-1)(x2+x+1)(x6+2x3+3).

(2)将4mn拆成2mn+2mn.

原式=(m2-1)(n2-1)+2mn+2mn

=m2n2-m2-n2+1+2mn+2mn

=(m2n2+2mn+1)-(m2-2mn+n2)

=(mn+1)2-(m-n)2

=(mn+m-n+1)(mn-m+n+1).

(3)将(x2-1)2拆成2(x2-1)2-(x2-1)2.

原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4

=[(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)=[(x+1)2+(x-1)2]2-(x2-1)2

=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).

(4)添加两项+ab-ab.

原式=a3b-ab3+a2+b2+1+ab-ab

=(a3b-ab3)+(a2-ab)+(ab+b2+1)

=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)

=a(a-b)[b(a+b)+1]+(ab+b2+1)

=[a(a-b)+1](ab+b2+1)

=(a2-ab+1)(b2+ab+1).

说明(4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验.

3.换元法

换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.

例6 分解因式:(x2+x+1)(x2+x+2)-12.

分析 将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y的二次三项式的因式分解问题了.

解 设x2+x=y,则

原式=(y+1)(y+2)-12=y2+3y-10

=(y-2)(y+5)=(x2+x-2)(x2+x+5)

=(x-1)(x+2)(x2+x+5).

说明 本题也可将x2+x+1看作一个整体,比如今x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.

例7 分解因式:

(x2+3x+2)(4x2+8x+3)-90.

分析 先将两个括号内的多项式分解因式,然后再重新组合.

解 原式=(x+1)(x+2)(2x+1)(2x+3)-90

=[(x+1)(2x+3)][(x+2)(2x+1)]-90

=(2x2+5x+3)(2x2+5x+2)-90.

令y=2x2+5x+2,则

原式=y(y+1)-90=y2+y-90

=(y+10)(y-9)

=(2x2+5x+12)(2x2+5x-7)

=(2x2+5x+12)(2x+7)(x-1).

说明 对多项式适当的恒等变形是我们找到新元(y)的基础.

例8 分解因式:

(x2+4x+8)2+3x(x2+4x+8)+2x2.

解 设x2+4x+8=y,则

原式=y2+3xy+2x2=(y+2x)(y+x)

=(x2+6x+8)(x2+5x+8)

=(x+2)(x+4)(x2+5x+8).

说明 由本题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式.

例9 分解因式:6x4+7x3-36x2-7x+6.

解法1 原式=6(x4+1)+7x(x2-1)-36x2

=6[(x4-2x2+1)+2x2]+7x(x2-1)-36x2

=6[(x2-1)2+2x2]+7x(x2-1)-36x2

=6(x2-1)2+7x(x2-1)-24x2

=[2(x2-1)-3x][3(x2-1)+8x]

=(2x2-3x-2)(3x2+8x-3)

=(2x+1)(x-2)(3x-1)(x+3).

说明 本解法实际上是将x2-1看作一个整体,但并没有设立新元来代替它,即熟练使用换元法后,并非每题都要设置新元来代替整体.

解法2

原式=x2[6(t2+2)+7t-36]

=x2(6t2+7t-24)=x2(2t-3)(3t+8)

=x2[2(x-1/x)-3][3(x-1/x)+8]

=(2x2-3x-2)(3x2+8x-3)

=(2x+1)(x-2)(3x-1)(x+3).

例10 分解因式:(x2+xy+y2)-4xy(x2+y2).

分析 本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式.

解 原式=[(x+y)2-xy]2-4xy[(x+y)2-2xy].令x+y=u,xy=v,则

原式=(u2-v)2-4v(u2-2v)

=u4-6u2v+9v2

=(u2-3v)2

=(x2+2xy+y2-3xy)2

=(x2-xy+y2)2.

练习一

1.分解因式:

(2)x10+x5-2;

(4)(x5+x4+x3+x2+x+1)2-x5.

2.分解因式:

(1)x3+3x2-4;

(2)x4-11x2y2+y2;

(3)x3+9x2+26x+24;

(4)x4-12x+323.

3.分解因式:

(1)(2x2-3x+1)2-22x2+33x-1;

(2)x4+7x3+14x2+7x+1;

(3)(x+y)3+2xy(1-x-y)-1;

(4)(x+3)(x2-1)(x+5)-20.

第四篇:2014初中数学奥赛专题复习知识梳理+例题精讲 第一讲 如何做几何证明题(拔高篇,适合八年级使用,无答案)

文档来源:弘毅教育园丁网数学第一站www.xiexiebang.com

如何做几何证明题

【知识梳理】

1、几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。

2、掌握分析、证明几何问题的常用方法:

(1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决;

(2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止;

(3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。

3、掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。【例题精讲】

【专题一】证明线段相等或角相等

两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。很多其它问题最后都可化归为此类问题来证。证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。【例1】已知:如图所示,中,C90,ACBC,ADDB,AECF。ABC 求证:DE=DF

AEDCFB文档来源:弘毅教育园丁网数学第一站www.xiexiebang.com 【巩固】如图所示,已知为等边三角形,延长BC到D,延长BA到E,并且使AE=BD,连结ABCCE、DE。

求证:EC=ED

【例2】已知:如图所示,AB=CD,AD=BC,AE=CF。求证:∠E=∠F

【专题二】证明直线平行或垂直

FBCAEBCAEDD 在两条直线的位置关系中,平行与垂直是两种特殊的位置。证两直线平行,可用同位角、内错角或同旁内角的关系来证,也可通过边对应成比例、三角形中位线定理证明。证两条直线垂直,可转化为证一个角等于90°,或利用两个锐角互余,或等腰三角形“三线合一”来证。【例3】如图所示,设BP、CQ是的内角平分线,AH、AK分别为A到BP、CQ的垂线。ABC 求证:KH∥BC

BCQKAPHA90,AEBF,BDDC【例4】已知:如图所示,AB=AC,∠。文档来源:弘毅教育园丁网数学第一站www.xiexiebang.com 求证:FD⊥ED

【专题三】证明线段和的问题

BFAEDC

(一)在较长线段上截取一线段等一较短线段,证明其余部分等于另一较短线段。(截长法)【例5】如图,四边形ABCD中,AD∥BC,点E是AB上一个动点,若∠B=60°,AB=BC,且∠DEC=60°; 求证:BC=AD+AE

【巩固】已知:如图,在中,,∠BAC、∠BCA的角平分线AD、CE相交于O。ABCB60 求证:AC=AE+CD

(二)延长一较短线段,使延长部分等于另一较短线段,则两较短线段成为一条线段,证明该线段等于较长线段。(补短法)

ADEBCBEAODC文档来源:弘毅教育园丁网数学第一站www.xiexiebang.com 【例6】 已知:如图7所示,正方形ABCD中,F在DC上,E在BC上,EAF45。

求证:EF=BE+DF

AD

F

B EC

【专题四】证明几何不等式:

【例7】已知:如图所示,在ABC中,AD平分∠BAC,ABAC。

求证:BDDC

A

BDC

【拓展】ABC中,BAC90,ADBC于D,求证:AD14ABACBC

A

BDC 4

第五篇:全国初中数学竞赛辅导(八年级)教学案全集第32讲 自测题

全国初中数学竞赛辅导(八年级)教学案全集

第三十二讲 自测题

自测题一

1.分解因式:x4-x3+6x2-x+15.

2.已知a,b,c为三角形的三边长,且满足

a2+b2+c2+338=10a+24b+26c,试确定这个三角形的形状.

3.已知a,b,c,d均为自然数,且

a5=b4,c3=d2,c-a=19,求d-b的值.

4. a,b,c是整数,a≠0,且方程ax2+bx+c=0的两个根为a和b,求a+b+c的值.

5.设E,F分别为AC,AB的中点,D为BC上的任一点,P在BF上,DP∥CF,Q在CE上,DQ∥BE,PQ交BE于R,交

6.四边形ABCD中,如果一组对角(∠A,∠C)相等时,另一组对角(∠B,∠D)的平分线存在什么关系?

7.如图2-194所示.△ABC中,D,E分别是边BC,AB上的点,且∠1=∠2=∠3.如果△ABC,△

8.如图2-195所示.△ABC中,∠B=90°,M为AB上一点,使得AM=BC,N为BC上一点,使得CN=BM,连AN,CM交于P点.求∠APM的度数.

9.某服装市场,每件衬衫零售价为70元,为了促销,采用以下几种优惠方式:购买2件130元;购满5件者,每件以零售价的九折出售;购买7件者送1件.某人要买6件,问有几种购物方案(必要时,可与另一购买2件者搭帮,但要兼顾双方的利益)?哪种方案花钱最少?

自测题二

1.分解因式:(x2+3x+5)2+2x3+3x2+1Ox.

2.对于集合

p={x丨x是1到100的整数}

中的元素a,b,如果a除以b的余数用符号表示.例如17除以4,商是4,余数是1,就表示成<17,4>=1,3除以7,商是0,余数是3,即表示成<3,7>=3.试回答下列问题:

(1)本集合{x丨<78,x>=6,x∈p}中元素的个数;

(2)用列举法表示集合

{x丨==5,x∈P}.

3.已知:x+y+z=1,x2+y2+z2=2,x3+y3+z3=3,试求:(1)xyz的值;(2)x4+y4+z4的值.

4.已知方程x2-3x+a+4=0有两个整数根.

(1)求证:这两个整数根一个是奇数,一个是偶数;

(2)求证:a是负偶数;

(3)当方程的两整数根同号时,求a的值及这两个根.

5.证明:形如8n+7的数不可能是三个整数的平方和.

7.如图2-196所示.AD是等腰三角形ABC底边上的中线,BE是角平分线,EF⊥BC,EG⊥BE且交BC于G.求证:

8.如图2-197所示.AD是锐角△ABC的高,O是AD上任意一点,连BO,OC并分别延长交AC,AB于E,F,连结DE,DF.求证:∠EDO=∠FDO.

9.甲校需要课外图书200本,乙校需要课外图书240本,某书店门市部A可供应150本,门市部B可供应290本.如果平均每本书的运费如下表,考虑到学校的利益,如何安排调运,才能使学校支出的运费最少?

自测题三

2.对于任意实数k,方程

(k2+1)x2-2(a+k)2x+k2+4k+b=0

总有一个根是1,试求实数a,b的值及另一个根的范围.

4.如图2-198.ABCD为圆内接四边形,从它的一个顶点A引平行于CD的弦AP交圆于P,并且分别交BC,BD于Q,R.求证:

5.如图2-199所示.在△ABC中∠C=90°,∠A的平分线AE交BA上的高CH于D点,过D引AB的平行线交BC于F.求证:BF=EC.

6.如图2-200所示.△ABC中,AB>AC,作∠FBC=∠ECB=

7.已知三角形的一边是另一边的两倍,求证:它的最小边在它的周8.求最大的自然数x,使得对每一个自然数y,x能整除7y+12y-1.

9.某公园的门票规定为每人5元,团体票40元一张,每张团体票最多可入园10人.

(1)现有三个单位,游园人数分别为6,8,9.这三个单位分别怎样买门票使总门票费最省?

(2)若三个单位的游园人数分别是16,18和19,又分别怎样买门票使总门票费最省?

(3)若游园人数为x人,你能找出一般买门票最省钱的规律吗?

自测题四

1.求多项式2x2-4xy+5y2-12y+13的最小值.

2.设

试求:f(1)+f(3)+f(5)+…+f(1999).

3.如图2-201所示.在平行四边形ABCD的对角线BD上任取一点O,过O作边BC,AB的平行线交AB,BC于F,E,又在 EO上取一点P.CP与OF交于Q.求证:BP∥DQ.

4.若a,b,c为有理数,且等式成立,则a=b=c=0 .

5.如图2-202所示.△ABC是边长为1的正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角的两边分别交AB,AC于M,N,连接MN,求△AMN的周长.

6.证明:由数字0,1,2,3,4,5所组成的不重复六位数不可能被11整除.

7.设x1,x2,…,x9均为正整数,且

x1<x2<…<x9,x1+x2+…+x9=220.

当x1+x2+…+x5的值最大时,求x9-x1的值.

8.某公司有甲乙两个工作部门,假日去不同景点旅游,总共有m人参加,甲部门平均每人花费120元,乙部门每人花费110元,该公司去旅游的总共花去2250元,问甲乙两部门各去了多少人?

9.(1)已知如图2-203,四边形ABCD内接于圆,过AD上一点E引直线EF∥AC交BA延长线于F.求证:

FA·BC=AE·CD.

(2)当E点移动到D点时,命题(1)将会怎样?

(3)当E点在AD的延长线上时又会怎样?

自测题五

2.关于x的二次方程6x2-(2m-1)x-(m+1)=0有一根

3.设x+y=1,x2+y2=2,求x7+y7的值.

4.在三角形ABC内,∠B=2∠C.求证:b2=c2+ac.

5.若4x-y能被3整除,则4x2+7xy-2y2能被9整除.

6.a,b,c是三个自然数,且满足

abc=a+b+c,求证:a,b,c只能是1,2,3中的一个.

7.如图2-204所示.AD是△ABC的BC边上的中线,E是BD的中点,BA=BD.求证:AC=2AE.

8.设AD是△ABC的中线,(1)求证:AB2+AC2=2(AD2+BD2);

(2)当A点在BC上时,将怎样?

按沿河距离计算,B离A的距离AC=40千米,如果水路运费是公路运费的一半,应该怎样确定在河岸上的D点,从B点筑一条公路到D,才能使A到B的运费最省?

下载八年级奥林匹克竞赛讲义 第01讲:如何做几何证明题(合集5篇)word格式文档
下载八年级奥林匹克竞赛讲义 第01讲:如何做几何证明题(合集5篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐