第一篇:网络可靠性优化设计探析论文
摘要:随着我国经济社会领域的高速发展与快速进步,从而国民生活水平的不断提高,整个社会已逐渐步入了信息时代,人们对网络的依赖性也越来越强,网络不仅在日常工作以及商业中成为不可缺少的部分,而且人们在日常生活中也达到了离不开的地步。可是,伴随而来的会出现一些问题,网络可靠性是一个主要问题,受到人们的广泛关注,增强对网络可靠性的研究,能够有效的确保网络正常稳定运转,而且可以推进网络的发展。文中将主要研究网络可靠性以及影响网络可靠性的因素,同时提出了有关的网络可靠性优化设计方法.关键词:网络;可靠性;优化设计;问题
网络线路的高速覆盖以及各个领域的应用软件系统应运而生,快速改变了人们的工作流程以及生活方式,使得现代人越来越依赖网络,越来越离不开网络。所以,如果网络突然出现了问题,在工作以及生活中,几乎离不开网络的情况下,从表面看影响的只是工作以及生活,再进一步看,影响的是整个社会经济或者更重要其它方面。身体再好的人,都会有生病的时候,对于网络来说,网络故障等现象也是不可避免的,特别是我国,计算机以及网络发展应用时间不长,还没有丰富的优化计算机及网络安全可靠性的经验。由此,文中将主要提出:通过对网络的优化,增强安全以及可靠性的设计,提高网络各个方面的性能,降低网络故障出现的几率,从而降低各个方面的影响以及损失。
1网络可靠性概述
现代社会中,人们日常生活当中网络作为不可缺少的一部分。人们利用计算机通过网络能够学习想学习的知识,网上教学已经十分普遍,对上班族来说,网络的进步,也可以让他们充分使用空闲时间,使用计算机学习将自身水平提高。网络的迅速发展保证人们可以足不出户尽知天下事,同样发达的网络实现了网络购物,不出门就可以买到合适的物品,网络交易利用网络技术广泛普及,给人们带来便利,所以,人们越来越钟爱网络模式。可是伴随着网络的逐渐开放,产生了一系列不良的影响,例如,网络诈骗和网络陷阱等,因为网络是虚拟的,就带给诈骗人员机会。所以,要十分关注网络的可靠性与真实性。网络将资源扩大到最大,让更多的人对自己喜欢感兴趣的知识充分了解。网络的及时性,也让人们喜欢使用这样的方法,对任何事情都能轻易的了解。网络传播速度十分快,范围影响力大。例如,某地方出现自然灾害,通过网络就能够将各个不同地方的人们集聚起来,利用网络可以让更多的人们提供帮助。计算机以及网络也同样有脆弱的环节,容易遭受木马、病毒、攻击等的危害,比如网络中的某台计算机中病毒,则通过网络将会给个人隐私和财产安全带来伤害。所以,网络的安全可靠性是重中之重,只有安全可靠的网络环境,才能让使用者不担心自己的财产安全的情况下创造更多更高的价值。
2网络可靠性遵循设计原则
2.1安全第一原则
伴随着我国科学技术水平的不断进步和发展,网络是综合了大多数的高新先进技术之后产生的。网络几乎囊括了所有的软、硬件产品,如果存在安全问题,将直接威胁到网络的可靠性。因而,工作人员要关注利用高度安全性产品,同时采用更加合理科学的技术方案。
2.2良好的可扩展能力
随着网络的不断进步发展以及各种应用领域环境的出现,网络融合相通变成了发展的必然潮流。所以,网络的扩展性就成了网络设计中必不可少的部分,特别是网络对各种应用领域不同的通信协议的支持与相融。网络之间互连、相融的同时,必然会引发多种安全隐患,故而网络设计中,使用多种保护对策也是重中之重。利用多个保护层之间的互相补充,保证即便其中某一层出现损坏,其他各个保护层依然还可以确保信息可靠安全。
2.3在可持续发展的基础上进行
网络的可靠性优化设计需要遵循有关的设计原则,从而保证网络技术可以长久的被利用。所以,此原则的第一要务就是要坚持可持续发展的道路,要进行优化的过程中尽量的节约资源使用开发,要最大程度上使用现存的资源,对软硬件有关设备进行了科学合理的二次应用,防止出现不必要的损失和浪费。
3影响网络可靠性的重要因素
3.1用户设备
网络相互连通的能力保证其支持多种协议一同存在。为了保证可以在多种协议的环境下工作,要对数据安全和用户服务器工作进行强化,确保多个协议当中工作可以确保客户数据安全,确保用户服务终端的正常运行。正常情况之下,网络可靠性的确保,来源于容错技术和冗余设计,主要是因为用户终端和用户设备之间直接联系,所以有效确保网络的可靠性。平常生活当中维护网络工作,要保证可靠的客户端以及选用高效的联络媒介,采用辅助管理的软件,传输交互高效的设备。只有提高了终端的交互能力,才能提高网络的可靠性水平。
3.2网络管理
网络设备的地域性十分复杂,然而随着虚拟技术的出现,以及被广泛应用的形势下,使得网络也具备了虚拟性的特征,导致了不受地域限制。网络如同人体经脉一样,错综复杂,但却是一个完整系统,对于以往网络维护,主要依靠人工操作,地域性的问题造成了管理困难,任何细枝末节的失误都有可能导致整个网络的瘫痪,而且网络维护的成本也很巨大。所以引入先进技术以及辅助管理软件,对网络的可靠性具有重大影响。
3.3网络规划
通过网络运行管理的实际情况可以知道,网络系统在进行设计、实施、运行的过程中,一旦技术工作人员不能对网络设备的布线系统和其故障进行准确分析、判断,将直接造成整个网络系统出现崩溃,严重的损坏系统设备,更有甚者直接影响到数据信息的正常交换或者数据信息的丢失。所以,网络系统交互设计和可靠性设计流程中,科学合理的选择网络布线以及通信线路系统,尤其是需要综合全面考虑网络的容错和冗余的设计。这个过程中技术工作人员需要利用双向布线的设计优化方法将网络系统在不同的两条运行线路中进行有效的切换,所以一旦网络系统的一条运行系统线路出现安全故障的时候,另外一条系统线路依然可以进行安全运行。
3.4网络拓扑
大量研究事实表示,在不同的应用领域,不同的网络规模,采用的拓扑结构也不尽相同。传统是用直线取值以及连通度来度量网络的有效性与容错性,如今是利用图形来描述。随着时代的发展,出现了标准、参数、规则,来进行评测、度量等的概念,对于网络也形成了连通度、容错直径、边连通度等的参数概念。对于这些参数的了解程度,对网络设计的优化至关重要,也直接影响到网络的可靠性,和网络规划设计的可执行性。
3.5网络终端设备
一般大家所说的用户客户端就是网络终端技术设备,之所以用户利用网络能够实现数据资源的传输,从一定程度上是因为它利用网络安全管理系统能够对网络环境的多样化数据信息资源进行获得,保证资源可以在不同运行设备当中实现广泛运行传输。所以,当用户终端接受信息资源不断增多的情况下,网络系统构架以及科学安全性的流程就受到非常大的威胁,因而在这个运行环境之下,用户要十分关注网络的安全可靠性,同时造成网络系统安全维护变成总体网络可靠性优化设计流程中极为关键的内容。所以,优化网络设备以及用户系统的同时,用户要选择性能良好的终端系统,利用更加先进的网络管理系统保证终端系统获得更好的维护。
4网络可靠性优化设计方式
4.1冗余设计
因为提供服务的设备或者终端设备的组成非常复杂,接入的方式也多样化,那么为了保证这些服务设备和终端设备能够稳定、高效、安全的运行,则必须在网络规划设计中要采取多种架构相结合的方式,从而确保信息传输过程中减少或者避免服务崩溃或者数据丢失等情况出现,确保服务稳定,终端畅通无阻。故而在设计中要考虑引进使用先进的管理经验和网络辅助软件,增强对网络中运行数据的监测、整理、规划,时效性严格的数据,发现问题,立即处理,确保系统正确稳定的运行。将淘汰下来的性能、稳定方面尚可的计算机或者网络设备,通过虚拟技术做成冗余部分,相互连接,形成一个冗余网络,与网络中心相连,另外将不同客户的服务器也组成不同的冗余网络,再与网络中心相连,从而形成多网络交织的大网络环境,这些冗余网络通过路由器进行物理连接,再通过路由策略设置,实现主、备线路模式或者多线路模式,进行信息传输,从而提高了信息传输稳定性和准确性,即使某一环节出现故障,备用线路或者其它线路也能即时提供信息传输的通道,不影响数据的正常传输。
4.2容错设计
所谓容错,是指允许出现故障,而非允许出现错误。所以网络的容错性设计就是指允许网络出现故障。那么允许网络出现故障,那就必须要有备用的网络通道即时替换出现故障的通道。所以在规划设计中,在线路方面通过双线路或者多线路方式,在设备方面通过双机热备,分为一主一备或者一主多备的方式解决。容错性设计可以通过断开主线的设备或者线路,备用的设备或者线路是否即时启用来检测,那么主线与备线之间的跳转,使用的方式也是多方式的,可以用路由器,三层交换机来实现,也可以用相同型号的设备通过各自供应商提供的模块连接实现。那么,网络的容错性设计首先要根据功能需求来设计模型,比如是区域性的,还是全覆盖的,再通过设计模型与设计方案进行比较,同时要依据投入的经费等外部因素进行综合分析,从而确定最终适合的设计方案。容错设计要保证每一个容错区域出现故障,不会对其它区域造成影响,都能够正常的持续的运行。所以,为了减少故障的出现,在选择服务器或者网络设备的时候,要选择性能好,稳定性强的设备,再通过容错设计的方式,从而提高网络、服务系统的稳定性、可靠性。
4.3架构设计
网络架构优化设计,对保证网络的安全使用,起到至关重要的作用。网络技术不断进步发展的前提上,网络容量也在逐渐增加。对网络架构来讲,正向着多层次设计的方向进步发展。当中,接入层主要对象是用户,因此将访问控制和过滤作为主要措施。接入层作为第一道防线,对应的设计标准不高。核心层当做网络主干,需要保证数据能够快速交换、稳定运行,一旦核心层出现故障,整个的计算机网络将可能出现瘫痪。因此,为了更好的保证核心层设备能够稳定的将功能发挥出来,要在计算机网络设计当中利用高端网络设备。核心层设备与其他设备连接主要是依靠两条或者以上的链路。如果核心层中某个设备会出现异常的情况,那么可以给核心层设备增加一台设备进行备份,从而为核心层设备的可靠性带来保证。总而言之,网络技术的不断发展,人们对网络的依赖性也越来越强,网络使用的过程中出现的任何故障或者差错,都会造成或大或小的不便和影响。然而无论是网络技术水平最为发达的国家或者地区,也无法实现网络不出现故障,所以只有对网络进行优化,减少故障问题出现的几率,从而减少影响和损失。值得深思的是,网络可靠性设计优化当中,要对有关资源实现科学合理的分配,更加谨慎的使用新兴网络技术,是非常复杂、长期探索的一个过程。
参考文献
[1]冉兴程.提高计算机网络可靠性的方法研究[J].海峡科技与产业,2017(04):80-81.[2]刘小龙.关于计算机通信网络可靠性设计技术的分析[J].中国新通信,2017,19(15):32-33.[3]胡晓宇.计算机通信网络可靠性设计技术的分析[J].信息与电脑(理论版),2017(15):155-156.[4]孙涛.计算机网络安全的可靠性及优化设计问题探讨[J].科技经济导刊,2017(19):23.[5]吴乐璋.浅析计算机网络优化设计研究[J].通讯世界,2017(03):56-57.[6]寇晓荷.计算机网络可靠性分析与设计[J].电子技术与软件工程,2017(02):17.[7]张鸿志.计算机网络可靠性优化设计问题的初探[J].科技创新与应用,2017(07):100.[8]占怡.对计算机网络可靠性优化设计问题的研究[J].通讯世界,2017(09):148.[9]朱娅晶.论计算机网络可靠性的优化策略[J].石家庄铁路职业技术学院学报.2017,16(02):66-69.[10]贺呈.计算机网络可靠性优化设计[J].信息与电脑(理论版),2017(05):180-182.
第二篇:可靠性论文
机械可靠性设计
1.机械可靠性技术的发展历程
可靠性技术的研究开始于20世纪20年代,在结构工程设计中的应用始于20世纪柏年代。可靠性技术最早应用在二战末期德国V一Ⅱ火箭的诱导装置上。德国火箭研究机构参加人之一R.Lusser首先提出了利用概率乘积法则,把一个系统的可靠度看成该系统的子系统可靠度的乘积。自从1946年Freuenthal在国际上发表“结构的安全度”一文以来,可靠性问题扦始引起学术界和工程界的普遍关注与重视。从已有的资料了解到国内外机械产品可靠性研究状况如下:
美国的可靠性研究起步较早,在机械产品可靠性理论方面,一亚利桑那大学
D.Kececioglu教授为首。主要研究机械零件的可靠性概率设计方法。在机械故障预防和检测方面,以机械故障预防小组(MFPG)为代表对设计、诊断、监测、故障等进行研究,在可靠性数据的收集和分析方面取得了很大的进步,并且编制了一些可靠性设计手册和指南、可靠性数据手册。
日本的可靠性设计是从美国引进的,以民用产品为主,强调实用化,日本科技联盟是其全国可靠性技术的推广机构。在可靠性工程应用方面,比较重视可靠性试验、故障诊断和寿命预测技术的研究与应用,以及产品失效分析、现场使用数据的收集和反馈。原苏联对机械可靠性的研究十分重视,并有其独到之处。其可靠性技术应用主要靠国家标准推动,发布了一系列可靠性标准。他们认为可靠性技术的主要内容是预测,即在产品设计和样机试验阶段,预测和评估在规定的条件下的使用可靠性,研究各项指标随时间变化的过程。他们认为可靠性研究的方向主要有两个:一是可靠性数学统计方法和使用信息的统计处理技术,以及保证复杂系统可靠性的技术。二是适于机械制造行业,包括无力故障学机械零件的耐磨、耐热、耐蚀等设计方法以及保证可靠性的工艺的方法研究。
英国国家可靠性分析中心(NCRS)成立了机械可靠性研究小组,汇编出版了《机械系统可靠性》一书。从失效模式、使用环境、故障性质、筛选效果、实验难度、维修方式和数据积累等7个方面阐明了机械可靠性应用的重点,提出了几种机械系统可靠性的评估方法,并强调重视数据积累。
我国对机械产品可靠性研究起步较晚,20世纪80年代才得到较快发展,机械行业相继成立了可靠性研究的相关协会,各有关院所和高校也开展了机械产品可靠性研究,制定了一批可靠性标准,取得了较大的成果。但总的看来,理论研究多,实际应用少,与西方国家差距大,有些成果尚不能完整地成熟地应用在不同的机械系统中
2.广义可靠性的研究现状
广义可靠性包括:狭义可靠性与维修性,是指产品在其整个寿命期限内完成规定功能的能力。广义可靠性亦称随即模糊可靠性,是同时考虑,不确定因素中随机性和模糊性的总称,广义可靠性对于可能维修的产品和不可维修的产品有不同的意义,对于可能维修的产品来说,除了要考虑提高其可靠性外,还应考虑提高其维修性,而对不可维修的产品来说,由于不存在维修问题,只需考虑提高其可靠性。1 可靠性理论
1.1 常规的机械设计中,通常采用安全系数法或许用应力法,它的出发点是使作用在危险截面上的工作应力S小于或等于其许用应力[S],而[S]是由极限应力S除以大于1的安全系数n而得到的;也可以使机械零件的计算安全系数n大于预期的许用安全系数
[n]。即:
S≤[S]=S/n n=S/n≥[n]
这种常规设计方法沿用了许多年,只要安全系数选用适当,是一种可行的设计方法,但是随着产品日趋复杂,对其可靠性要求愈来愈高,常规方法就显得不够完善。首先,大量的实验表明,现实的设计变量如截荷、极限应力以及材料硬度、尺寸等都是随机变量,都呈现或大或小的离散性,都应该依概率取值,不考虑这一点,设计出来的结果难免与实际脱节。其次,常规设计方法的关键是选取安全系数,过大,造成浪费,过小,影响正常使用,但在选取安全系数时常常没有确切的选择尺度,其结果是使设计极易受局部经验所影响。所以为了使设计更符合实际,应该在常规方法的基础上进行概率设计。概率设计的主要特点是:第一,概率设计与常规设计的关系不是对立的,而是继承和发展的,在概率设计中同样用到各种符合实际的力学模型、系数和经验公式,但是,概率设计所使用的数据是以统计数据为基础,要在统计分布的基础上观察所有设计变量。比如在选用材料时,只有均值高、标准差又得到控制的才是好材料。第二,概率设计用平均安全裕度(平均安全系数)和可靠度作为设计目标,尤以后者更为重要。因为可靠度综合考虑了各设计变量的统计分布特性,定量地用概率表达所设计产品的可靠程度,因而更能反映实际情况。第三,概率设计重视收集和积累各种可靠性数据,特别注意信息反馈,从而在客观上形成了良性循环,并能使设计和管理工作有机结合。最终使概率设计逐步走上实用化的道路。
1.2 应力--强度干涉模型概率设计所依据的模型主要是应力--强度干涉模型。在常规设计中,将强度γ和应力S都视为常量,然而,零件本身的固有强度要受许多偶然因素的影响。比如,零件材料和金相不均匀、零件表面光洁度具有离散性、零件尺寸加工具有随机误差等等,因此实际中强度是一个随机变量。当然工作应力由于温度、载荷、湿度及振动等偶然因素的影响,在实际中也是一个随机变量。这样机械零件的强度和工作应力在实际中都服从一定的概率分布,两者的pdf曲线通常都部分重叠或称干涉。其重叠程度或干涉面积直接反映了可靠度的大小,应用应力与强度的干涉模型提出的一种概率设计理论是进行概率设计的基本依据。
3.机械产品可靠性设计的几大难点
与电子产品可靠性设计相比,机械产品可靠性设计呈现出以下特点,也是设计中的难点。
(1)机械产品故障模式多,且复杂。电子产品的失效模式比较简单,而机械产品的失效模式比较复杂,多元化,主要表现为疲劳、磨损、腐蚀、老化等。
(2)故障原因复杂,多为关联故障。电子产品在使用过程中发生的故障主要是由偶然因素造成的,而机械产品在使用过程中发生的故障原因比较复杂,有许多不定因
素引起的,多为关联故障。
(3)工作应力变化大,材料本身也存在区别。电子产品的应力容易预计而机械产品的应力波动比较大,材料的强度难以预计。
(4)早期故障不易排除。电子产品可以通过筛选等排除早期失效,在经济上是合理且有效的,而机械产品要开展这项工作在经济上是困难的。
(5)难以采用标准零部件。一般情况下组成电子产品的元器件是标准件,其基本失效率接近常数,应此可按指数分布进行处理。一旦获得其基本失效率数据、考虑环境因子等,则可进行电子产品的可靠性预计,而组成机械产品的零部件除标准件外有许多是非标准件,由于工作和使用环境的变化性,即使是标准件,在不同的情况下,它的失效率也不一样,而且很难测定分布情况。
(6)维修方式也存在区别。电子产品常常用更换的方式进行维修,而机械产品常用修复和更换相结合的方式进行。
(7)试验方案相差巨大。电子产品的可靠性试验方案比较成熟,而机械产品的寿命和可靠性试验一般是小子样,试验时间长,且无公认的可靠性鉴定试验统计方案,不同的机械产品其可靠性试验方案也存在差别。
(8)可靠性数据比较缺乏。电子产品的可靠性数据已经形成若干手册或文件,而机械产品的可靠性数据还十分缺乏,这为机械可靠性研究带来困难。
4.现有的可靠性设计方法
将规定的可靠性各种指标设计设计到零件中去,从而提高产品的可靠性的各种方法统称为可靠性设计方法。它包括定性分析和定量计算两种,有代表性的机械产品可靠性的设计方法有TCCP法、概率设计法、平均故障率法、稳健性设计、FMECA分析和FTA分析。2 应用实例由常规设计得到的转轴结构,其危险截面的参数如表1所示。轴的材料为45钢。由手册查得σ=650N/mm,σ=300N/mm,试按可靠度R=0.999来设计I—I截面的轴径(按正态分布计算)。解:
①工作应力计算,由于轴径d未知,只计算V取V=0.13,V=0.12
由变差系数公式得V==0.11
②计算极限应为。暂取综合影响系数
K=3.5,V=0.04,Vσ=0.06则
σ===85.71N/mm
V=V+V+V•V)=(0.06+0.04+0.06×0.04)=0.087
tgθ=•==2.19906
p===5420.05
σ=-p=-5420.05=38.84N/mm
σ=•σ=93.83N/mm
③计算R=0.999下轴能承受的工作应为σ。此时取V=Vσ=0.087,由于R=0.999查表得β=Φ(R)=3.090,故
β=1-βV=1-3.090×0.087=0.92773
β=1-βV=1-3.090×0.11=0.88447
σ=ι==61.15N/mm
④设计轴径d=()=(•)=67.94mm
若取d=68mm,或70mm可以保证R=0.999
5.机械可靠性发展展望
可靠性的思想与目前最先进的6&管理思想不谋而合,同样是以精确的数字为标准对质量、性能进行控制,二者从不同角度提高产品质量,不同于以往模糊的定性的方法。当前对于机械产品的可靠性预计方法还处于静态预测,不能考虑衡量其磨损老化过程,国外提出的可靠性概率——物理模型,应用失效机理的物理参数作为预计参数,为机械产品可靠性的预计指出了研究方向。
机械产品可靠性是小样本,有时候甚至是零失效,因此利用其老化数据的获取对小样本或无失效数据的可靠性评估方法的研究也是一个重要的发展方向。
机械产品有着复杂的环境应力,因此环境引力对机械系统材料老化、损耗过程的影响和机械材料失效机理与环境的关系研究也是非常重要的。
可靠性增长目前还没有具体的解决模型,对于机械类产品,应用高应力进行加速可靠性增长试验是非常有必要的。
微型零件在其他领域的应用日趋广泛微型机械的失效机理和宏观的失效机理有很大不同,因此微型机械的可靠性问题也是可靠性未来发展的一个焦点问题。
综上表明:只有把宏观上的可靠性统计、试验、技术等问题和微观上材料的失效机理及其老化过程等问题研究结合起来,共同解决才会更有助于推进机械可靠性技术的发展。
结束:
机械结构的可靠性是由设计决定的,而由制造、安装和管理来保证的。因此将概率设计理论和可靠性分析与设计方法应用于机械结构设计中,才能得到既有足够安全可靠性又有适当经济性的优化结构。
[15] 牟致忠.机械零件可靠性设计[M].北京:机械工业出版社,1988.[16] 叶永烈,苏智剑等.现代设计方法概论[M].郑州:河南科学技术出版社,1996.[17] 刘惟信.机械可靠性设计[M].北京:清华大学出版社,1996.[18] 臧勇.现代机械设计方法[M].北京:冶金工业出版社,1998.[19] 王成焘.现代机械设计思想与方法[M].上海:上海科学技术文献出版社,1999.[20] 高社生,张玲霞.可靠性理论与工程应用[M].北京:国防工业出版社,2002.[21] 朱文予.机械可靠性设计[M].上海:上海交通大学出版社,1992
[22] 年致忠.机械零件可靠性设计[M].北京:机械工业出版社,1988.[23] 丁宗海,董丽筠等.中国机械工业科学技术发展后30年[M].(1991年-2020年)北京:北京机械工业出版社,1993.[26] 王时任,陈继平.可靠性工程概论[M].武汉:华中理工大学出版社,1983.[27] 张小勤,莫才颂.机械零部件的可靠性设计分析[J].茂名学院学报,2008(2),29-31.[28] 王启,王文博.常用机械零部件可靠性设计[M].北京:机械工业出版社,1996.7]王梓坤.概率论基础及应用[M].北京:科学出版社,1979
[8]东北大学《机械零件设计手册》编写组.机械零件设计手册.北京:冶金工业出版社,1994
[9]孙志理,陈良玉.实用机械可靠性设计理论与方法[M].北京:科学技术出版社,2003 [10]金星,洪延姬,沈怀荣等.可靠性数据计算及应用[M].北京:国防工业出版社,2003
[11]刘品编著.可靠性工程基础[M].北京:中国计量出版社,2008
[12]吴波,黎明发.机械零件与系统可靠性模型[M ].北京: 化学工业出版社,2003 [13]叶永,田斌.结构可靠度分析方法探讨[J ].云南水利发电,2003,20(1):48255 [27]赵永翔.低周疲劳短裂纹行为和可靠性分析[M].成都:西南交通大学出版社,2006 [28]谢里阳,何雪浤,李佳.机电系统可靠性与安全性设计[M].哈尔滨:哈尔滨工业大学出版社,2006
[29]高镇同.疲劳应用统计学[M].北京:国防工业出版社,1986
[30]杨为民,盛一兴.系统可靠性数字仿真[M].北京:北京航空航天大学出版社,1990 [31]孙志礼,陈良玉.实用机械可靠性设计理论与方法[M].北京:科学出版社,2003 [32]Ernst G Frankel,Systems Reliability and Risk Analysis,Marionus Nijjboff Pub.,1984
[5] Bazovsky I Reliability Theory and Practice[M].New York: Academic Press., 1968.
第三篇:可靠性设计感想
可靠性设计课程学习感想
可靠性学科的出现已经有近80年的历史,但是真正得到广泛应用则要在第二次世界大战以后了。可靠性学科的最大功绩是将以往人们对产品的可靠性由模糊的定性概念变为清晰的定量指标;并将其贯穿于产品的设计、制造、检验及使用的整个过程。什么是可靠性设计呢?它是指产品在规定的时间内,规定的条件下,完成规定功能的能力。
通过近一个月的学习,我逐渐体会到可靠性设计在现代化工业生产中的重要地位。它不仅为产品的质量提供定性保障,更是生产、销售企业与购买一方进行沟通的最根本依据。随着科学技术水平的不断提高,现在可靠性设计已经能够对产品何时出现故障以及故障出现的可能性大小做出准确判断。同时,可靠性设计还对产品的维护、更新换代提供依据。可靠性设计不仅能够保证设计的合理性,提高产品的安全性,还能够避免设计过程中不必要的材料浪费,提高材料的使用效率。
当没有学习可靠性设计这门课以前,评价一件设计产品往往从它的功能的完成与否、外观设计的美观与否及其价格的定位,根本不会去考虑产品的设计是否合理。这在工程机械的生产上就有很好的例子,日本和德国同时为一个工程提供挖掘隧道用的盾构机,日本能够使用可靠性设计的方法保证盾构机掘削刀具在完成该工程后就几乎会报废了,而德国早不能很好的使用可靠性设计的情况下,设计的盾构机掘削刀具往往会在完成该项目后还能使用很长一段时间,但是施工方又不敢投入到下一个工程使用,这就是极大的浪费。可靠性设计在前期的研究中往往需要大量的资金投入,但是一旦可靠性参数研究确定下来,在后期的生产过程中,定会在保证产品性能的情况下,为生产厂商节约大量的生产成本。可靠性设计研究的开展是需要资金投入的,需要一定的生产周期反复试验,才能够投入生产实践中去。对于像飞行器这样一些航空机构,可靠性设计的明显优点是重量减小,并能降低成本和提高性能,使得其发射成功率以及有效的载荷大大增加。
课堂上理论知识的学习固然简单,也许你会说:不就是那么几个公式吗,当我们要在生产实践中想要去使用它,我们就会发现无从下手,原因之一就是我们不会把实际的问题抽象化,进而建立相应的数学模型;也许还有另外一个原因,我们缺乏实际的生产经验,不能准确地选取某些生产参数,到头来发现许多问题在学习中是一回事,可是到了实际生产中又成了另一件事。可靠性设计就是这么一回事,很多事情都需要我们到实际的生产实践中去积累,去总结,只有这样,我们才会将可靠性设计学好。
第四篇:可靠性设计心得
可靠性设计学习心得
随着科学技术的发展,对产品的要求不断提高,不仅要具有好的性能,更要具有高的可靠性水平。采用可靠性设计弥补了常规设计的不足,使得设计方案更加贴近生产实际。所谓可靠性是指“产品在规定时间内,在规定的使用条件下,完成规定功能的能力或性质”。可靠性的概率度量称为可靠度。可靠性工程的诞生已近半个世纪的历史, 以电子产品可靠性设计为先导的可靠性工程迄今发展得比较成熟, 已形成一门独立的学科。相比之下, 机械产品的可靠性设计与研究则起步较晚。所谓机械可靠性,是指机械产品在规定的使用条件下、规定的时间内完成规定功能的能力。由于工程材料特性的离散性以及测量、加工、制造和安装误差等因素的影响,使机械产品的系统参数具有固有的不确定性,因此考虑这种固有随机性的可靠性设计技术至关重要。据有关方面统计,产品设计对产品质量的贡献率可达70%~80%,可见设计决定了产品的固有质量特性(如:功能、性能、寿命、安全性和可靠性等),赋予了产品“先天优劣”的本质特性。上世纪60年代, 对机械可靠性问题引起了广泛的重视并开始对其进行了系统研究。虽然国内外都投入了研究力量, 取得了一定的进展,但终因机械产品可靠性涉及的领域太多、可靠性研究的范围大、基础性数据缺乏等原因,机械可靠性设计在工程实际中应用得并不广泛。本文简要介绍了可靠性技术在机械领域中的应用,主要介绍了一些在机械产品设计中应用的较为成熟的可靠性技术和可靠性设计方法,并且结合当今可靠性工程学科的发展,指出了可靠性技术在机械领域中的发展和趋势。
常规设计中,经验性的成分较多,如基于安全系数的设计。常规设计可通过下式体现:
S
计算中,F、l、E、μ、slim等各物理量均视为确定性变量,安全系数则是一个经验性很强的系数。
上式给出的结论是:若s≤[s]则安全;反之则不安全。
应该说,上述观点不够严谨。首先,设计中的许多物理量明是随机变量;基f(F,l,E,...)[]lim于前一个观点,当s≤ [s]时,未必一定安全,可能因随机数的存在而仍有不安全的可能性。
在常规设计中,代入的变量是随机变量的一个样本值或统计量,如均值。按概率的观点,当μσ= μ [σ]时,s≤[s]的概率为50%,即可靠度为50%,或失效的概率为50%,这是很不安全的。
显然有必要在设计之中引入概率的观点,这就是概率设计,也是可靠性设计的重要内容。概率设计就是要在原常规设计的计算中引入随机变量和概率运算,并给出满足强度条件(安全)的概率─可靠度。机械可靠性设计是常规设计方法的进一步发展和深化,它更为科学地计及了各设计变量之间的关系,是高等机械设计重要的内容之一。
可靠性设计和优化设计作为现代的设计方法,在机械工程中得到了广泛的应用,并取得良好的经济和社会效益。在机械设计中,结构或零部件具有足够的强度是设计的重要指标之一。机械可靠性设计与传统设计方法的主要不同点在于,传统设计是以计算安全系数为主要内容,以计算安全系数时用到的应力、强度等参数均取单值为前提的。而可靠性设计则考虑了载荷、零部件的尺寸及材料性能等参数的多值性,即它们均呈一定的概率分状态。若按传统的安全系数法进行机械结构或零部件的设计,在有些场合下可能会出现材料浪费、或可靠度不足等问题。
优化设计不再是过去那种凭借经验或直观判断来确定结构方案,也不是在满足所提出要求的前提下,先确定结构方案,再进行强度、刚度等的分析和校核,然后进行修改以确定结构尺寸。它的设计方法是,借助于电子计算机,应用非线性规划数学理论及数值计算方法,从所有可行的设计方案中寻找出一种最优的设计方案。它是一种用理论计算代替经验计算,用精确计算代替近似计算,用最优设计代替一般的安全寿命可行性设计的方法。将优化设计方法与可靠性理论结合,用于进行机械结构或零部件的设计,称为可靠性优化设计。其最终的设计方案即考虑了机械结构或零部件的可靠性要求,又是最优的设计结果。因此,可靠性优化设计方法非常适合于工程实际应用。
机械可靠性优化设计主要涉及三个方面(1)机械系统可靠性的最优分配:以机械系统的目标可靠度及其它条件为约束,最优地给各子系统分配系统的可靠度,使系统的某些指标,如成本、总费用等达到最优方案。(2)以可靠度最大为目标的机械可靠性优化设计:在保证机械产品的某些功能指标和经济指标的条件下,使机械产品具有最大的可靠度。(3)以可靠度为约束条件的机械可靠性优化设计:在保证可靠性指标的前提下,使机械产品的设计指标达到最优。
可靠性优化设计的优点(1)在常规优化设计中,采用的是确定性的结构分析模型和方法,其模型和方法本身决定了它无法反映出作用荷载和结构参数等的随机性。而在可靠性优化设计中是以结构的概率分析为基础,因此能够考虑荷载和参数的随机性。(2)常规的优化结果往往降低了结构的安全余度或设防水平,所获得的最优解~般处于设计可行域的临界面上,且没有足够的安全概率上的保证,从工程的观点看,这些结果是不能被接受的。丽可靠性优化设计获得的是满足可靠性要求的最佳方案,或者使结构在满足其它要求条件下其可靠度达到最大值。(3)在常规优化设计中,结构的安全性只能通过对各单元的强度约束条件来保证。但从系统的观点看,单元的功能满足并不能确保整个结构系统的功能得以满足。而在可靠性优化设计中,既可以单元的可靠性作为约束,亦可以结构系统的可靠性作为约束,自然可以获得满足系统功能要求的最佳设计方案。
可靠性是产品质量的一项重要指标。重要关键产品的可靠性问题比较突出,如航空航天产品;量大面广的产品,可靠性与经济性密切相关,如洗衣机等;高可靠性的产品,市场的竞争力强;可靠性工作周期长、耗资大,非几个人、某一个部门可以做好的,需全行业通力协作、长期工作;目前,可靠性理论不尽成熟,基础差、需发展。与其他产品相比机械产品的可靠性技术有以下特点:因设计安全系数较大而掩盖了矛盾,机械可靠性技术落后;机械产品的失效形式多,可靠性问题复杂;机械产品的实验周期长、耗资大、实验结果的可参考性差;机械系统的逻辑关系不清晰,串、并联关系容易混淆;
综上所述,要实现机械零件的可靠性设计,需要综合各个学科知识,同时需要大量工作实践,尤其针对目前国内机械行业的具体情况而言,各种材料性能参数的不确定性、标准零件的质量问题等因素,对机械设计师就提出了更高的要求。
只有把宏观上的可靠性统计、试验技术等问题与微观的材料失效机理及其老化过程等问题研究以及实际设计经验等联合起来共同解决,才会更有助于推进机械可靠性技术的发展。
第五篇:《机电产品可靠性设计》教案
教师教案
(2012—2013学年第2学期)课程名称:机电产品可靠性设计 授课学时:32 授课班级:2010级 任课教师:朱顺鹏 教师职称:讲师
教师所在学院:机械电子工程学院 电子科技大学教务处 课程名称
机电产品可靠性设计
授课专业
机械设计制造及其自动化
班级
2010
课程编号
08084025
修课人数
164
课程类型
必修
公共基础课();学科基础课();专业核心课(选修)
专业选修(√);任选课();公选课();
理论课(√);实践课()
授课方式
课堂讲授为主(√);实验为主(); 自学为主();专题讨论为主(); 其他:
是否采用 多媒体授课
是
考核方式及成绩构成
考试(√)考查()成绩构成及比例:考试80%+平时成绩20%
是否采用 双语教学
否
学时分配
讲授32学时;实验学时;上机学时;习题学时;课程设计学时
教材
名称
作者
出版社及出版时间
机电产品可靠性设计
凌丹
自编讲义,2012
参考书目
1.机械可靠性设计 2.机械可靠性设计
3.机械零件的可靠性设计 4.系统可靠性设计与分析
5.Reliability in Automotive and
Mechanical Engineering.6.电子元器件可靠性工程
孟宪铎 刘惟信 卢玉明 宋保维 Bertsche B.孙青, 庄奕琪
冶金工业出版社, 2008 清华大学出版社, 2000 高等教育出版社, 1987 西北工业大学出版社, 2008 Springer, 2008 电子工业出版社, 2002
授课时间
第 1 周——第 16 周第一章可靠性设计概论 4学时
一、教学内容及要求 教学内容共4学时
可靠性基本概念 2学时 可靠性的内涵
可靠性工程发展现状 可靠性特征量
可靠性数学基础 2学时 数理统计基本概念 可靠性常用概率分布
随机变量均值与方差的近似计算 教学要求
了解可靠性学科发展历程 掌握可靠性学科研究的内容 了解我国可靠性研究的发展现状
了解可靠性设计工作的重要意义及面临的主要挑战 掌握可靠性的定义
掌握可靠度、不可靠度、失效率的定义
掌握常用的概率分布(正态分布、指数分布、威布尔分布、对数正态分布)在可靠性设计工作中的应用
掌握随机变量均值与方差的近似计算方法
二、教学重点、难点 教学重点 可靠性的定义
可靠性特征量定义及相互关系 常用概率分布的统计特征量 教学难点 失效率的定义
威布尔分布的相关概念及应用
三、教学设计
列举航空航天产品(如卫星天线、卫星指向机构、太阳翼展开机构)、民用产品(如汽车)、制造装备(如数控机床)的实例,突出开展可靠性工作的重要意义。随机变量及数理统计的知识系学生在先修课程中所学内容的复习,可以简要介绍,并要求学生查阅以前的书籍。
正态分布是学生熟知的内容,在教学过程中着重讲解其实际应用;指数分布、对数正态分布和威布尔分布是学生先修课程中没有学习过的,应详细讲解。威布尔分布是难点内容,应重点介绍其发展历史,统计特征,以及威布尔分布在机械可靠性中的特殊作用,列举工程实例。随机变量函数的均值与方差计算是后续机械产品可靠性设计需要用到的基本方法,讲解三种常用的方法原理即可,公式可以查表。
四、作业
通过课程网站发布。
五、参考资料
1.盛骤, 谢式千, 潘承毅.概率论与数理统计(第四版), 高等教育出版社,2010 2.刘惟信.机械可靠性设计.北京:清华大学出版社, 2000
六、教学后记
第二章系统可靠性设计 8学时
一、教学内容及要求 教学内容共8学时 系统可靠性框图 2学时
串联系统;并联系统;混联系统;表决系统;旁联系统 可靠性分配 2学时
可靠性分配的目的和原则
可靠性分配方法(等分配法、再分配法、比例分配法、AGREE法)可靠性预计 1学时 可靠性预计的目的
可靠性预计的方法(应力分析法、元器件计数法、相似产品法、上下限法)故障模式、影响及危害性分析FMECA 1学时 FMECA的定义及分类 FMECA的一般过程
风险优先数和危害性矩阵 故障树分析FTA 2学时 故障树的各种符号 故障树建树步骤
常用故障树分析方法介绍 教学要求
了解系统可靠性设计的任务; 掌握系统可靠性建模方法; 了解可靠性分配与预计的目的; 掌握可靠性分配与预计的常用方法。了解FMECA的步骤;
掌握故障影响严酷度、发生度、探测度的基本概念; 掌握风险优先数和危害性矩阵图的计算。掌握故障树分析常用的术语与逻辑门; 掌握故障树定性、定量分析方法。
二、教学重点、难点 教学重点
常用可靠性框图及其可靠性指标计算方法 FMECA分析的过程
FMECA中风险优先数计算及危害度矩阵图的绘制 FTA的常用事件符号和逻辑门符号 割集与最小割集的概念及确定方法 路集与最小路集的概念及确定方法 故障树的定量分析 教学难点
表决系统的可靠度计算 旁联系统的可靠度计算
利用最小割集进行故障树的定量分析 底事件重要度的计算
三、教学设计
系统的可靠性不仅取决于其组成单元的可靠性,而且与各单元的连接方式有关。系统可靠性框图不同于系统的功能框图,针对不同失效模式可以绘制不同的可靠性框图,以滤油器为例讲解。讲解各种典型可靠性框图(串联、并联、混联、表决、旁联)的可靠度计算方法时,要给出工程实例。以美国“挑战者”号(1986)、“哥伦比亚”号(2003)航天飞机坠毁事故、切尔诺贝利核反应堆事故、美国F22隐形战机坠毁事故引出FMECA工作的重要意义。以某型军用飞机升降舵系统FMECA为例介绍分析过程。
介绍故障树的发展历史,以泰坦尼克沉船为顶事件,介绍故障树的常用符号和建树过程,并给出一些故障树分析实例,如剪草机发动机不启动、柴油发动机燃油泄漏为顶事件的故障树。故障树定性分析,割集与最小割集的上行法与下行法,课堂练习。故障树定性分析,路集与最小路集的成功树法,课堂练习。故障树定量分析是本章的难点,在教学过程中强调数据积累的重要性,可靠性数学如何应用于故障树分析;强调底事件重要度对于改进设计和设备维修的重要意义。
四、作业
通过课程网站发布。
五、参考资料
(挪)劳沙德著.郭强, 王秋芳, 刘树林译.系统可靠性理论:模型、统计方法及应用.国防工业出版社, 2010 梅启智, 廖炯生, 孙志中.系统可靠性工程基础.科学出版社, 1992 周海京, 遇今.故障模式、影响及危害性分析与故障树分析.航空工业出版社, 2003
六、教学后记
第三章机械可靠性设计原理 6学时
一、教学内容及要求 教学内容共6学时 概述 1学时
机械产品可靠性设计的任务
传统机械设计与可靠性设计的区别 机械可靠性设计的步骤
应力强度干涉模型及可靠度计算 4学时 应力-强度模型的基本思想
用应力-强度干涉模型求可靠度的计算方法 几种常用分布的可靠度计算 应力分布类型及其参数的确定 强度分布类型及参数的确定 机构运动可靠性概述 1学时 教学要求
了解机械产品可靠性设计与传统设计的区别; 了解机械可靠性设计的过程;
掌握应力强度干涉模型的基本理论及可靠度计算方法; 掌握应力、强度分布的确定方法; 了解机构运动可靠性基本概况。
二、教学重点、难点 教学重点
传统机械设计与可靠性设计的区别 应力-强度模型的基本思想
用应力-强度干涉模型求可靠度的计算方法 几种常用分布的可靠度计算 教学难点
应力分布类型及其参数的确定 强度分布类型及参数的确定 机构运动可靠性分析方法
三、教学设计
机械可靠性设计中,概率设计是一种主要的方法,以传统的机械可靠性设计方法为基础,将设计变量视为随机变量,运动概率运算方法,计算零件的可靠度或在给定可靠度时进行零件主要尺寸的设计。讲解传统设计与可靠性设计的区别与联系。以简单拉杆设计为例,分析设计过程中的不确定性,分析安全系数法的优缺点。
应力-强度干涉理论是机械可靠性设计的基本理论。通过狭义应力与强度的概念引出广义应力与强度的概念。利用第一章中的随机变量的概率密度曲线,绘制应力-强度干涉曲线。详细讲解利用干涉计算可靠度的方法,重点讲解应力和强度均服从正态分布时可靠度的计算,并列举例题。
应力和强度分布参数的确定是应用应力-强度干涉理论的前提,要求学生了解各种设计手册的使用方法,理解工程中一些实用计算方法。
以飞机起落架为例介绍研究机构运动可靠性分析的意义,列举机构可靠性常用的分析方法,介绍机构可靠性的研究现状与发展趋势。
四、作业
通过课程网站发布。
五、参考资料
卢玉明, 机械零件的可靠性设计, 北京:高等教育出版社, 1989 徐灏.机械强度的可靠性设计.北京:机械工业出版社, 1984 孟宪铎, 机械可靠性设计.北京:冶金工业出版社, 2008 王超, 王金.机械可靠性工程.北京:冶金工业出版社, 1992
六、教学后记
第四章疲劳可靠性设计 4学时
一、教学内容及要求 教学内容共4学时
疲劳失效及材料的疲劳曲线1学时 材料的疲劳曲线 全概率P-S-N曲线
呈分布状态的疲劳极限应力图 零件疲劳极限的分布1学时 疲劳可靠度计算 2学时
稳定变应力下疲劳强度的可靠度计算 不稳定变应力下的疲劳强度的可靠度计算 教学要求
掌握呈分布状态的S-N曲线和疲劳极限应力图; 掌握稳定变应力下的疲劳可靠度计算; 了解疲劳累积损伤理论;
了解非稳定变应力下的疲劳可靠度计算。
二、教学重点、难点 教学重点
全概率P-S-N曲线 呈分布状态的疲劳极限应力图
稳定变应力下疲劳强度的可靠度计算 教学难点
零件疲劳极限分布的确定
不稳定变应力下的疲劳强度的可靠度计算
三、教学设计
疲劳是机械零件的主要失效形式。列举实例说明疲劳失效的危害。疲劳寿命曲线和疲劳极限曲线是机械设计课程中学生已经掌握的内容,教学中应强调设计过程中存在的不确定性和全概率P-S-N曲线的重要意义,简单介绍全概率P-S-N曲线的获得方法。在多个不同应力循环特性的全概率P-S-N曲线的基础上,能够获得呈分布状态的疲劳极限应力图。
建议学生查阅资料,自学疲劳应力载荷谱的处理方法; 结合机械设计手册讲解零件疲劳极限分布参数的确定方法,注意强调零件疲劳极限与材料疲劳极限的区别。
稳定循环变应力下进行疲劳可靠性设计的主要是根据全概率P-S-N曲线或呈分布状态的疲劳极限应力图。讲解基本方法,并列举例题。
简要介绍疲劳累积损伤理论及不稳定变应力下进行疲劳可靠性设计的方法。
四、作业
通过课程网站发布。
五、参考资料
卢玉明, 机械零件的可靠性设计, 北京:高等教育出版社, 1989 徐灏.机械强度的可靠性设计.北京:机械工业出版社, 1984 孟宪铎, 机械可靠性设计.北京:冶金工业出版社, 2008 王超, 王金.机械可靠性工程.北京:冶金工业出版社, 1992
六、教学后记
第五章机械零件可靠性设计 4学时
一、教学内容及要求 教学内容共4学时
轴的静强度可靠性设计 1学时 传动轴的静强度可靠性设计 转轴的静强度可靠性设计
圆柱齿轮轮齿强度的可靠性设计 1学时 齿面接触疲劳强度可靠性设计 齿根弯曲疲劳强度可靠性设计 滚动轴承的可靠性设计 1学时 滚动轴承的寿命计算 滚动轴承的可靠性模型
机械零件的可靠性优化设计 1学时 可靠性优化设计的意义
以可靠度最大为目标的可靠性优化设计 以可靠度为约束条件的可靠性优化设计 教学要求
掌握轴的可靠性设计方法; 掌握齿轮的可靠性设计方法; 掌握滚动轴承的可靠性设计方法; 了解机械可靠性优化设计的基本思想。
二、教学重点、难点 教学重点
圆柱齿轮轮齿强度的可靠性设计 教学难点 无
三、教学设计
本章介绍几种常用机械零件的可靠性设计方法,对于轴仅讲解其静强度可靠性设计方法,轴的疲劳可靠性计算过程较为复杂,建议学有余力的学生自学。齿轮则介绍其接触疲劳强度和齿根弯曲疲劳强度可靠度计算和零件设计。对于滚动轴承,主要讲解疲劳寿命可靠性建模及计算方法,滚动轴承的疲劳寿命服从威布尔分布。
紧密结合第三章的应力强度干涉模型,按照可靠性设计流程,针对不同零件,依次讲解确定应力分布类型和参数的方法及确定强度分布类型和参数,建立连接方程求解可靠度或进行给定可靠度下的零件几何尺寸计算。列举例题。
四、作业
通过课程网站发布。
五、参考资料
卢玉明, 机械零件的可靠性设计.高等教育出版社, 1989 徐灏.机械强度的可靠性设计.机械工业出版社, 1984 孟宪铎, 机械可靠性设计.冶金工业出版社, 2008 王超, 王金.机械可靠性工程.冶金工业出版社, 1992
六、教学后记
第六章电子产品可靠性设计 4学时
一、教学内容及要求 教学要求共4学时
电子元器件的选用与控制 1学时 电子元器件的质量等级 电子元器件的选用 电子元器件的控制
电子元器件的可靠性管理
电子元器件的失效分析 1学时 电子元器件失效模式与失效机理 电子元器件失效分析的目的和内容 电子元器件失效分析方法
电子元器件可靠性设计方法 2学时 元器件的降额设计 冗余设计 热设计
电磁兼容设计
容差和参数漂移设计 教学要求
了解电子产品可靠性的特点; 了解电子产品可靠性设计的一般程序;了解电子元器件选用与控制原则; 了解电子元器件失效分析方法;
掌握电子产品可靠性设计的常用方法(降额设计、冗余设计、热设计、电磁兼容设计、容差设计)。
二、教学重点、难点 教学重点
电子元器件的质量等级划分
电子元器件失效模式与失效机理的定义 电子产品可靠性设计方法 教学难点 无
三、教学设计(如何讲授本章内容,尤其是重点、难点内容的设计、构思)
电子元器件是元件和器件的总称。电子元器件是电子、电气系统的基础产品,是能够完成预定功能而不能再分割的电路基本单元,其可靠性影响整机的可靠性水平。航天工业电子元器件可靠性在国、内外的研究状况。
列举因为电子元器件失效造成的事故,如欧洲航空局的Ariane火箭、1998年8月至1999年5月美国火箭发射的6次失利;高可靠性非常成功的例子-俄罗斯的和平号空间站。电子产品的可靠性试验方法较为成熟,已有很多适用于电子产品可靠性的标准。介绍国标及国军标中的各项标准及其应用。列举统计数据,说明近一半的元器件失效并非由于元器件本身的固有可靠性不高,而是由于使用者对元器件选择不当或使用有误。引入电子元器件选用规则和依据。概要介绍元器件常用可靠性设计方法。
四、作业
通过课程网站发布。
五、参考资料
曹白杨.电子产品设计原理与应用.电子工业出版社, 2010 王蕴辉, 于宗光.电子元器件可靠性设计.科学出版社, 2007 卢昆祥.电子设备系统可靠性设计与试验技术指南.天津大学出版社, 2011
六、教学后记
第七章可靠性试验 2学时
一、教学内容及要求 教学内容共2学时
可靠性试验的目的和分类 环境应力筛选 可靠性增长试验
可靠性鉴定和验收试验 可靠性寿命试验 教学要求
了解可靠性试验的目的和分类;
掌握环境应力筛选试验的目的和种类;
了解可靠性增长过程及常用的可靠性增长数学模型; 了解可靠性鉴定和验收试验的目的; 了解寿命试验的过程和方法。
二、教学重点、难点 教学重点
环境应力筛选试验的目的和种类 教学难点
可靠性增长试验的数学模型及其应用
三、教学设计
可靠性试验是可靠性工程的重要环节。首先介绍可靠性试验的分类,从不同角度可以将可靠性试验分成不同的种类,介绍每一种试验的目的和应用范围。可靠性增长试验的数学模型是本章的难点,在教学中应讲清楚使用数学模型的意义,分析常用的两种数学模型的不同用途。
可靠性鉴定和验收试验统称为可靠性统计试验,两种试验的目的不同。以汽车产品、航天电子产品、滚动轴承为例,介绍各种试验的应用。
四、作业
通过课程网站发布。
五、参考资料
梅文华.可靠性增长试验.北京:国防工业出版社.2005 何国瑞, 陈浩华.可靠性试验.北京:人民邮电出版社, 1993
六、教学后记