第一篇:海拔对离心泵吸入性能的影响研究论文
离心泵广泛应用于各种油料的输送,约占泵总量的70%~80%。在高原环境下,大气压力随海拔的提升不断降低,离心泵吸入口压力相应减小,吸入能力下降影响泵正常工作,导致工作效率降低。定量分析离心泵在不同海拔下的工作性能及变化规律,应进行实地实验,然而实地实验受场地等因素限制,设备展开、调试及撤收等较为困难,难以实施。因此,本文利用海拔与大气压力之间的关系,采用模拟的方法对离心泵在不同海拔下的工作性能进行实验研究。
1实验装置及方法
1.1实验装置
1.1.1泵
实验中使用的泵主要是离心泵和真空泵。离心泵为非自吸式,由发动机驱动,为实验研究对象;真空泵是水环式,由电动机驱动,用来对真空罐抽真空。
1.1.2含气率测试仪
为准确快速地监测、采集实验数据,采用了含气率测试仪。该测试仪基于电容探测法设计而成,其基本原理是在管路上布置电容器,电容值的大小与气液混合物的介电常数以及探针与液体接触的长度有关。当探针与被测流体接触长度发生变化,其输出电容值也发生变化,通过测量输出的电容值可推算出混合物的比率。含气率测试仪主要包括电容传感器和电容电压转换电路两大部分。电容传感器的两极由2根涂有聚四氟乙烯涂层的探针钢丝制成。电容电压转换电路由两部分组成:一是电容电压转换部分,采用CAV424芯片将电容转化为标准电压信号,可输出1~4 V标准电压;二是放大电路,采用AM401将前面的输出信号放大,提高采集系统的分辨率。
1.1.3真空罐
真空罐是实验中控制泵吸入口真空度的重要设备,由Q235-B型钢焊接而成,高3 m,直径1.35 m,容积4.3 m3,净重1 584 kg,设计温度0 ℃,设计压力1.1 MPa,耐压实验压力1.38 MPa,最高允许工作压力1.05 MPa。罐身配备有真空表及液位计,真空表的测量范围为0~0.09 MPa,测量精度0.001 MPa;液位计最高液位为3 m,精度0.1 m。
1.2实验流程
离心泵进出口管线通过DN100钢管与真空罐相连,形成一个封闭的循环系统。实验时,将管路及离心泵内充满清水,真空罐内注入约3/4的清水,实测水温32~34 ℃。首先利用真空泵对真空罐抽真空,通过蝶阀的开关控制真空管路与真空罐的互通,通过真空表的读数来确定真空罐内的气压值,待真空罐内气压达到指定数值时,关闭蝶阀。通过控制真空度来模拟不同海拔下的大气压力,实现离心泵吸入口压力的调整,进而实现泵高原吸入性能模拟实验。
1.3 实验方法
地理学中将平均海拔超过1 000 m的广袤地区称为高原。机械设备通常将海拔2 500 m作为正常使用的分界点。为了能够准确对比离心泵吸入性能的变化规律,本文选取海拔0,1 500,2 000,2 500,3 000 m作为实验点。由表2可见,海拔每升高500 m,对应真空度约上升0.005 MPa。对应本文选取的海拔,真空罐内的真空度依次增大0,0.015,0.02,0.025,0.03 MPa。
由于真空度高于0.025 MPa、发动机转速超过1 600 r/min后,泵机组出现了剧烈抖动现象,为避免继续升速后损坏实验设备,各海拔下均选取泵机组发动机转速为1 100,1 200,1 300,1 400,1 500,1 600 r/min进行实验。泵由发动机经过增速器驱动运行,增速比为1.52,对应的泵转速为1 672,1 824,1 976,2 128,2 280,2 432 r/min,在各转速下测试泵入口持液率数据。
实验按照GB/T 3216—2005《回转动力泵 水力性能验收试验1级和2级》[13]、GB/T 18149—2000《离心泵、混流泵和轴流泵水力性能试验规范 精密级》[14]和GB/T 13929—1992《水环真空泵和水环压缩机试验方法》[15]等国家标准规定的方法进行。
2实验结果
按照上述方法开展实验,获取离心泵在不同海拔和转速下的泵吸入口持液率曲线。因持液率曲线较多且规律类似,本文只列出各海拔下泵转速为1 824和2 280 r/min时的持液率数据,并以海拔0 m、泵转速2 280 r/min时的持液率数据曲线为例对实验过程进行说明。700 s时发动机挂泵,因泵入口流体被吸走且后续流体未能及时补充,此时泵吸入口流体含量迅速降低,所以瞬间泵吸入口处气体含量急剧增大,而后随着管内流体的不断流动补充至泵吸入口处,持液率慢慢回升直至基本稳定于一固定值。2 250 s时,发动机与泵连接断开,泵吸入口持液率上升,因泵停止运转,而后续流体仍然继续流动,泵吸入口管线内瞬间充满流体,造成吸入口持液率大幅上升,而后随着流体流速的下降,持液率数值恢复至实验初始状态。
3数据分析
整理泵在不同海拔和转速下含气率测试仪输出的电压值 β,计算泵吸入口持液率 α 和泵吸入口持液率变化率 γ,得到泵在不同真空度下的持液率变化规律。
离心泵吸入口持液率 α 和持液率变化率 γ 的数值可以发现,泵吸入口的持液率符合以下规律:①不同海拔、相同转速下,泵的持液率随海拔的提升不断降低,即海拔越高,泵吸入口的持液率越低,海拔每升高500 m,泵吸入口持液率下降2%~5%;②相同海拔、不同转速下,泵的持液率随转速提高呈降低趋势,即泵的转速越高,泵吸入口持液率越低。
泵转速不变,海拔升高时,因大气压力 P 降低,而高差 Z 与动能 0.5ρv入2均不变,导致离心泵吸入口压力 P入降低,离心泵的吸入能力下降,泵吸入口持液率降低。海拔不变,泵转速升高时,泵吸入口流体流速升高,流体动能升高,若要继续保持方程两端平衡,则吸入口压力与流体密度至少有一项需要减小;若吸入口压力降低,则与第一种情况相同;若流体密度减小,则说明液体内混入气体,即吸入口持液率降低。
4结论
通过一系列不同海拔和转速下泵高原吸入性能模拟实验,获取了离心泵在不同海拔和转速下泵吸入口持液率,生成了泵的持液率变化曲线,分析实验数据得出以下结论:
1)不同海拔、相同转速下,泵的持液率随海拔的提升不断降低,即海拔越高,泵吸入口持液率越低,海拔高度每升高500 m,泵吸入口持液率下降2%~5%;
2)相同海拔、不同转速下,泵的持液率随转速提高呈降低趋势,即泵的转速越高,泵吸入口持液率越低;
3)随着泵吸入口持液率降低,泵内吸入气体增加,泵内流体流动状态不稳定,泵出入口压力及流量波动剧烈,泵机组工作状态趋于不稳定。
第二篇:离心泵反转对设备的影响分析
离心泵反转对设备的影响分析
问题:我们装置的预热锅炉预热水泵,因为需要备用,平时备用的那一台离心泵出口阀是保持一定的开度的,以防运行泵出问题时,备泵能迅速自启,不影响生产,但是这样备泵的出口阀在长期的摩擦中,容易内漏,现在是备泵反转,不知道会不会对机泵造成影响? 结果
1、离心泵长时间反转是不行的,因为可以导致叶轮脱落。
2、机泵做功能量部分浪费;
3、备用泵出口阀板加快磨损;
4、长期反转机泵叶轮备冒松动会脱落。
5、备用反转,一旦启动,瞬时泵转向调过来,振动增加,电流增大,对电机也会有影响。运行介质温度高的机泵需要备用泵预热的可以走预热管线,预热管线设置双阀对夹孔板,双阀全开孔板限量。
第三篇:氧气雾化吸入治疗质量管理研究论文
【摘要】目的探讨PDCA质量管理在规范氧气雾化吸入治疗的应用。方法运用PDCA质量管理办法,对氧气雾化吸入治疗进行质控管理和质量改进,比较实施PDCA质量管理前后氧气雾化吸入治疗规范达标率及患者满意度。结果实施PDCA质量管理后氧气雾化吸入治疗规范达标率由67.1%上升至95.0%,患者满意度由90.5%上升至97.1%。结论PDCA质量管理是规范氧气雾化吸入治疗的有效办法,值得推广。
【关键词】PDCA循环;氧气雾化吸入;规范化管理
PDCA循环管理是进行全面质量管理活动的基本方法,广泛用于持续改善产品质量的过程[1-3]。PDCA循环通过计划(Plan)、实施(Do)、检查(Check)和处理(Action)4个阶段的管理,使工作质量在不断良性循环中提高。而氧气雾化吸入治疗是治疗呼吸道疾病的重要方法之一。由于各种原因导致临床实际工作中氧气雾化吸入治疗存在一些问题,为了探讨规范氧气雾化吸入治疗的方法,减少安全隐患发生[4],我科运用PDCA质量管理办法对氧气雾化吸入治疗进行质量改进,取得了一定成效,现报道如下。
1资料与方法
1.1一般资料
2015年12月~2016年2月我科收治患者中需氧气雾化吸入的患者105例为对照组,其中男55例,女50例,平均年龄(76.1±5.2)岁,共检查630项;2016年3月~6月收治患者中需氧气雾化吸入的患者138例为观察组,其中男73例,女65例,平均年龄(75.8±4.9)岁,共检查828项。对照组与观察组在性别、年龄方面比较没有统计学差异。我科在职护士共35人,全部纳入考核范围。
1.2方法
1.2.1观察组运用PDCA质量管理方法,具体实施如下:第一阶段,计划,成立专门雾化质控小组,通过现状调查目前主要存在以下问题:①雾化液没有严格按医嘱配置,护士重视程度不够;②雾化时体位未按要求嘱咐患者;③雾化罐放置角度不当;④氧气流量调节不当及氧气管连接不牢靠;⑤雾化时深长呼吸及雾化后有效咳嗽不到位。针对现存的问题,在组长带领下,共同制订以下整改措施:①统一规范氧气雾化吸入治疗操作流程;②组织科室护士相关知识培训,并定期考核,考核成绩纳入工作绩效考核;③加强患者及家属氧气雾化吸入治疗相关知识宣教,对接受能力较差的患者增加宣教次数。第二阶段,执行,严格按照整改措施执行。第三阶段,检查,严格按照制订的护理质量管理标准,定期对雾化治疗进行检查与考核,专人监督制度落实情况,不断强化护士的质量意识。第四阶段,处理阶段,针对第三阶段检查结果中存在的不足之处纳入下一循环,争取在不断循环改进中使氧气雾化吸入治疗规范率达100%。
1.2.2对照组按常规方法进行护理。准备氧气装置、氧气雾化吸入器、治疗巾、弯盘及药液,配置药液后核对床号、姓名,解释以取得患者合作,协助取舒适体位,连接雾化器的接气口与氧气装置的出气口,调节氧流量,指导患者手持雾化器,将口含嘴放入患者口中紧闭嘴唇深吸气,用鼻呼气,如此反复直至药液吸完为止,治疗完毕取出雾化器,关闭氧气开关。
1.3观察指标
氧气雾化吸入治疗操作规范率;护士理论知识考核合格率;患者满意度。1.4统计学方法采用SPSS17.0统计学软件对数据进行处理,以P<0.05为差异有统计学意义。
2结果
2.1氧气雾化吸入治疗操作规范率比较
观察组氧气雾化吸入治疗操作规范率95%(787/828)明显高于对照组的67%(423/630),差异有统计学意义(P<0.05);氧气雾化吸入治疗操作规范情况比较,见表1。
2.2护士氧气雾化吸入治疗相关知识合格率情况比较实施
PDCA循环管理后护士氧气雾化吸入治疗相关知识合格率由实施前的77.1%上升至97.1%。见表2。3讨论氧气雾化吸入,在呼吸系统急危重症患者的治疗中有着十分重要的作用,由于整个雾化吸入过程中需要管理的环节多,涉及的管理人员广,这就需要一个科学严谨的管理方法以确保患者的早日康复,而PDCA循环是管理学中的一个通用模型,广泛应用于持续改善产品质量的过程,是广泛应用于质量管理的标准化、科学化的循环体系,PDCA循环通过计划(P)-实施(D)-检查(C)-持续改进(A),四个阶段的管理,使工作质量在不断循环中得到提高,是值得各行各业推广的管理办法。本组结果显示,在提高氧气雾化吸入操作规范率、护士对氧气雾化吸入治疗相关知识了解的合格率以及患者对治疗效果的满意度方面,运用PDCA循环管理法明显优于常规护理方法(P<0.05),有效提高了氧气雾化吸入操作规范率、护士对氧气雾化吸入治疗相关知识了解的合格率以及患者对治疗效果的满意度,同时由于人人参与管理,调动了护士工作的积极性,强化了责任性,增强了安全意识,从终末质量控制向环节质量控制转变,同时体现了以人为本、一切以患者为中心的服务意识,使护理工作从简单地完成变为对患者全方位和全程的护理,确保了护理质量始终处在一个良性循环的轨道中。
参考文献
[1]刘卫红,王惠平.PDCA循环在手术物品安全管理中的应用[J].护理学杂志,2014,06:42-43.[2]魏容容,谢建飞,钟竹青,等.护理安全管理课程设置及应用[J].中华护理杂志,2013,11(6):524-527.[3]王金玉,李琼颖,沈敏,等.PDCA管理模式提高临床护士工作满意度的效果[J].解放军护理杂志,2014,13(20):56-59.[4]许红霞,徐宇红,阮丽.PDCA管理模式对提升护理操作实践能力的效果观察[J].实用临床医药杂志,2014,12(22):214-215.
第四篇:操作参数对旋风分离器分离性能的影响研究
操作参数对旋风分离器分离性能的影响研究
张振伟
(东北大学,辽宁 沈阳110004)
摘要:利用FLUENT的 RSM湍流模型对旋风分离器气固两相流场进行数值模拟得出:随着入口速度的增大,旋风分离器的压降也随之增大,且增大的幅度越来越大;随着流量的增加,旋风分离器的分离效率逐渐增大,小颗粒和中等颗粒的分离效率增加幅度较大,大颗粒的增加幅度稍小;随着气体中颗粒浓度的增大,分离总效率及各分离效率都逐渐增大,当浓度达到某一定值时,各种粒径颗粒的分离效率都会趋于稳定,大颗粒的分离效率在较低浓度时就已经趋于稳定,小颗粒的分离效率在较高浓度时才能趋于稳定。
关键词:数值模拟;颗粒;分离效率
1、旋风分离器工作原理
旋风分离器的结构如图1所示,主要由直筒和圆锥形灰斗、与直筒成切线布置的长方形进风管、顶部排气管和下部排尘管等几个部分组成。
出口
入口
颗粒出口
图1 旋风分离器结构简图
Fig.1 Structure graph of cyclone separator 旋风分离器的工作原理是:含尘气体由长方形进气管进入旋风分离器,由于筒壁的约束作用,气流由直线运动变成圆周运动,旋转气流的绝大部分沿直筒壁成螺旋状向下朝圆锥形灰斗流动,通常称为外旋流。气体中的粉料颗粒在旋转过程中,在离心力的作用下,将重度大于气体的颗粒甩向器壁,颗粒一旦与器壁接触,便失去惯性力,靠入口速度的初始动量随外螺旋气流沿壁面下落,最终进入下部排尘管。旋转向下的外旋气流在到达圆锥形灰斗时,因圆锥体形状的收缩按“旋转矩”不变原理,其切向速度不断提高(不考虑壁面摩擦损失)。在外旋流旋转过程中周边气流压力升高,在圆锥形灰斗中心部位形成低压区,由于低压区的吸引,当气流到达锥体下端某一位置时,便向分离器中心靠拢,即以同样的旋转方向在旋风分离器内部,由下反转向上,继续作螺旋运动,称为内旋流。最后,气流经上部排气管排出分离器,少部分未被分离出来的物料颗粒随气流逃出。气体中的颗粒在气体旋转向上进入排气管前碰到器壁,即可沿器壁滑落到排尘口,从而达到气固分离的目的。
2、操作参数对分离性能的影响
2.1入口速度的影响
考虑不同入口速度对旋风分离器压降的影响,利用数值模拟的方法分别对入口速度为5m/s、10m/s、15m/s、20m/s和25m/s时的压降和具有不同粒径颗粒的分离效率分别进行数值计算,得到不同入口速度下旋风分离器的压降。如表1所示,为了便于分析,将表中压降数据绘成曲线如图2所示。
表1速度-压强表
Table 1 Table of velocity and pressure 速度(m/s)压降(pa)
250020005 132 10 345 15 723 20 1428 25 2312 压降(pa)***05101520速度(m/s)25
图2速度对压强影响
Fig.2 Influence of velocity to pressure 从图2中可以看出,随着入口速度的增大,旋风分离器的压降也随之增大,且增大的幅度越来越大。从能量角度看,增大旋风分离器入口的速度会增大能量的损失,因为旋风分离器的磨损与气体速度的四次方成正比,所以过大的入口速度会增大旋风分离器的压降。因此,应当在保证旋风分离器的分离性能的基础上尽量采用较低的入口速度,节约能量。
表2不同速度下不同粒径分离效率值
Table 2 Separation efficiency of the different size and different velocity
颗粒粒径(μm)5m/s模拟效率(%)10.2 13.5 19.6
27.8 25.3 26.8 35.2 43.0 40.5 45.2 53.4 68.3 79.1 55.6 60.5 79.6 84.1 68.2 76.3 83.5 92 86.2 90.1 92.7 98.1 15m/s模拟效率(%)13.5 20m/s模拟效率(%)15.6 25m/s模拟效率(%)19.8
***15101520微粒(μm)25305m/s15m/s20m/s25m/s效率(%)
图3速度对分离效率影响
Fig.3 Influence of velocity to separation efficiency
考虑不同入口速度对旋风分离器中颗粒的分离效率的影响。不同入口速度下的颗粒分离效率的数值计算值如表2所示,并将其绘成曲线如图3所示,便于直观地分析。
从图3中可以看出,当入口速度增大时,旋风分离器的分离效率也随之增大;当入口速度减小时,旋风分离器的分离效率也随之减小。同时从图3中看出,入口速度的变化对分离效率曲线的影响比较大。经模拟分析,当速度为25m/s时的小颗粒的分离效率比20m/s时略小。分析其可能原因,由于湍流及微粒碰撞弹跳等因素促使沉积在器壁处的微粒重新被卷扬起来;又由于入口气体速度的加大,使向心径向气速也增加;下行轴向气速也增加,微粒停留时间变短;圆锥形灰斗底部被捕集的微粒受到的返气夹带的影响更加严重,这些诸多不利因素的综合结果,使分离效率出现下降趋势。2.2颗粒直径的影响
旋风分离器的总效率是针对某一特定微粒群而言的,在不同的生产条件下,分离器的用途不同,处理的微粒性质也不同,用它作为旋风分离器的性能指标不具有通用的可比性。因而,还应该考虑分离器对于不同粒径微粒的分离效率,它是针对某一特定直径的微粒而言的,表示的是旋风分离器对特定直径微粒的分离效率,与总分离效率相比更能说明分离效率的分离性能。所以,这里讨论的是微粒的特定直径分离效率,以下简称分离效率。
颗粒随气体进入旋风分离器,在气流的带动下,由于受到方向向内的阻力和方向向外的离心力作用而沿着筒体作旋转运动。离心力正比于微粒质量,粒径大的微粒是容易被捕集的。对于小颗粒来讲,所受到的离心力较小,由于小微粒对气流的跟随性较好,有相当一部分微粒跟随气流在分离器内作旋转运动直至最后被气流带出分离器而逃逸,或最终落入圆锥形灰斗底部而被捕集。
表3不同微粒粒径下分离效率值
Table 3 Separation efficiency under different size of particle
粒径(μm)分离效率(%)15.6 5 27.8 1.0 43.2 15 72.3 20 87.6 25 92.3 从表3的数值计算值和图4中的颗粒粒径对分离效率的影响图中得出,随着微粒粒径的增加,分离效率呈现增大的趋势。分析其原因:大颗粒所受的离心力增大,因此进入分离器后随气流旋转运动的圈数要小于小颗粒,大颗粒较早就在筒体壁段碰壁,较快的落入圆锥形灰斗底部而被分离;对于小颗粒,所受的离心力较小,由于径向气流的向心作用,较容易被气流夹带出顶部排气管而逃逸。除此之外,由于小颗粒对气流的跟随性较好,有相当大一部分微粒跟随气流在分离器内作旋转运动,直至最后才被气流带出分离器而逃逸,或最终被捕集,也有的微粒在旋风分离器内作无限循环运动,此种情况被认为旋风分离器对该微粒无法分离。从数值模拟中可以看出,小粒径的颗粒被捕集的效率不高,因此旋风分离器常被用作含尘气体分离系统的一级回收。
100908070效率(%)***1015微粒(μm)2025
图4 颗粒粒径对分离效率的影响
Fig.4 Influence of particle diameter to separation efficiency 理论上讲,对任意旋风分离器都有一确定的临界粒径,小于临界粒径的颗粒是完全不能被捕集的,但在实际中,颗粒在进入分离器后,由于颗粒间的相互碰撞,颗粒的团聚夹带及静电和分子引力等因素,使颗粒的运动具有很大的随机性,一部分小于临界粒径的细颗粒也能被捕集,一部分大于临界粒径的大颗粒也会逃逸。2.3颗粒浓度的影响
入口气体颗粒浓度对旋风分离器的效率影响也较大。下面研究不同颗粒浓度下的分离效率,在相同流量下,考察气体含尘量分别为1%、3%、5%、7%下的分离效率。
表4为不同颗粒浓度总效率与分离效率的模拟计算值,为了直观绘制成曲线图。如图5所示为颗粒浓度对分离效率的影响,随着气体中颗粒浓度的增大,分离总效率及各分离效率都逐渐增大;小颗粒增大的幅度较大,而大颗粒增大的幅度较小。而且浓度越大,小颗粒分离效率提高越多,这是因为浓度较高时,气流对小颗粒的携带作用更加明显,所以效率提高较大。当浓度达到某一定值时,各种粒径颗粒的分离效率都会趋于稳定。大颗粒的分离效率在较低浓度时就已经趋于稳定,而小颗粒的分离效率将在较高浓度时才能趋于稳定。
表4不同颗粒浓度总效率与分离效率值
Table 4 The total efficiency and separation efficiency under different particle concentration 流量(m3/h)总效率(%)5μm颗粒分离效率 10μm颗粒分离效率 15μm颗粒分离效率 55 22.1 76.8 92.6
65.5 36.2 83.6 97.2
48.5 87.5 98.1
55.8 89.2 98.6
78.1 57.6 92.1 99.8 120100分离效率(%)***50流量(m3/h)55
总效率(%)5μm颗粒分离效率10μm颗粒分离效率15μm颗粒分离效率图5 颗粒浓度对分离效率的影响
Fig.5 Influence of particle concentration to separation efficiency 此外,在旋风分离器的实际应用中,当处理气体的颗粒浓度较高时,颗粒对壁面的磨损也加剧,使得分离器的使用寿命变短,而颗粒也会被粉碎变细,更加不利于分离。因此,在很多情况下,人们并不指望只经过一次分离便达到分离目的,而是经过几次分离,逐级减小颗粒群的含量和粒度,最终达到分离要求。
3结论
随着入口速度的增大,旋风分离器的压降也随之增大,且增大的幅度越来越大。随着流量的增加,旋风分离器的分离效率逐渐增大,尤其是小颗粒和中等颗粒效率的增加幅度更大,大颗粒的增加幅度稍小。虽然增大处理气量可以提高分离效率,却是以过大的能量消耗为代价的,而且当处理气量增大到某一程度时,会伴随有颗粒粉碎、器壁磨损等负面效应。相同的流量下,随着颗粒粒径的增大,其分离效率逐渐增大,但增加的幅度越来越小,最终趋向稳定。随着气体中颗粒浓度的增大,分离总效率及各分离效率都逐渐增大,气流对小颗粒的携带作用更加明显,其分离效率提高较大,而大颗粒增大的幅度较小。当浓度达到某一定值时,各种粒径颗粒的分离效率都会趋于稳定。大颗粒的分离效率在较低浓度时就已经趋于稳定,而小颗粒的分离效率在较高浓度时才能趋于稳定。
参考文献
1.谭天佑,梁风珍.工业通风除尘技术[M].北京:中国建筑工业出版社,1984,3.2.王博.旋风分离器内气固两相运动的数值仿真研究[D].西安建筑科技大学硕士学位论文.2003:1-10.3.王子云,付祥钊.旋风除尘器的气固两相流内湍流的数值模拟与分析[J].河南科技大学学报,2007,4(8):53-56.4.毛羽,庞磊,王小伟等.旋风分离器内三维紊流场的数值模拟[J].石油炼制与化工.2002,33(2):1-6 5.王海刚,刘石.不同湍流模型在旋风分离器三维数值模拟中的应用和比较[J].热能动力工程,2003,18(4):337-342.
第五篇:家电对电力线适配器性能的影响
家电对电力线适配器性能的影响
前文已经介绍过家用电器会对TL-PA201电力线适配器的性能造成影响,那么影响究竟有多大呢?我们通过一个插线板来进行实际测试。
如图所示,我们把TL-PA201和电脑、音箱、路由器、台灯、笔记本、打印机的电源全部插在一个插线板上,看看TL-PA201的性能变化。(测试地点依然是书房中的A、B两点)
小结:影响显著
相比使用独立的插座,TL-PA201与电器设备共用插座后的实际测试性能降低了20Mbps,降幅达到了25%。可见家用电器对电力线适配器的性能影响还是非常明显的,因此建议大家在使用TL-PA201时,应尽量选择独立的电源插座,以便获得更好的性能。
在TL-PA201的使用说明中,明确写到TL-PA201应远离充电器等设备使用。那么充电器对TL-PA201的影响会有多大呢?一起来看看我们的测试。
我们把手机充电器和TL-PA201共同插在一个插线板上,测试地点同样是书房中的A、B两点,测试结果如下:
小结:请远离充电器
相比使用独立的插座,TL-PA201与充电器共用插座后的实际测试性能降低了15Mbps,降幅接近20%,可见 充电器对TL-PA201的影响还是非常明显的。造成这种现象的主要原因是普通充电器的电磁屏蔽效果较差,电磁波对“电力线”的通信产生了干扰,致使数据 传输性能下降。因此,为了保证用户的正常使用,请不要吧TL-PA201和充电器放在一个插座上使用。
优、劣质电线对电力线适配器性能的影响
考虑到优、劣质电线的不好区分,以及实际测试的不方便性,我们选择了两个质量不同的插线板来替代优、劣质电线,看看它们对TL-PA201的性能会产生怎样的影响。
小结:对比差距明显
结果非常明显,优质插线板的测试成绩领先劣质插线板23M,领先幅度非常明显。因此用户在使用TL-PA201时,如果必须要配合插线板使用,请选择质量可靠的产品,而且不要选择带有滤波功能的插线板哦。
通过对TL-PA201电力线适配器的全面测试,我们的疑问也已全部解开。首先,TL-PA201非常安全,用户大可 放心使用;其次,TL-PA201的性能大约是百兆网线的一半,完全可以满足现代家庭对网络带宽的需求;而TL-PA201的性能和稳定性相比300M无 线网络则要高出不少,因此更加适合作为家庭现有网络的有效补充;最后,TL-PA201“怕”很多东西,用户在使用时需要注意。
“电力猫”最怕以下几样东西:
1、滤波产品。无论是电表、还是滤波插座,TL-PA201均无法正常使用。
2、电源适配器。无论是哪种电器的电源适配器,在其使用过程中均会对TL-PA201的性能产生影响,因此不建议大家把TL-PA201和电源适配器共用。
3、充电器。充电器在工作时产生的电磁波会严重影响TL-PA201的实际性能,因此用户需注意远离其使用。
4、劣质电线或插线板。
综合来看,TP-Link TL-PA201电力线适配器的表现还是非常不错的,它的性能处于有线网络和无线网络之间,但它的灵活性远胜有线网络,而稳定性相比无线网络也更加出色。因此用户只要是在同一个电表下使用,并且尽量做到每台TL-PA201单独使用一个插座,那么你将获得非常出色的“第三类”网络体验,享受到完全不逊于有 线网络的“新生活”。
更多常见问题解答:
1、用电力线适配器还需要用传统Modem吗?
答:需要,电力线适配器只是在家庭内部构建局域网使用,如果需要接入互联网还是需要通过小区宽带或传统的ADSL Modem 等方式。
2、电力线适配器单个可以使用吗?
答:不可以,至少需要两个才能使用,1个连接ADSL Modem 或路由器LAN 口,1个连接电脑。如有两台电脑,则需要3个,三台电脑,则需要4个,依此类推。
3、家庭空气开关会影响电力线适配器使用吗?
答:电力线适配器可以跨越大多数空气开关或漏电保护开关。
4、TL-PA101与TL-PA201可以相互通信么?
答:TL-PA101与TL-PA201采用不同的标准协议,因此是不可以互通的。现市场上PLC 产品大多依循统一标准协议,85M产品可与85M产品互通,200M产品可与200M产品互通。